
Symbolic algebra and Mathematics with Xcas

Renée De Graeve, Bernard Parisse1,
Jay Belanger2

Sections written by Luka Marohnić3

1Université de Grenoble, initial translation of parts of the French user manual
2Full translation and improvements
3Optimization, signal processing. The graph theory is in a separate manual.

2

c© 2002, 2007 Renée De Graeve, Bernard Parisse
renee.degraeve@wanadoo.fr
bernard.parisse@ujf-grenoble.fr

Contents

1 Index 31

2 Introduction 45
2.1 Notations used in this manual . 45
2.2 Interfaces for the giac library 46

2.2.1 The Xcas interface . 46
2.2.2 The command-line interface 47
2.2.3 The Firefox interface . 47
2.2.4 The TeXmacs interface 48
2.2.5 Checking the version of giac that you are using: version,

giac . 48

3 The Xcas interface 49
3.1 The entry levels . 49
3.2 The starting window . 50
3.3 Getting help . 52
3.4 The menus . 53

3.4.1 The File menu . 53
3.4.2 The Edit menu . 55
3.4.3 The Cfg menu . 56
3.4.4 The Help menu . 57
3.4.5 The Toolbox menu . 59
3.4.6 The Expression menu 59
3.4.7 The Cmds menu . 59
3.4.8 The Prg menu . 59
3.4.9 The Graphic menu . 59
3.4.10 The Geo menu . 59
3.4.11 The Spreadsheet menu 60
3.4.12 The Phys menu . 60
3.4.13 The Highschool menu 60
3.4.14 The Turtle menu . 60

3.5 Configuring Xcas . 60
3.5.1 The number of significant digits: Digits DIGITS . . . 60
3.5.2 The language mode: xcas_mode 60
3.5.3 The units for angles: angle_radian 61
3.5.4 Exact or approximate values: approx_mode 61
3.5.5 Complex numbers: complex_mode 61
3.5.6 Complex variables: complex_variables 62

3

4 CONTENTS

3.5.7 Configuring the computations 63
3.5.8 Configuring the graphics 65
3.5.9 More configuration . 66
3.5.10 The configuration file: widget_size cas_setup xcas_mode

xyztrange . 67
3.6 Printing and saving . 68

3.6.1 Saving a session . 68
3.6.2 Saving a spreadsheet . 69
3.6.3 Saving a program . 69
3.6.4 Printing a session . 69

3.7 Translating to other computer languages 69
3.7.1 Translating an expression to LATEX: latex 70
3.7.2 Translating the entire session to LATEX 70
3.7.3 Translating graphical output to LATEX: graph2tex graph3d2tex 70
3.7.4 Translating an expression to MathML: mathml 70
3.7.5 Translating a spreadsheet to MathMML 71
3.7.6 Translating a Maple file to Xcas: maple2xcas 71

4 Entry in Xcas 73
4.1 Suppressing output . 73
4.2 Entering comments . 73
4.3 Editing expressions . 74

4.3.1 Entering expressions in the editor 74
4.3.2 Subexpressions . 75
4.3.3 Manipulating subexpressions 76

4.4 Previous results . 77
4.5 Spreadsheet . 78

4.5.1 Opening a spreadsheet 78
4.5.2 The spreadsheet window 78

4.6 Variables . 79
4.6.1 Variable names . 79
4.6.2 The CST variable . 79
4.6.3 Assigning values: := => = assign sto Store . . 79
4.6.4 Assignment by reference: =< 81
4.6.5 Copying values of list: copy 81
4.6.6 Incrementing variables: += -= *= /= 82
4.6.7 Storing and recalling variables and their values: archive

unarchive . 82
4.6.8 Copying variables: CopyVar 83
4.6.9 Assumptions on variables: about additionally assume

purge supposons and or 83
4.6.10 Unassigning variables: VARS purge DelVar del restart

rm_a_z rm_all_vars 85
4.7 Functions . 86

4.7.1 Defining functions . 86
4.7.2 Defining piecewise defined functions 87

4.8 Directories . 88
4.8.1 Working directories . 88

CONTENTS 5

4.8.2 Reading files: read load 89
4.8.3 Internal directories: NewFold SetFold GetFold DelFold

VARS . 89

5 The CAS functions 91
5.1 Symbolic constants : e pi infinity inf i euler_gamma 91
5.2 Booleans . 91

5.2.1 The values of a boolean : true false 91
5.2.2 Tests : == != > >= < =< 91
5.2.3 Boolean operators : or xor and not 92
5.2.4 Transform a boolean expression to a list : exp2list . . 93
5.2.5 Transform a list into a boolean expression: list2exp . . 93
5.2.6 Evaluate booleans : evalb 94

5.3 Bitwise operators . 94
5.3.1 Operators bitor bitxor bitand 94
5.3.2 Bitwise Hamming distance : hamdist 95

5.4 Strings . 96
5.4.1 Character and string : " 96
5.4.2 The newline character: \n 96
5.4.3 The length of a string: size length 96
5.4.4 The left and right parts of a string: left right 97
5.4.5 First character, middle and end of a string : head mid

tail . 97
5.4.6 Concatenation of a sequence of words : cumSum 98
5.4.7 ASCII code of a character : ord 98
5.4.8 ASCII code of a string : asc 99
5.4.9 String defined by the ASCII codes of its characters : char 99
5.4.10 Find a character in a string : inString 100
5.4.11 Concat objects into a string : cat 100
5.4.12 Add an object to a string : + 101
5.4.13 Transform an integer into a string : cat + 101
5.4.14 Transform a string into a number : expr 102

5.5 Write an integer in base b: convert 103
5.6 Integers (and Gaussian Integers) 104

5.6.1 The factorial : factorial 104
5.6.2 GCD : gcd igcd . 104
5.6.3 GCD : Gcd . 106
5.6.4 GCD of a list of integers : lgcd 106
5.6.5 The least common multiple : lcm 106
5.6.6 Decomposition into prime factors : ifactor 106
5.6.7 List of prime factors : ifactors 107
5.6.8 Matrix of factors : maple_ifactors 107
5.6.9 The divisors of a number : idivis divisors 108
5.6.10 The integer Euclidean quotient : iquo intDiv div . . 108
5.6.11 The integer Euclidean remainder : irem remain smod

mods mod % . 109
5.6.12 Euclidean quotient and euclidean remainder of two inte-

gers : iquorem . 110

6 CONTENTS

5.6.13 Test of evenness : even 110
5.6.14 Test of oddness : odd 110
5.6.15 Test of pseudo-primality : is_pseudoprime 111
5.6.16 Test of primality : is_prime isprime isPrime . . 111
5.6.17 The smallest pseudo-prime greater than n : nextprime . 112
5.6.18 The greatest pseudo-prime less than n : prevprime . . . 113
5.6.19 The n-th pseudo-prime number : ithprime 113
5.6.20 The number of pseudo-primes less than or equal to n: nprimes113
5.6.21 Bézout’s Identity : iegcd igcdex 114
5.6.22 Solving au+bv=c in Z: iabcuv 114
5.6.23 Chinese remainders : ichinrem ichrem 114
5.6.24 Chinese remainders for lists of integers : chrem 116
5.6.25 Solving a2 + b2 = p in Z : pa2b2 117
5.6.26 The Euler indicatrix : euler phi 117
5.6.27 Legendre symbol : legendre_symbol 117
5.6.28 Jacobi symbol : jacobi_symbol 118
5.6.29 Listing all compositions of an integer into k parts : icomp 119

5.7 Combinatorial analysis . 119
5.7.1 Factorial : factorial ! 119
5.7.2 Binomial coefficients : binomial comb nCr 120
5.7.3 Permutations : perm nPr 120
5.7.4 Random integers : rand 120
5.7.5 Wilf-Zeilberger pairs: wz_certificate 121

5.8 Rationals . 122
5.8.1 Transform a floating point number into a rational : exact

float2rational . 122
5.8.2 Integer and fractional part : propfrac propFrac . . . 123
5.8.3 Numerator of a fraction after simplification : numergetNum123
5.8.4 Denominator of a fraction after simplification : denom

getDenom . 124
5.8.5 Numerator and denominator of a fraction : f2nd fxnd . 124
5.8.6 Simplification of a pair of integers : simp2 124
5.8.7 Continued fraction representation of a real : dfc 125
5.8.8 Transform a continued fraction representation into a real :

dfc2f . 127
5.8.9 The n-th Bernoulli number : bernoulli 128
5.8.10 Access to PARI/GP commands: pari 128

5.9 Real numbers . 129
5.9.1 Eval a real at a given precision : evalf and Digits,

DIGITS . 129
5.9.2 Usual infixed functions on reals : +,-,*,/,ˆ 130
5.9.3 Usual prefixed functions on reals : rdiv 132
5.9.4 n-th root : root . 132
5.9.5 The exponential integral function: Ei 133
5.9.6 The logarithmic integral function:Li 134
5.9.7 The cosine integral function:Ci 134
5.9.8 The sine integral function:Si 135
5.9.9 The Heaviside function: Heaviside 135

CONTENTS 7

5.9.10 The Dirac distribution: Dirac 136
5.9.11 Error function : erf . 136
5.9.12 Complementary error function: erfc 137
5.9.13 The Γ function : Gamma 138
5.9.14 The upper incomplete γ function: ugamma 139
5.9.15 The lower incomplete γ function: igamma 139
5.9.16 The β function : Beta 140
5.9.17 Derivatives of the DiGamma function : Psi 140
5.9.18 The ζ function : Zeta 141
5.9.19 Airy functions : Airy_Ai and Airy_Bi 141

5.10 Permutations . 142
5.10.1 Random permutation : randperm, shuffle 143
5.10.2 Previous permutation: prevperm 143
5.10.3 Next permutation: nextperm 143
5.10.4 Decomposition as a product of disjoint cycles : permu2cycles143
5.10.5 Product of disjoint cycles to permutation: cycles2permu 144
5.10.6 Transform a cycle into permutation : cycle2perm . . . 144
5.10.7 Transform a permutation into a matrix : permu2mat . . 145
5.10.8 Checking for a permutation : is_permu 145
5.10.9 Checking for a cycle : is_cycle 145
5.10.10 Product of two permutations : p1op2 146
5.10.11 Composition of a cycle and a permutation : c1op2 146
5.10.12 Composition of a permutation and a cycle : p1oc2 146
5.10.13 Product of two cycles : c1oc2 147
5.10.14 Signature of a permutation : signature 147
5.10.15 Inverse of a permutation : perminv 147
5.10.16 Inverse of a cycle : cycleinv 148
5.10.17 Order of a permutation : permuorder 148
5.10.18 Group generated by two permutations : groupermu . . . 148

5.11 Complex numbers . 148
5.11.1 Usual complex functions : +,-,*,/,ˆ 149
5.11.2 Real part of a complex number : re real 149
5.11.3 Imaginary part of a complex number : im imag 149
5.11.4 Write a complex as re(z)+i*im(z) : evalc 149
5.11.5 Modulus of a complex number : abs 150
5.11.6 Argument of a complex number : arg 150
5.11.7 The normalized complex number : normalize unitV 150
5.11.8 Conjugate of a complex number : conj 150
5.11.9 Multiplication by the complex conjugate : mult_c_conjugate151
5.11.10 Barycenter of complex numbers : barycenter 151

5.12 Algebraic numbers . 152
5.12.1 Definition . 152
5.12.2 Minimum polynomial of an algebraic number:pmin . . . 152

5.13 Algebraic expressions . 153
5.13.1 Evaluate an expression : eval 153
5.13.2 Change the evaluation level: eval_level 153
5.13.3 Evaluate algebraic expressions : evala 154
5.13.4 Prevent evaluation : quote hold ’ 154

8 CONTENTS

5.13.5 Force evaluation : unquote 155
5.13.6 Distribution : expand fdistrib 155
5.13.7 Canonical form : canonical_form 155
5.13.8 Multiplication by the conjugate quantity : mult_conjugate156
5.13.9 Separation of variables : split 156
5.13.10 Factorization : factor 157
5.13.11 Complex factorization : cFactor 158
5.13.12 Zeros of an expression : zeros 159
5.13.13 Complex zeros of an expression : cZeros 160
5.13.14 Regrouping expressions: regroup 160
5.13.15 Normal form : normal 161
5.13.16 Simplify : simplify 161
5.13.17 Automatic simplification: autosimplify 162
5.13.18 Normal form for rational fractions : ratnormal 163
5.13.19 Substitute a variable by a value: | 163
5.13.20 Substitute a variable by a value : subst 164
5.13.21 Substitute a variable by a value: () 165
5.13.22 Substitute a variable by a value (Maple and Mupad com-

patibility) : subs . 165
5.13.23 Substitute a subexpression by another expression: algsubs167
5.13.24 Eliminate one or more variables from a list of equations:

eliminate . 167
5.13.25 Evaluate a primitive at boundaries: preval 168
5.13.26 Sub-expression of an expression : part 169

5.14 Values of un . 169
5.14.1 Array of values of a sequence : tablefunc 169
5.14.2 Values of a recurrence relation or a system: seqsolve . 170
5.14.3 Values of a recurrence relation or a system: rsolve . . . 171
5.14.4 Table of values and graph of a recurrent sequence : tableseq

and plotseq . 172
5.15 Operators or infixed functions 173

5.15.1 Usual operators :+, -, *, /, ˆ 173
5.15.2 Xcas operators . 173
5.15.3 Define an operator: user_operator 174

5.16 Functions and expressions with symbolic variables 175
5.16.1 The difference between a function and an expression . . . 175
5.16.2 Transform an expression into a function : unapply . . . 175
5.16.3 Top and leaves of an expression : sommet feuille op 177

5.17 Functions . 178
5.17.1 Context-dependent functions. 178
5.17.2 Usual functions . 179
5.17.3 Defining algebraic functions 180
5.17.4 Composition of two functions: @ 183
5.17.5 Repeated function composition: @@ 183
5.17.6 Define a function with the history : as_function_of . 183

5.18 Functions from R to R . 185
5.18.1 The domain of a function: domain 185
5.18.2 Table of variations of a function: tabvar 186

CONTENTS 9

5.19 Derivation and applications. 187
5.19.1 Functional derivative : function_diff 187
5.19.2 Length of an arc : arcLen 188
5.19.3 Maximum and minimum of an expression: fMax fMin . 189
5.19.4 Table of values and graph : tablefunc and plotfunc 190
5.19.5 Derivative and partial derivative 191
5.19.6 Implicit differentiation : implicitdiff 193

5.20 Integration . 195
5.20.1 Antiderivative and definite integral : integrate int

Int . 195
5.20.2 Primitive and definite integral : risch 197
5.20.3 Discrete summation: sum 198
5.20.4 Riemann sum : sum_riemann 200
5.20.5 Integration by parts : ibpdv and ibpu 201
5.20.6 Change of variables : subst 203

5.21 Calculus of variations . 203
5.21.1 Determining whether a function is convex : convex . . . 203
5.21.2 Euler-Lagrange equation(s) : euler_lagrange 206
5.21.3 Jacobi equation : jacobi_equation 210
5.21.4 Finding conjugate points : conjugate_equation . . 211
5.21.5 An example : finding the surface of revolution with mini-

mal area . 212
5.22 Limits . 215

5.22.1 Limits : limit . 215
5.22.2 Integral and limit . 217

5.23 Rewriting transcendental and trigonometric expressions 218
5.23.1 Expand a transcendental and trigonometric expression :

texpand tExpand 218
5.23.2 Combine terms of the same type : combine 220

5.24 Trigonometry . 221
5.24.1 Trigonometric functions 221
5.24.2 Expand a trigonometric expression : trigexpand . . . 221
5.24.3 Linearize a trigonometric expression : tlin 221
5.24.4 Increase the phase by π/2 in a trigonometric expression:

shift_phase . 222
5.24.5 Put together sine and cosine of the same angle : tcollect

tCollect . 223
5.24.6 Simplify : simplify 223
5.24.7 Simplify trigonometric expressions : trigsimplify . . 224
5.24.8 Transform arccos into arcsin : acos2asin 224
5.24.9 Transform arccos into arctan : acos2atan 224
5.24.10 Transform arcsin into arccos : asin2acos 224
5.24.11 Transform arcsin into arctan : asin2atan 225
5.24.12 Transform arctan into arcsin : atan2asin 225
5.24.13 Transform arctan into arccos : atan2acos 225
5.24.14 Transform complex exponentials into sin and cos : sincos

exp2trig . 225
5.24.15 Transform tan(x) into sin(x)/cos(x) : tan2sincos . . . 226

10 CONTENTS

5.24.16 Transform sin(x) into cos(x)*tan(x): sin2costan . . . 226
5.24.17 Transform cos(x) into sin(x)/tan(x): cos2sintan 226
5.24.18 Rewrite tan(x) with sin(2x) and cos(2x) : tan2sincos2 227
5.24.19 Rewrite tan(x) with cos(2x) and sin(2x) : tan2cossin2 227
5.24.20 Rewrite sin, cos, tan in terms of tan(x/2) : halftan . . . 227
5.24.21 Rewrite trigonometric functions as function of tan(x/2) and

hyperbolic functions as function of exp(x): halftan_hyp2exp228
5.24.22 Transform inverse trigonometric functions into logarithms

: atrig2ln . 228
5.24.23 Transform trigonometric functions into complex exponen-

tials : trig2exp . 228
5.24.24 Simplify and express preferentially with sine : trigsin . 229
5.24.25 Simplify and express preferentially with cosine : trigcos 229
5.24.26 Simplify and express preferentially with tangents : trigtan229
5.24.27 Rewrite an expression with different options : convert

convertir => . 230
5.25 Fourier transformation . 231

5.25.1 Fourier coefficients : fourier_an and fourier_bn
or fourier_cn . 231

5.25.2 Discrete Fourier Transform 234
5.25.3 Fast Fourier Transform : fft 239
5.25.4 Inverse Fast Fourier Transform : ifft 240
5.25.5 An exercise with fft 240

5.26 Audio Tools . 242
5.26.1 Creating audio clips : createwav 242
5.26.2 Reading WAV files from disk : readwav 243
5.26.3 Writing WAV files to disk : writewav 243
5.26.4 Audio playback : playsnd 243
5.26.5 Averaging channel data : stereo2mono 243
5.26.6 Audio clip properties : channels, bit_depth, samplerate,

duration . 243
5.26.7 Extracting samples from audio clips : channel_data . 244
5.26.8 Changing the sampling rate : resample 244
5.26.9 Visualizing waveforms : plotwav 245
5.26.10 Visualizing power spectra : plotspectrum 246

5.27 Signal Processing . 246
5.27.1 Cross-correlation of two signals : cross_correlation 246
5.27.2 Auto-correlation of a signal : auto_correlation . . 247
5.27.3 Convolution of two signals : convolution 247
5.27.4 Low-pass filtering : lowpass 249
5.27.5 High-pass filtering : highpass 249
5.27.6 Apply a moving average filter to a signal : moving_average249
5.27.7 Perform thresholding operations on an array : threshold 250
5.27.8 Bartlett-Hann window function : bartlett_hann_window252
5.27.9 Blackman-Harris window function : blackman_harris_window253
5.27.10 Blackman window function : blackman_window . . . 253
5.27.11 Bohman window function : bohman_window 253
5.27.12 Cosine window function : cosine_window 254

CONTENTS 11

5.27.13 Gaussian window function : gaussian_window 254
5.27.14 Hamming window function : hamming_window 254
5.27.15 Hann-Poisson window function : hann_poisson_window255
5.27.16 Hann window function : hann_window 255
5.27.17 Parzen window function : parzen_window 255
5.27.18 Poisson window function : poisson_window 256
5.27.19 Riemann window function : riemann_window 256
5.27.20 Triangular window function : triangle_window . . . 256
5.27.21 Tukey window function : tukey_window 257
5.27.22 Welch window function : welch_window 257
5.27.23 An example : static noise removal by spectral subtraction . 257

5.28 Exponentials and Logarithms . 259
5.28.1 Rewrite hyperbolic functions as exponentials : hyp2exp 259
5.28.2 Expand exponentials : expexpand 260
5.28.3 Expand logarithms : lnexpand 260
5.28.4 Linearize exponentials : lin 260
5.28.5 Collect logarithms : lncollect 261
5.28.6 Expand powers : powexpand 261
5.28.7 Rewrite a power as an exponential : pow2exp 261
5.28.8 Rewrite exp(n*ln(x)) as a power : exp2pow 261
5.28.9 Simplify complex exponentials : tsimplify 262

5.29 Polynomials . 262
5.29.1 Polynomials of a single variable: poly1 262
5.29.2 Polynomials of several variables: %%%{ %%%} 262
5.29.3 Convert to a symbolic polynomial : r2e poly2symb . 263
5.29.4 Convert from a symbolic polynomial : e2r symb2poly 264
5.29.5 Transform a polynomial in internal format into a list, and

conversely: convert 264
5.29.6 Coefficients of a polynomial: coeff coeffs 265
5.29.7 Polynomial degree : degree 266
5.29.8 Polynomial valuation : valuation ldegree 266
5.29.9 Leading coefficient of a polynomial : lcoeff 266
5.29.10 Trailing coefficient degree of a polynomial : tcoeff . . 267
5.29.11 Evaluation of a polynomial : peval polyEval 268
5.29.12 Factorize xn in a polynomial : factor_xn 268
5.29.13 GCD of the coefficients of a polynomial : content . . . 268
5.29.14 Primitive part of a polynomial : primpart 269
5.29.15 Factorization : collect 269
5.29.16 Factorization : factor factoriser 270
5.29.17 Square-free factorization : sqrfree 271
5.29.18 List of factors : factors 272
5.29.19 Evaluate a polynomial : horner 272
5.29.20 Rewrite in terms of the powers of (x-a) : ptayl 273
5.29.21 Compute with the exact root of a polynomial : rootof . 273
5.29.22 Exact roots of a polynomial : roots 274
5.29.23 Coefficients of a polynomial defined by its roots : pcoeff

pcoef . 275
5.29.24 Truncate of order n : truncate 275

12 CONTENTS

5.29.25 Convert a series expansion into a polynomial : convert
convertir . 275

5.29.26 Random polynomial : randpoly randPoly 276
5.29.27 Change the order of variables : reorder 276
5.29.28 Random list : ranm . 277
5.29.29 Lagrange’s polynomial : lagrange interp 277
5.29.30 Trigonometric interpolation : triginterp 278
5.29.31 Natural splines: spline 279
5.29.32 Rational interpolation : thiele 281

5.30 Arithmetic and polynomials . 282
5.30.1 The divisors of a polynomial : divis 282
5.30.2 Euclidean quotient : quo 283
5.30.3 Euclidean quotient : Quo 283
5.30.4 Euclidean remainder : rem 284
5.30.5 Euclidean remainder: Rem 285
5.30.6 Quotient and remainder : quorem divide 285
5.30.7 GCD of two polynomials with the Euclidean algorithm: gcd286
5.30.8 GCD of two polynomials with the Euclidean algorithm : Gcd286
5.30.9 Choosing the GCD algorithm of two polynomials : ezgcd

heugcd modgcd psrgcd 287
5.30.10 LCM of two polynomials : lcm 288
5.30.11 Bézout’s Identity : egcd gcdex 289
5.30.12 Solving au+bv=c over polynomials: abcuv 289
5.30.13 Chinese remainders : chinrem 290
5.30.14 Cyclotomic polynomial : cyclotomic 291
5.30.15 Sturm sequences and number of sign changes ofP on (a, b]

: sturm . 292
5.30.16 Number of zeros in [a, b) : sturmab 292
5.30.17 Sturm sequences : sturmseq 293
5.30.18 Sylvester matrix of two polynomials : sylvester . . . 294
5.30.19 Resultant of two polynomials : resultant 295

5.31 Orthogonal polynomials . 298
5.31.1 Legendre polynomials: legendre 298
5.31.2 Hermite polynomial : hermite 299
5.31.3 Laguerre polynomials: laguerre 299
5.31.4 Tchebychev polynomials of the first kind: tchebyshev1 300
5.31.5 Tchebychev polynomial of the second kind: tchebyshev2301

5.32 Gröbner basis and Gröbner reduction 301
5.32.1 Gröbner basis : gbasis 301
5.32.2 Gröbner reduction : greduce 302
5.32.3 Test if a polynomial or list of polynomials belongs to an

ideal given by a Gröbner basis: in_ideal 303
5.32.4 Build a polynomial from its evaluation : genpoly 304

5.33 Rational fractions . 305
5.33.1 Numerator : getNum 305
5.33.2 Numerator after simplification : numer 305
5.33.3 Denominator : getDenom 305
5.33.4 Denominator after simplification : denom 306

CONTENTS 13

5.33.5 Numerator and denominator : f2nd fxnd 306
5.33.6 Simplify : simp2 . 306
5.33.7 Common denominator : comDenom 307
5.33.8 Integer and fractional part : propfrac 307
5.33.9 Partial fraction expansion : partfrac 307
5.33.10 Partial fraction expansion over C: cpartfrac 308

5.34 Exact roots of a polynomial . 308
5.34.1 Exact bounds for complex roots of a polynomial : complexroot308
5.34.2 Exact bounds for real roots of a polynomial : realroot 309
5.34.3 Exact bounds for real roots of a polynomial: VAS 310
5.34.4 Exact bounds for positive real roots of a polynomial: VAS_positive310
5.34.5 An upper bound for the positive real roots of a polynomial:

posubLMQ . 311
5.34.6 A lower bound for the positive real roots of a polynomial:

poslbdLMQ . 311
5.34.7 Exact values of rational roots of a polynomial : rationalroot312
5.34.8 Exact values of the complex rational roots of a polynomial:

crationalroot . 313
5.35 Exact roots and poles . 313

5.35.1 Roots and poles of a rational function : froot 313
5.35.2 Rational function given by roots and poles : fcoeff . . . 314

5.36 Computing in Z/pZ or in Z/pZ[x] 314
5.36.1 Expand and reduce : normal 315
5.36.2 Addition in Z/pZ or in Z/pZ[x] : + 315
5.36.3 Subtraction in Z/pZ or in Z/pZ[x] : - 315
5.36.4 Multiplication in Z/pZ or in Z/pZ[x] : * 316
5.36.5 Euclidean quotient : quo 316
5.36.6 Euclidean remainder : rem 317
5.36.7 Euclidean quotient and euclidean remainder : quorem . . 317
5.36.8 Division in Z/pZ or in Z/pZ[x] : / 317
5.36.9 Power in Z/pZ and in Z/pZ[x] : ˆ 318
5.36.10 Compute an mod p : powmod powermod 318
5.36.11 Inverse in Z/pZ : inv inverse or / 319
5.36.12 Rebuild a fraction from its value modulo p : fracmod

iratrecon . 319
5.36.13 GCD in Z/pZ[x] : gcd 319
5.36.14 Factorization over Z/pZ[x] : factor factoriser . . 320
5.36.15 Determinant of a matrix in Z/pZ : det 320
5.36.16 Inverse of a matrix with coefficients in Z/pZ : inv inverse321
5.36.17 Row reduction to echelon form in Z/pZ : rref 321
5.36.18 Construction of a Galois field : GF 322
5.36.19 Factorize a polynomial with coefficients in a Galois field :

factor . 323
5.37 Compute in Z/pZ[x] using Maple syntax 324

5.37.1 Euclidean quotient : Quo 324
5.37.2 Euclidean remainder: Rem 324
5.37.3 GCD in Z/pZ[x] : Gcd 325
5.37.4 Factorization in Z/pZ[x] : Factor 326

14 CONTENTS

5.37.5 Determinant of a matrix with coefficients in Z/pZ : Det . 326
5.37.6 Inverse of a matrix in Z/pZ : Inverse 327
5.37.7 Row reduction to echelon form in Z/pZ : Rref 327

5.38 Taylor and asymptotic expansions 328
5.38.1 Division by increasing power order : divpc 328
5.38.2 Taylor expansion : taylor 328
5.38.3 Series expansion : series 329
5.38.4 The inverse of a series: revert 331
5.38.5 The residue of an expression at a point : residue 332
5.38.6 Padé expansion: pade 332

5.39 Ranges of values . 334
5.39.1 Definition of a range of values: a1..a2 334
5.39.2 Boundaries of a range of values: left right 334
5.39.3 Center of a range of values: interval2center 335
5.39.4 Ranges of values defined by their center : center2interval336

5.40 Intervals . 336
5.40.1 Defining intervals: i[] 336
5.40.2 The endpoints of an interval: left,right 337
5.40.3 Adding intervals . 337
5.40.4 The negative of an interval 337
5.40.5 Multiplying intervals . 338
5.40.6 The reciprocal of an interval 338
5.40.7 The midpoint of an interval: midpoint 339
5.40.8 The union of intervals: union 339
5.40.9 The intersection of intervals: intersect 339
5.40.10 Test if an object is in an interval: contains 340
5.40.11 Convert a number to an interval: convert 340

5.41 Sequences . 341
5.41.1 Definition : seq[] () 341
5.41.2 Concat two sequences : , 341
5.41.3 Get an element of a sequence : [], [[]] 341
5.41.4 Sub-sequence of a sequence : [] 342
5.41.5 Make a sequence or a list : seq $ 342
5.41.6 Transform a sequence into a list : [] nop 345
5.41.7 The + operator applied on sequences 346

5.42 Sets . 346
5.42.1 Definition : set[] . 346
5.42.2 Union of two sets or of two lists : union 347
5.42.3 Intersection of two sets or of two lists : intersect . . . 347
5.42.4 Difference of two sets or of two lists : minus 348
5.42.5 Defining an n-tuple: tuple 348

5.43 Lists and vectors . 349
5.43.1 Definition . 349
5.43.2 Define a list: makelist 350
5.43.3 Flatten a list: flatten 351
5.43.4 Get an element or a sub-list of a list : at [] 351
5.43.5 Extract a sub-list : mid 352
5.43.6 Get the first element of a list : head 352

CONTENTS 15

5.43.7 Remove an element in a list : suppress 353
5.43.8 Insert an element into a list or a string: insert 353
5.43.9 Remove the first element : tail 353
5.43.10 The right and left portions of a list: right, left . . . 354
5.43.11 Reverse order in a list : revlist 354
5.43.12 Reverse a list starting from its n-th element : rotate . . 354
5.43.13 Permuted list from its n-th element : shift 355
5.43.14 Modify an element in a list : subsop 355
5.43.15 Transform a list into a sequence : op makesuite . . . 356
5.43.16 Transform a sequence into a list : makevector [] . . . 357
5.43.17 Length of a list : size nops length 357
5.43.18 Sizes of a list of lists : sizes 357
5.43.19 Concatenate two lists or a list and an element : concat

augment . 358
5.43.20 Append an element at the end of a list : append 358
5.43.21 Prepend an element at the beginning of a list : prepend . 359
5.43.22 Sort : sort . 359
5.43.23 Sort a list by increasing order : SortA 360
5.43.24 Sort a list by decreasing order : SortD 360
5.43.25 Select the elements of a list : select 361
5.43.26 Remove elements of a list : remove 361
5.43.27 Test if a value is in a list : member 362
5.43.28 Test if a value is in a list : contains 362
5.43.29 Sum of list (or matrix) elements transformed by a function

: count . 362
5.43.30 Number of elements equal to a given value : count_eq . 364
5.43.31 Number of elements smaller than a given value : count_inf364
5.43.32 Number of elements greater than a given value : count_sup364
5.43.33 Sum of elements of a list : sum add 364
5.43.34 Cumulated sum of the elements of a list : cumSum 365
5.43.35 Product : product mul 365
5.43.36 Apply a function of one variable to the elements of a list :

map apply of . 367
5.43.37 Apply a bivariate function to the elements of two lists : zip 368
5.43.38 Fold operators : foldl, foldr 369
5.43.39 Make a list with zeros : newList 369
5.43.40 Make a list of integers: range 370
5.43.41 Make a list with a function : makelist 371
5.43.42 Make a random vector or list : randvector 372
5.43.43 List of differences of consecutive terms : deltalist . . 372
5.43.44 Make a matrix with a list : list2mat 373
5.43.45 Make a list with a matrix : mat2list 373

5.44 Functions for vectors . 373
5.44.1 Norms of a vector : maxnorm l1norm l2norm norm 373
5.44.2 Normalize a vector : normalize unitV 374
5.44.3 Term by term sum of two lists : + .+ 374
5.44.4 Term by term difference of two lists : - .- 375
5.44.5 Term by term product of two lists : .* 376

16 CONTENTS

5.44.6 Term by term quotient of two lists : ./ 376
5.44.7 Scalar product : scalar_product * dotprod dot

dotP scalar_Product 376
5.44.8 Cross product : cross crossP crossproduct . . . 377

5.45 Statistics functions : mean,variance,stddev, stddevp,median,quantile,quartiles,boxwhisker377
5.46 Table with strings as indexes : table 380
5.47 Usual matrix . 380

5.47.1 Identity matrix : idn identity 381
5.47.2 Zero matrix : newMat matrix 381
5.47.3 Random matrix : ranm randMat randmatrix . . . 381
5.47.4 Diagonal of a matrix or matrix of a diagonal : BlockDiagonal

diag . 382
5.47.5 Jordan block : JordanBlock 383
5.47.6 Hilbert matrix : hilbert 383
5.47.7 Vandermonde matrix : vandermonde 383

5.48 Creating matrices and extracting elements 383
5.48.1 Creating matrices and modifying elements by assignment . 383
5.48.2 Changing a matrix by multi-assigment 385
5.48.3 Build a matrix with a function : makemat 386
5.48.4 Define a matrix : matrix 386
5.48.5 Modify an element or row of a matrix assigned to a vari-

able: ::=, =< . 387
5.49 Arithmetic and matrices . 389

5.49.1 Evaluate a matrix : evalm 389
5.49.2 Addition and subtraction of two matrices : + - .+ .- . 389
5.49.3 Multiplication of two matrices : * &* 390
5.49.4 Addition of elements of a column of a matrix : sum 390
5.49.5 Cumulated sum of elements of each column of a matrix :

cumSum . 390
5.49.6 Multiplication of elements of each column of a matrix :

product . 390
5.49.7 Power of a matrix : ˆ &ˆ 391
5.49.8 Hadamard product : hadamard, product 391
5.49.9 Hadamard product (infixed version): .* 391
5.49.10 Hadamard division (infixed version): ./ 392
5.49.11 Hadamard power (infixed version): .ˆ 392
5.49.12 Extracting element(s) of a matrix : [] at 392
5.49.13 Modify an element or a row of a matrix : subsop 395
5.49.14 Extract rows or columns of a matrix (Maple compatibility)

: row col . 397
5.49.15 Remove rows or columns of a matrix : delrows delcols398
5.49.16 Extract a sub-matrix of a matrix (TI compatibility) : subMat399
5.49.17 Resize a matrix or vector:REDIM, redim 400
5.49.18 Replacing part of a matrix or vector: REPLACE, replace400
5.49.19 Add a row to another row : rowAdd 401
5.49.20 Multiply a row by an expression : mRow, scale, SCALE401
5.49.21 Add k times a row to an another row : mRowAdd, scaleadd,

SCALEADD . 402

CONTENTS 17

5.49.22 Exchange two rows : rowSwap, rowswap, swaprow 402
5.49.23 Exchange two columns : colSwap, colswap, swapcol402
5.49.24 Make a matrix with a list of matrices : blockmatrix . . 403
5.49.25 Make a matrix from two matrices : semi_augment . . . 404
5.49.26 Make a matrix from two matrices : augment concat . 404
5.49.27 Append a column to a matrix : border 405
5.49.28 Count the elements of a matrix verifying a property : count406
5.49.29 Count the elements equal to a given value : count_eq . 406
5.49.30 Count the elements smaller than a given value : count_inf406
5.49.31 Count the elements greater than a given value : count_sup407
5.49.32 Statistics functions acting on column matrices : mean,

stddev, variance, median, quantile, quartiles,
boxwhisker . 407

5.49.33 Dimension of a matrix : dim 409
5.49.34 Number of rows : rowdim rowDim nrows 409
5.49.35 Number of columns : coldim colDim ncols 410

5.50 Sparse matrices . 410
5.50.1 Defining sparse matrices 410
5.50.2 Operations on sparse matrices 411

5.51 Linear algebra . 412
5.51.1 Transpose of a matrix : tran transpose 412
5.51.2 Inverse of a matrix : inv / 412
5.51.3 Trace of a matrix : trace 412
5.51.4 Determinant of a matrix : det 412
5.51.5 Determinant of a sparse matrix : det_minor 413
5.51.6 Rank of a matrix : rank 414
5.51.7 Transconjugate of a matrix : trn 414
5.51.8 Equivalent matrix : changebase 414
5.51.9 Basis of a linear subspace : basis 415
5.51.10 Basis of the intersection of two subspaces : ibasis . . . 415
5.51.11 Image of a linear function : image 415
5.51.12 Kernel of a linear function : kernel nullspace ker 415
5.51.13 Kernel of a linear function : Nullspace 416
5.51.14 Subspace generated by the columns of a matrix : colspace416
5.51.15 Subspace generated by the rows of a matrix : rowspace 417

5.52 Linear Programmation . 417
5.52.1 Simplex algorithm: simplex_reduce 417
5.52.2 Solving general linear programming problems: lpsolve 420
5.52.3 Solving transportation problems: tpsolve 429

5.53 Nonlinear optimization . 430
5.53.1 Global extrema: minimize maximize 430
5.53.2 Local extrema: extrema 433
5.53.3 Global extrema without using derivatives : nlpsolve . . 435
5.53.4 Minimax polynomial approximation: minimax 436

5.54 Different matrix norms . 437
5.54.1 The Frobenius norm: frobenius_norm 437
5.54.2 l2 matrix norm : norm l2norm 438
5.54.3 l∞ matrix norm : maxnorm 438

18 CONTENTS

5.54.4 Matrix row norm : rownorm rowNorm 438
5.54.5 Matrix column norm : colnorm colNorm 439
5.54.6 The operator norm of a matrix: matrix_norm, l1norm,

l2norm, norm, specnorm, linfnorm 439
5.55 Matrix reduction . 441

5.55.1 Eigenvalues : eigenvals 441
5.55.2 Eigenvalues : egvl eigenvalues eigVl 441
5.55.3 Eigenvectors : egv eigenvectors eigenvects eigVc442
5.55.4 Rational Jordan matrix : rat_jordan 442
5.55.5 Jordan normal form : jordan 445
5.55.6 Powers of a square matrix: matpow 446
5.55.7 Characteristic polynomial : charpoly 447
5.55.8 Characteristic polynomial using Hessenberg algorithm : pcar_hessenberg447
5.55.9 Minimal polynomial : pmin 448
5.55.10 Adjoint matrix : adjoint_matrix 449
5.55.11 Companion matrix of a polynomial : companion 450
5.55.12 Hessenberg matrix reduction : hessenberg 450
5.55.13 Hermite normal form : ihermite 451
5.55.14 Smith normal form in Z: ismith 451
5.55.15 Smith normal form: smith 452

5.56 Isometries . 453
5.56.1 Recognize an isometry : isom 453
5.56.2 Find the matrix of an isometry : mkisom 454

5.57 Matrix factorizations . 455
5.57.1 Cholesky decomposition : cholesky 455
5.57.2 QR decomposition : qr 456
5.57.3 QR decomposition (for TI compatibility) : QR 457
5.57.4 LQ decomposition (HP compatible): LQ 457
5.57.5 LU decomposition : lu 458
5.57.6 LU decomposition (for TI compatibility) : LU 459
5.57.7 Singular values (HP compatible): SVL, svl 460
5.57.8 Singular value decomposition : svd 460
5.57.9 Short basis of a lattice : lll 461

5.58 Quadratic forms . 462
5.58.1 Matrix of a quadratic form : q2a 462
5.58.2 Transform a matrix into a quadratic form : a2q 462
5.58.3 Reduction of a quadratic form : gauss 463
5.58.4 The conjugate gradient algorithm: conjugate_gradient463
5.58.5 Gram-Schmidt orthonormalization : gramschmidt . . . 464
5.58.6 Graph of a conic : conic 464
5.58.7 Conic reduction : reduced_conic 465
5.58.8 Graph of a quadric: quadric 466
5.58.9 Quadric reduction : reduced_quadric 466

5.59 Multivariate calculus . 468
5.59.1 Gradient : derive deriver diff grad 468
5.59.2 Laplacian : laplacian 469
5.59.3 Hessian matrix : hessian 469
5.59.4 Divergence : divergence 470

CONTENTS 19

5.59.5 Rotational : curl . 470
5.59.6 Potential : potential 470
5.59.7 Conservative flux field : vpotential 471

5.60 Equations . 471
5.60.1 Define an equation : equal 471
5.60.2 Transform an equation into a difference : equal2diff . 471
5.60.3 Transform an equation into a list : equal2list 472
5.60.4 The left member of an equation : left gauche lhs . 472
5.60.5 The right member of an equation : right droit rhs 472
5.60.6 Solving equation(s): solve 473
5.60.7 Equation solving in C : cSolve 475

5.61 Linear systems . 475
5.61.1 Matrix of a system : syst2mat 476
5.61.2 Gauss reduction of a matrix : ref 476
5.61.3 Gauss-Jordan reduction: rref gaussjord 477
5.61.4 Solving A*X=B : simult 478
5.61.5 Step by step Gauss-Jordan reduction of a matrix : pivot 479
5.61.6 Linear system solving: linsolve 479
5.61.7 Solving a linear system using the Jacobi iteration method:

jacobi_linsolve 480
5.61.8 Solving a linear system using the Gauss-Seidel iteration

method: gauss_seidel_linsolve 481
5.61.9 The least squares solution of a linear system: LSQ, lsq 481
5.61.10 Finding linear recurrences : reverse_rsolve 483

5.62 Differential equations . 484
5.62.1 Solving differential equations : desolve deSolve dsolve484
5.62.2 Laplace transform and inverse Laplace transform : laplace

ilaplace invlaplace 492
5.62.3 Solving linear homogeneous second-order ODE with ra-

tional coefficients : kovacicsols 494
5.63 The Z-transform . 498

5.63.1 The Z-transform of a sequence: ztrans 498
5.63.2 The inverse Z-transform of a rational function: invztrans499

5.64 Other functions . 500
5.64.1 Replace small values by 0: epsilon2zero 500
5.64.2 List of variables : lname indets 500
5.64.3 List of variables and of expressions : lvar 501
5.64.4 List of variables of an algebraic expressions: algvar . . 501
5.64.5 Test if a variable is in an expression : has 502
5.64.6 Numeric evaluation : evalf 502
5.64.7 Rational approximation : float2rational exact . 503

5.65 The day of the week: dayofweek 503

6 Metric properties of curves 505
6.1 The center of curvature . 505
6.2 Computing the curvature and related values: curvature, osculating_circle,

evolute . 505

20 CONTENTS

7 Graphs 509
7.1 Generalities . 509
7.2 The graphic screen . 510
7.3 Graph and geometric objects attributes 511

7.3.1 Individual attributes . 511
7.3.2 Global attributes . 512

7.4 Graph of a function : plotfunc funcplot DrawFunc Graph513
7.4.1 2-d graph . 513
7.4.2 3-d graph . 514
7.4.3 3-d graph with rainbow colors 515
7.4.4 4-d graph. 515

7.5 2d graph for Maple compatibility : plot 516
7.6 3d surfaces for Maple compatibility plot3d 517
7.7 Graph of a line and tangent to a graph 517

7.7.1 Draw a line : line . 517
7.7.2 Draw an 2D horizontal line : LineHorz 518
7.7.3 Draw a 2D vertical line : LineVert 519
7.7.4 Tangent to a 2D graph : LineTan 519
7.7.5 Tangent to a 2D graph : tangent 519
7.7.6 Plot a line with a point and the slope: DrawSlp 520
7.7.7 Intersection of a 2D graph with the axis 520

7.8 Graph of inequalities with 2 variables : plotinequation inequationplot520
7.9 The area under a curve: area 521
7.10 Graph of the area below a curve : plotarea areaplot 522
7.11 Contour lines: plotcontour contourplot DrwCtour . . 523
7.12 2-d graph of a 2-d function with colors : plotdensity densityplot524
7.13 Implicit graph: plotimplicit implicitplot 524

7.13.1 2D implicit curve . 524
7.13.2 3D implicit surface . 525

7.14 Parametric curves and surfaces : plotparam paramplot DrawParm526
7.14.1 2D parametric curve . 526
7.14.2 3D parametric surface : plotparam paramplot DrawParm527

7.15 Bezier curves: bezier . 527
7.16 Curve defined in polar coordinates : plotpolar polarplot

DrawPol courbe_polaire 528
7.17 Graph of a recurrent sequence : plotseq seqplot graphe_suite529
7.18 Tangent field : plotfield fieldplot 529
7.19 Plotting a solution of a differential equation : plotode odeplot 530
7.20 Interactive plotting of solutions of a differential equation : interactive_plotode

interactive_odeplot . 531
7.21 Animated graphs (2D, 3D or "4D") 531

7.21.1 Animation of a 2D graph : animate 531
7.21.2 Animation of a 3D graph : animate3d 532
7.21.3 Animation of a sequence of graphic objects : animation 532

CONTENTS 21

8 Statistics 537
8.1 One variable statistics . 537

8.1.1 The mean: mean . 537
8.1.2 Variance and standard deviation: variance stdev . . . 538
8.1.3 The population standard deviation: stddevp stdDev . 539
8.1.4 The median: median 540
8.1.5 Quartiles: quartiles quartile1 quartile3 . . . 540
8.1.6 Quantiles: quantile 541
8.1.7 The boxwhisker: boxwhisker mustache 541
8.1.8 Classes: classes . 542
8.1.9 Histograms: histogram histogramme 542
8.1.10 Accumulating terms: accumulate_head_tail 543
8.1.11 Frequencies: frequencies frequences 543
8.1.12 Cumulative frequencies: cumulated_frequencies frequences_cumulees544
8.1.13 Bar graphs: bar_plot 545
8.1.14 Pie charts: camembert 546

8.2 Two variable statistics . 547
8.2.1 Covariance and correlation: covariance correlation

covariance_correlation 547
8.2.2 Scatterplots: scatterplot nuaged_points batons 548
8.2.3 Polygonal paths: polygonplot ligne_polygonale

linear_interpolate listplot plotlist . . . 549
8.2.4 Linear regression: linear_regression linear_regression_plot550
8.2.5 Exponential regression: exponential_regression

exponential_regression_plot 551
8.2.6 Logarithmic regression: logarithmic_regression

logarithmic_regression_plot 552
8.2.7 Power regression: power_regression power_regression_plot553
8.2.8 Polynomial regression: polynomial_regression polynomial_regression_plot554
8.2.9 Logistic regression: logistic_regression logistic_regression_plot554

8.3 Random numbers . 555
8.3.1 Producing uniformly distributed random numbers: rand

random alea hasard 555
8.3.2 Initializing the random number generator: srand randseed

RandSeed . 557
8.3.3 Producing random numbers with the binomial distribution:

randbinomial . 557
8.3.4 Producing random numbers with a multinomial distribu-

tion: randmultinomial 558
8.3.5 Producing random numbers with a Poisson distribution:

randpoisson . 558
8.3.6 Producing random numbers with a normal distribution: randnorm

randNorm . 558
8.3.7 Producing random numbers with an exponential distribu-

tion: randexp . 559
8.3.8 Producing random matrices: randmatrix ranm randMat559
8.3.9 Random variables : random_variable randvar . . 560

8.4 Density and distribution functions 566

22 CONTENTS

8.4.1 The binomial distribution 566
8.4.2 The negative binomial distribution 567
8.4.3 The multinomial probability function: multinomial . . 568
8.4.4 The Poisson distribution 569
8.4.5 Normal distributions . 570
8.4.6 Student’s distribution . 571
8.4.7 The χ2 distribution . 573
8.4.8 The Fisher-Snédécor distribution 574
8.4.9 The gamma distribution 575
8.4.10 The beta distribution . 576
8.4.11 The geometric distribution 577
8.4.12 The Cauchy distribution 578
8.4.13 The uniform distribution 579
8.4.14 The exponential distribution 580
8.4.15 The Weibull distribution 581
8.4.16 The Kolmogorov-Smirnov distribution: kolmogorovd . 582
8.4.17 The Wilconon or Mann-Whitney distribution 582
8.4.18 The Wilconon test polynomial: wilcoxonp 582
8.4.19 Moment generating functions for probability distributions:

mgf . 584
8.4.20 Cumulative distribution functions: cdf 584
8.4.21 Inverse distribution functions: icdf 585
8.4.22 Kernel density estimation : kernel_density, kde . . 585
8.4.23 Distribution fitting by maximum likelihood : fitdistr . 588
8.4.24 Markov chains: markov 589
8.4.25 Generating a random walks: randmarkov 589

8.5 Hypothesis testing . 590
8.5.1 General . 590
8.5.2 Testing the mean with the Z test: normalt 590
8.5.3 Testing the mean with the T test: studentt 591
8.5.4 Testing a distribution with the χ2 distribution: chisquaret592
8.5.5 Testing a distribution with the Kolmogorov-Smirnov dis-

tribution: kolmogorovt 594

9 Numerical computations 595
9.1 Floating point representation. 595

9.1.1 Digits . 595
9.1.2 Representation by hardware floats 596
9.1.3 Examples of representations of normalized floats 596
9.1.4 Difference between the representation of (3.1-3) and of 0.1 597

9.2 Approx. evaluation : evalf approx and Digits 598
9.3 Numerical algorithms . 599

9.3.1 Approximate solution of an equation : newton 599
9.3.2 Approximate computation of the derivative number : nDeriv599
9.3.3 Approximate computation of integrals : romberg nInt 600
9.3.4 Approximate integral with an adaptive Gaussian quadra-

ture at 15 points: gaussquad 600
9.3.5 Approximate solution of y’=f(t,y) : odesolve 601

CONTENTS 23

9.3.6 Approximate solution of the system v’=f(t,v) : odesolve 602
9.3.7 Approximate solution of a nonlinear second-order bound-

ary value problem : bvpsolve 603
9.4 Solve equations with fsolve nSolve 605

9.4.1 fsolve or nSolvewith the option bisection_solver606
9.4.2 fsolve or nSolve with the option brent_solver . 606
9.4.3 fsolve or nSolve with the option falsepos_solver 606
9.4.4 fsolve or nSolve with the option newton_solver . 606
9.4.5 fsolve or nSolve with the option secant_solver . 607
9.4.6 fsolve or nSolvewith the option steffenson_solver607

9.5 Solve systems with fsolve . 608
9.5.1 fsolve with the option dnewton_solver 608
9.5.2 fsolve with the option hybrid_solver 608
9.5.3 fsolve with the option hybrids_solver 608
9.5.4 fsolve with the option newtonj_solver 609
9.5.5 fsolve with the option hybridj_solver 609
9.5.6 fsolve with the option hybridsj_solver 609

9.6 Solving equations or systems over C: cfsolve 609
9.7 Numeric roots of a polynomial : proot 610
9.8 Numeric factorization of a matrix : cholesky qr lu svd . . 610

10 Unit objects and physical constants 611
10.1 Unit objects . 611

10.1.1 Notation of unit objects 611
10.1.2 Computing with units . 612
10.1.3 Convert units into MKSA units : mksa 612
10.1.4 Convert units : convert, => 613
10.1.5 Convert between Celsius and Fahrenheit: Celsius2Fahrenheit,

Fahrenheit2Celsius 613
10.1.6 Factorize a unit : ufactor 614
10.1.7 Simplify a unit : usimplify 614
10.1.8 Unit prefixes . 614

10.2 Constants . 615
10.2.1 Notation of physical constants 615
10.2.2 Constants Library . 615

11 Programming 617
11.1 Functions, programs and scripts 617

11.1.1 The program editor . 617
11.1.2 Functions: function, endfunction, { }, local,

return . 617
11.1.3 Local variables . 618
11.1.4 Default values of the parameters 619
11.1.5 Programs . 619
11.1.6 Scripts . 619
11.1.7 Code blocks . 619

11.2 Basic instructions . 619
11.2.1 Comments: // . 619

24 CONTENTS

11.2.2 Input: input, Input, InputStr, textinput,
output, Output . 620

11.2.3 Reading a single keystroke: getKey 620
11.2.4 Checking conditions: assert 620
11.2.5 Checking the type of the argument: type, subtype,

compare, getType 621
11.2.6 Printing: print, Disp, ClrIO 622
11.2.7 Displaying exponents: printpow 623
11.2.8 Infixed assignments: =>, :=, =< 624
11.2.9 Assignment by copying: copy 625
11.2.10 The difference between := and =< 626

11.3 Control structures . 627
11.3.1 if statements: if, then, else, end, elif . . . 627
11.3.2 The switch statement: switch, case, default . . 628
11.3.3 The for loop: for, from, to, step, do, end_for629
11.3.4 The repeat loop: repeat, until 630
11.3.5 The while loop: while 630
11.3.6 Breaking out a loop: break 630
11.3.7 Going to the next iteration of a loop: continue 631
11.3.8 Changing the order of execution: goto, label 631

11.4 Other useful instructions . 631
11.4.1 Define a function with a variable number of arguments:

args . 631
11.4.2 Assignments in a program 632
11.4.3 Writing variable values to a file: write 633
11.4.4 Writing output to a file: fopen, fclose, fprint . 633
11.4.5 Using strings as names: # 634
11.4.6 Using strings as commands: expr 635
11.4.7 Converting an expression to a string: string 636
11.4.8 Converting a real number into a string: format 637
11.4.9 Working with the graphics screen: DispG, DispHome,

ClrGraph, ClrDraw 638
11.4.10 Pausing a program: Pause, WAIT 638
11.4.11 Dealing with errors: try, catch, throw, error,

ERROR . 638
11.5 Debugging . 640

11.5.1 Starting the debugger: debug, sst, in, sst_in,
cont, kill, break, breakpoint, halt, rmbrk,
rmbreakpoint, watch, rmwtch 640

12 Two-dimensional Graphics 643
12.1 Introduction . 643

12.1.1 Points, vectors and complex numbers 643
12.2 Basic commands . 644

12.2.1 Clear the DispG screen: erase 644
12.2.2 Toggle the axes: switch_axes 644
12.2.3 Draw unit vectors in the plane: Ox_2d_unit_vector

Oy_2d_unit_vector frame_2d 644

CONTENTS 25

12.2.4 Draw dotted paper: dot_paper 645
12.2.5 Draw lined paper: line_paper 645
12.2.6 Draw grid paper: grid_paper 646
12.2.7 Draw triangular paper: triangle_paper 646

12.3 Display features of graphics . 647
12.3.1 Graphic features . 647
12.3.2 Parameters for changing features 647
12.3.3 Commands for global display features 651

12.4 Define geometric objects without drawing them: nodisp 654
12.5 Geometric demonstrations: assume 655
12.6 Points in the plane . 656

12.6.1 Points and complex numbers 656
12.6.2 The point in the plane: point 656
12.6.3 The difference and sum of two points in the plane:+, - . 657
12.6.4 Define random points in the plane: point2d 658
12.6.5 Points in polar coordinates: polar_point, point_polar658
12.6.6 Find a point of intersection of two objects in the plane:

single_inter line_inter 659
12.6.7 Find the points of intersection of two geometric objects in

the plane: inter . 659
12.6.8 Find the orthocenter of a triangle in the plane: orthocenter660
12.6.9 Find the midpoint of a segment in the plane: midpoint . 660
12.6.10 The barycenter in the plane: barycenter 660
12.6.11 The isobarycenter of n points in the plane: isobarycenter661
12.6.12 The center of a circle in the plane: center 661
12.6.13 The vertices of a polygon in the plane: vertices, vertices_abc661
12.6.14 The vertices of a polygon in the plane, closed: vertices_abca662
12.6.15 A point on a geometric object in the plane: element . . 662

12.7 Lines in plane geometry . 663
12.7.1 Lines and directed lines in the plane: line 663
12.7.2 Half-lines in the plane: half_line 664
12.7.3 Line segments in the plane: segment Line 664
12.7.4 Vectors in the plane: segment vector 665
12.7.5 Parallel lines in the plane: parallel 666
12.7.6 Perpendicular lines in the plane: perpendicular . . . 666
12.7.7 Tangents to curves in the plane: tangent 667
12.7.8 The median of a triangle in the plane: median_line . . 668
12.7.9 The altitude of a triangle: altitude 668
12.7.10 The perpendicular bisector of a segment in the plane: perpen_bisector668
12.7.11 The angle bisector: bisector 669
12.7.12 The exterior angle bisector: exbisector 669

12.8 Triangles in the plane . 670
12.8.1 Arbitrary triangles in the plane: triangle 670
12.8.2 Isosceles triangles in the plane: isosceles_triangle 670
12.8.3 Right triangles in the plane: right_triangle 671
12.8.4 Equilateral triangles in the plane: equilateral_triangle673

12.9 Quadrilaterals in the plane . 673
12.9.1 Squares in the plane: square 674

26 CONTENTS

12.9.2 Rhombuses in the plane: rhombus 674
12.9.3 Rectangles in the plane: rectangle 675
12.9.4 Parallelograms in the plane: parallelogram 677
12.9.5 Arbitrary quadrilaterals in the plane: quadrilateral . 678

12.10Other polygons in the plane . 678
12.10.1 Regular hexagons in the plane: hexagon 678
12.10.2 Regular polygons in the plane: isopolygon 679
12.10.3 General polygons in the plane: polygon 680
12.10.4 Polygonal lines in the plane: open_polygon 681
12.10.5 Convex hulls: convexhull 681

12.11Circles . 682
12.11.1 Circles and arcs in the plane: circle 682
12.11.2 Circular arcs: arc . 684
12.11.3 Circles (TI compatibility): Circle 685
12.11.4 Inscribed circles: incircle 686
12.11.5 Circumscribed circles: circumcircle 686
12.11.6 Excircles: excircle 686
12.11.7 The power of a point relative to a circle: powerpc 687
12.11.8 The radical axis of two circles: radical_axis 687

12.12Other conic sections . 687
12.12.1 The ellipse in the plane: ellipse 687
12.12.2 The hyperbola in the plane: hyperbola 689
12.12.3 The parabola in the plane: parabola 690

12.13Coordinates in the plane . 692
12.13.1 The affix of a point or vector: affix 692
12.13.2 The abscissa of a point or vector in the plane: abscissa 692
12.13.3 The ordinate of a point or vector in the plane: ordinate 693
12.13.4 The coordinates of a point, vector or line in the plane:

coordinates . 693
12.13.5 The rectangular coordinates of a point: rectangular_coordinates695
12.13.6 The polar coordinates of a point: polar_coordinates 695
12.13.7 The Cartesian equation of a geometric object in the plane:

equation . 696
12.13.8 The parametric equation of a geometric object in the plane:

parameq . 696
12.14Measurements . 697

12.14.1 Measurement and display: distanceat distanceatraw
angleat angleatraw areaat areaatraw perimeterat
perimeteratraw slopeat slopeatraw extract_measure697

12.14.2 The distance between objects in the plane: distance . . 698
12.14.3 The length squared of a segment in the plane: distance2 700
12.14.4 The measure of an angle in the plane: angle 700
12.14.5 The graphical representation of the area of a polygon: plotareaareaplot701
12.14.6 The area of a polygon: area 702
12.14.7 The perimeter of a polygon: perimeter 703
12.14.8 The slope of a line: slope 704
12.14.9 The radius of a circle: radius 704
12.14.10The length of a vector: abs 705

CONTENTS 27

12.14.11The angle of a vector: arg 705
12.14.12Normalize a complex number: normalize 705

12.15Transformations . 705
12.15.1 General remarks . 705
12.15.2 Translations in the plane: translation 706
12.15.3 Reflections in the plane: reflection 706
12.15.4 Rotation in the plane: rotation 708
12.15.5 Homothety in the plane: homothety 709
12.15.6 Similarity in the plane: similarity 710
12.15.7 Inversion in the plane: inversion 711
12.15.8 Orthogonal projection in the plane: projection 713

12.16Properties . 714
12.16.1 Check if a point is on an object in the plane: is_element 714
12.16.2 Check if three points are collinear in the plane: is_collinear715
12.16.3 Check if four points are concyclic in the plane: is_concyclic715
12.16.4 Check if a point is in a polygon or circle: is_inside . . 716
12.16.5 Check if an object is an equilateral triangle in the plane:

is_equilateral . 716
12.16.6 Check if an object in the plane is an isosceles triangle:

is_isosceles . 717
12.16.7 Check if an object in the plane is a right triangle or a rect-

angle: is_rectangle 718
12.16.8 Check if an object in the plane is a square: is_square . 719
12.16.9 Check if an object in the plane is a rhombus: is_rhombus 719
12.16.10Check if an object in the plane is a parallelogram: is_parallelogram720
12.16.11Check it two lines in the plane are parallel: is_parallel 721
12.16.12Check if two lines in the plane are perpendicular: is_perpendicular722
12.16.13Check if two circles in the plane are orthogonal: is_orthogonal722
12.16.14Check if elements are conjugates: is_conjugate . . . 723
12.16.15Check if four points form a harmonic division: is_harmonic724
12.16.16Check if lines are in a bundle: is_harmonic_line_bundle724
12.16.17Check if circles are in a bundle: is_harmonic_circle_bundle724

12.17Harmonic division . 725
12.17.1 Find a point dividing a segment in the harminic ratio k:

division_point . 725
12.17.2 The cross ratio of four collinear points: cross_ratio . 725
12.17.3 Harmonic division: harmonic_division 726
12.17.4 The harmonic conjugate: harmonic_conjugate . . . 727
12.17.5 Pole and polar: pole polar 727
12.17.6 The polar reciprocal: reciprocation 728

12.18Loci and envelopes . 729
12.18.1 Loci: locus . 729
12.18.2 Envelopes: envelope 732
12.18.3 The trace of a geometric object: trace 733

28 CONTENTS

13 Three-dimensional Graphics 735
13.1 Introduction . 735
13.2 Change the view . 736
13.3 The axes . 736

13.3.1 Draw unit vectors: Ox_3d_unit_vector Oy_3d_unit_vector
Oz_3d_unit_vector frame_3d 736

13.4 Points in space . 737
13.4.1 Define a point in three-dimensions: point 737
13.4.2 Define a random point in three-dimensions: point3d . . 738
13.4.3 Find an intersection point of two objects in space: single_inter

line_inter . 738
13.4.4 Find the intersection points of two objects in space: inter 740
13.4.5 Find the midpoint of a segment in space: midpoint . . . 741
13.4.6 Find the isobarycenter of a set of points in space: isobarycenter741
13.4.7 Find the barycenter of a set of points in space: barycenter741

13.5 Lines in space . 742
13.5.1 Lines and directed lines in space: line 742
13.5.2 Half lines in space: half_line 743
13.5.3 Segments in space: segment 744
13.5.4 Vectors in space: vector 744
13.5.5 Parallel lines and planes in space: parallel 746
13.5.6 Perpendicular lines and planes in space: perpendicular 748
13.5.7 Planes orthogonal to lines and lines orthogonal to planes in

space: orthogonal 749
13.5.8 Common perpendiculars to lines in space: common_perpendicular750

13.6 Planes in space . 751
13.6.1 Planes in space: plane 751
13.6.2 The bisector plane in space: perpen_bisector 752
13.6.3 Tangent planes in space: tangent 752

13.7 Triangles in space . 754
13.7.1 Draw a triangle in space: triangle 754
13.7.2 Isosceles triangles in space: isosceles_triangle . . 754
13.7.3 Right triangles in space: right_triangle 756
13.7.4 Equilateral triangles in space: equilateral_triangle 758

13.8 Quadrilaterals in space . 758
13.8.1 Squares in space: square 759
13.8.2 Rhombuses in space: rhombus 759
13.8.3 Rectangles in space: rectangle 761
13.8.4 Parallelograms in space: parallelogram 763
13.8.5 Arbitrary quadrilaterals in space: quadrilateral . . . 763

13.9 Polygons in space . 764
13.9.1 Hexagons in space: hexagon 764
13.9.2 Regular polygons in space: isopolygon 765
13.9.3 General polygons in space: polygon 766
13.9.4 Polygonal lines in space: open_polygon 766

13.10Circles in space: circle . 767
13.11Conics in space . 768

13.11.1 Ellipses in space: ellipse 768

CONTENTS 29

13.11.2 Hyperbolas in space: hyperbola 769
13.11.3 Parabolas in space: parabola 769

13.12Three-dimensional coordinates 770
13.12.1 The abscissa of a three-dimensional point: abscissa . . 770
13.12.2 The ordinate of a three-dimensional point: ordinate . . 770
13.12.3 The cote of a three-dimensional point: cote 771
13.12.4 The coordinates of a point, vector or line in space: coordinates771
13.12.5 The Cartesian equation of an object in space: equation 772
13.12.6 The parametric equation of an object in space: parameq 772
13.12.7 The length of a segment in space: distance 773
13.12.8 The length squared of a segment in space: distance2 . 773
13.12.9 The measure of an angle in space: angle 774

13.13Properties . 774
13.13.1 Check if an object in space is on another object: is_element774
13.13.2 Check if points and/or lines in space are coplanar: is_coplanar775
13.13.3 Check if lines and/or planes in space are parallel: is_parallel776
13.13.4 Check if lines and/or planes in space are perpendicular:

is_perpendicular 776
13.13.5 Check if two lines or two spheres in space are orthogonal:

is_orthogonal . 777
13.13.6 Check if three points in space are collinear: is_collinear778
13.13.7 Check if four points in space are cocyclic: is_concyclic778
13.13.8 Check if five points in space are cospherical: is_cospherical779
13.13.9 Check if an object in space is an equilateral triangle: is_equilateral779
13.13.10Check if an object in space is an isosceles triangle: is_isosceles780
13.13.11Check if an object in space is a right triangle or a rectangle:

is_rectangle . 780
13.13.12Check if an object in space is a square: is_square . . . 781
13.13.13Check if an object in space is a rhombus: is_rhombus . 782
13.13.14Check if an object in space is a parallelogram: is_parallelogram782

13.14Transformations in space . 783
13.14.1 General remarks . 783
13.14.2 Translation in space: translation 784
13.14.3 Reflection in space with respect to a plane, line or point:

reflection symmetry 784
13.14.4 Rotation in space: rotation 785
13.14.5 Homothety in space: homothety 785
13.14.6 Similarity in space: similarity 786
13.14.7 Inversion in space: inversion 786
13.14.8 Orthogonal projection in space: projection 787

13.15Surfaces . 788
13.15.1 Cones: cone . 788
13.15.2 Half-cones: half_cone 788
13.15.3 Cylinders: cylinder 789
13.15.4 Spheres: sphere . 789
13.15.5 The graph of a function of two variables: funcplot . . . 790
13.15.6 The graph of parametric equations in space: paramplot 790

13.16Solids . 791

30 CONTENTS

13.16.1 Cubes: cube . 791
13.16.2 Tetrahedrons: tetrahedron pyramid 793
13.16.3 Parallelepipeds: parallelepiped 794
13.16.4 Prisms: prism . 795
13.16.5 Polyhedra: polyhedron 795
13.16.6 Vertices: vertices . 796
13.16.7 Faces: faces . 796
13.16.8 Edges: line_segments 797

13.17Platonic solids . 797
13.17.1 Centered tetrahedra: centered_tetrahedron 798
13.17.2 Centered cubes: centered_cube 798
13.17.3 Octahedra: octahedron 799
13.17.4 Dodecahedra: dodecahedron 800
13.17.5 Icosahedra: icosahedron 800

14 Multimedia 803
14.1 Sounds . 803

14.1.1 Reading a wav file: readwav 803
14.1.2 Writing a wav file: writewav 804
14.1.3 Listening to a digital sound: playsnd 804
14.1.4 Preparing digital sound data: soundsec 804

14.2 Images . 805
14.2.1 Image structure in Xcas 805
14.2.2 Reading images: readrgb 805
14.2.3 Viewing images . 805
14.2.4 Creating or recreating images: writergb 806

15 Using giac inside a program 809
15.1 Using giac inside a C++ program 809
15.2 Defining new giac functions 810

Chapter 1

Index

31

Index

f
, 92

’, 154
’*’, 179
’+’, 149, 173, 178
’-’, 149, 173, 178
’/’, 179
(), 165, 341
*, 179, 316, 348, 376, 390
*=, 82
+, 101, 149, 173, 178, 315, 346, 374,

389, 657
+,-,*,/,ˆ , 130
+=, 82
+infinity, 91
„ 341
-, 149, 173, 178, 315, 375, 389, 657
-=, 82
->, 86, 175
-inf, 91
-infinity, 91
.*, 376, 391
.+, 374, 389
.-, 375, 389
.., 334, 342
./, 376, 392
.ˆ , 392
/, 179, 317, 319, 412
//, 74, 619
/=, 82
::=, 387
:;, 73
:=, 79, 86, 175, 624
<, 91
<=, 91
=, 79
=<, 81, 387, 624
==, 91
=>, 79, 86, 230, 613, 624
>, 91
>=, 91

? :, 87
[[]], 341
[], 334, 341, 342, 345, 349, 357
173, 183
#, 634
$, 173, 192, 342
%, 109, 173, 314, 324
%%%{ %%%}, 262
%{ %}, 346
%e, 91
%i, 91
%pi, 91
&*, 390
&&, 92
&ˆ , 391
ˆ , 149, 173, 318, 391
_, 611, 615
!, 119
!=, 91, 92
", 96
\n, 96
{}, 617

a2q, 462
abcuv, 289
about, 83, 234
abs, 150, 179, 705
abscissa, 692, 770
accumulate_head_tail, 543
acos, 180, 221
acos2asin, 224
acos2atan, 224
acosh, 180
acot, 221
acsc, 221
add, 364
additionally, 83
additionally, 84
adjoint_matrix, 449
affix, 692

32

INDEX 33

Airy_Ai, 141
Airy_Bi, 141
alea, 555
algsubs, 167
algvar, 501
altitude, 668
and, 83, 92
angle, 700, 774
angle_radian, 61
angleat, 697
angleatraw, 697
animate, 531
animate3d, 532
animation, 532
ans, 77
append, 358
apply, 367
approx, 598
approx_mode, 61
arc, 684
arccos, 180, 221
arccosh, 180
archive, 82
arcLen, 188
arcsin, 180, 221
arcsinh, 180
arctan, 180, 221
arctanh, 180
area, 521, 702
areaat, 697
areaatraw, 697
areaplot, 522, 701
arg, 150, 705
args, 631
as_function_of, 183
asc, 99
asec, 221
asin, 180, 221
asin2acos, 224
asin2atan, 225
asinh, 180
assert, 620
assign, 79
assume, 83, 233, 234, 618, 655
at, 351, 392
atan, 180, 221
atan2acos, 225
atan2asin, 225

atanh, 180
atrig2ln, 228
augment, 358, 404
auto_correlation, 247
autosimplify, 162
axes, 512

bar_plot, 545
bareiss, 412
bartlett_hann_window, 252
barycenter, 151, 660, 741
base, 103
basis, 415
batons, 548
begin, 619
bernoulli, 128
Beta, 140
betad, 576
betad_cdf, 576
betad_icdf, 576
bezier, 527
Binary, 174
binomial, 120, 566
binomial_cdf, 567
binomial_icdf, 567
bisection_solver, 606
bisector, 669
bit_depth, 243
bitand, 94
bitor, 94
bitxor, 94
black, 511
blackman_harris_window, 253
blackman_window, 253
BlockDiagonal, 382
blockmatrix, 403
blue, 511
bohman_window, 253
border, 405
boxwhisker, 377, 407, 541
break, 630, 640
breakpoint, 640
brent_solverbrent_solver, 606
bvpsolve, 603

c1oc2, 147
c1op2, 146
camembert, 546
canonical_form, 155

34 INDEX

cap_flat_line , 511
cap_round_line, 511
cap_square_line, 511
cas_setup, 67
case, 628
cat, 100, 101
catch, 638
cauchy, 578
cauchy_cdf, 578
cauchy_icdf, 579
cauchyd, 578
cauchyd_cdf, 578
cauchyd_icdf, 579
cd, 88
cdf, 584
ceil, 180
ceiling, 180
Celsius2Fahrenheit, 613
center, 661
center2interval, 336
centered_cube, 798
centered_tetrahedron, 798
cFactor, 158
cfactor, 61
cfsolve, 609
changebase, 414
channel_data, 244
channels, 243
char, 99
charpoly, 447
chinrem, 290
chisquare, 573
chisquare_cdf, 573
chisquare_icdf, 573
chisquaret, 592
cholesky, 455
chrem, 116
Ci, 134
Circle, 685
circle, 682, 767
circumcircle, 686
classes, 542
ClrDraw, 638
ClrGraph, 638
ClrIO, 622
coeff, 265
coeffs, 265
col, 397

colDim, 410
coldim, 410
collect, 269
colNorm, 439
colnorm, 439
color, 652
color, 511
, 606
colspace, 416
colSwap, 402
colswap, 402
comb, 120
combine, 220
comDenom, 307
comment, 74
comments, 73, 619
common_perpendicular, 750
companion, 450
compare, 621
complex, 621
complex_mode, 61
complex_variables, 62
complexroot, 308
concat, 358, 404
cone, 788
confrac, 125
conic, 464
conj, 150
conjugate_equation, 211
conjugate_gradient, 463
cont, 640
contains, 340, 362
content, 268
contourplot, 523
convert, 103, 230, 264, 275, 340, 613
convertir, 230, 275
convex, 203
convexhull, 681
convolution, 247
coordinates, 693, 771
copy, 81, 625
CopyVar, 83
correlation, 547
cos, 221
cos, 220, 230
cos2sintan, 226
cosh, 180
cosine_window, 254

INDEX 35

cot, 221
cote, 771
count, 362, 406
count_eq, 364, 406
count_inf, 364, 406
count_sup, 364, 407
courbe_polaire, 528
covariance, 547
covariance_correlation, 547
cpartfrac, 308
crationalroot, 313
createwav, 242
cross, 377
cross_correlation, 246
cross_point, 511
cross_ratio, 725
crossP, 377
crossproduct, 377
csc, 221
cSolve, 475
CST, 79
cube, 791
cumSum, 98, 365, 390
cumulated_frequencies, 544
curl, 470
curvature, 505
curve, 601
cyan, 511
cycle2perm, 144
cycleinv, 148
cycles2permu, 144
cyclotomic, 291
cylinder, 789
cZzeros, 160

dash_line, 511
dashdot_line, 511
dashdotdot_line, 511
dayofweek, 503
debug, 640
debugger, 619
default, 628
degree, 266
del, 85
delcols, 398
Delete, 174
DelFold, 89
delrows, 398

deltalist, 372
DelVar, 85
denom, 124, 306
densityplot, 524
derive, 191, 468
deriver, 191, 468
deSolve, 484
desolve, 484
Det, 326
det, 320, 412
det_minor, 413
dfc, 125
dfc2f, 127
diag, 382
diff, 191, 468
DIGITS, 60, 129, 598
Digits, 60, 129, 598
dim, 409
Dirac, 136
directories, 88
Disp, 622
DispG, 70, 638
DispHome, 638
display, 652
display, 511
distance, 698, 773
distance2, 700, 773
distanceat, 697
distanceatraw, 697
div, 108
divergence, 470
divide, 285
divis, 282
division_point, 725
divisors, 108
divpc, 328
dnewton_solverdnewton_solver, 608
do, 629
dodecahedron, 800
DOM_COMPLEX, 621
DOM_FLOAT, 621
DOM_FUNC, 621
DOM_IDENT, 621
DOM_INT, 621
DOM_LIST, 621
DOM_RAT, 621
DOM_STRING, 621
DOM_SYMBOLIC, 621

36 INDEX

domain, 185
dot, 376
dot_paper, 645
dotP, 376
dotprod, 376
double, 621
DrawFunc, 513
DrawParm, 526, 527
DrawPol, 528
DrawSlp, 520
droit, 472
DrwCtour, 523
dsolve, 484
duration, 243

e, 91
e2r, 264
egcd, 289
egv, 442
egvl, 441
Ei, 133
eigenvals, 441
eigenvalues, 441
eigenvectors, 442
eigenvects, 442
eigVc, 442
eigVl, 441
element, 662
elif, 627
eliminate, 167
ellipse, 687, 768
else, 627
end, 619, 627
end_for, 629
endfunction, 617
envelope, 732
epsilon, 500
epsilon2zero, 500
equal, 471
equal2diff, 471
equal2list, 472
equation, 696, 772
equilateral_triangle, 673, 758
erase, 644
erf, 136
erfc, 137
ERROR, 638
error, 638

euler, 117
euler_gamma, 91
euler_lagrange, 206
eval, 153
eval_level, 153
evala, 154
evalb, 94
evalc, 149
evalf, 84, 122, 129, 502, 598
evalm, 389
even, 110
evolute, 505
exact, 122, 503
exbisector, 669
excircle, 686
exp, 180
exp, 220, 230
exp2list, 93
exp2pow, 261
exp2trig, 225
expand, 155
expexpand, 260
expln, 230
exponential, 580
exponential_cdf, 580
exponential_icdf, 581
exponential_regression, 551
exponential_regression_plot, 551
exponentiald, 580
exponentiald_cdf, 580
exponentiald_icdf, 581
EXPR, 621
expr, 102, 635
expression, 621
expression editor, 74
expression tree, 75
extract_measure, 697
extrema, 433
ezgcd, 287

f2nd, 124, 306
faces, 796
Factor, 326
factor, 157, 270, 320, 323
factor_xn, 268
factorial, 104, 119
factoriser, 270, 320
factors, 272

INDEX 37

Fahrenheit2Celsius, 613
FALSE, 91
false, 91
falsepos_solver, 606
fclose, 633
fcoeff, 314
fdistrib, 155
feuille, 177, 334
fft, 239
fieldplot, 529
filled, 511
fisher, 574
fisher_cdf, 574
fisher_icdf, 575
fisherd, 574
fitdistr, 588
flatten, 351
float2rational, 122, 503
floor, 179
fMax, 189
fMin, 189
foldl, 369
foldr, 369
fopen, 633
for, 629
format, 637
fourier_an, 231
fourier_bn, 231
fourier_cn, 232
fPart, 180
fprint, 633
frac, 180
fracmod, 319
frame_2d, 644
frame_3d, 736
frames, 647
frames, 531, 532
frequences, 543
frequences_cumulees, 544
frequencies, 543
frobenius_norm, 437
from, 629
froot, 313
fsolve, 605, 608
fullparfrac, 230
FUNC, 621
func, 621
funcplot, 513, 790

function, 617
function_diff, 187
fxnd, 124, 306

Gamma, 138
gammad, 575
gammad_cdf, 575
gammad_icdf, 576
gauche, 472
gauss, 463
gauss_seidel_linsolve, 481
gaussian_window, 254
gaussjord, 477
gaussquad, 600
gbasis, 301
Gcd, 106, 286, 325
gcd, 104, 286, 319
gcdex, 289
geometric, 577
geometric_cdf, 577
geometric_icdf, 577
getDenom, 124, 305
GetFold, 89
getKey, 620
getNum, 123, 305
getType, 621
GF, 322
giac, 48
gl_material, 511
gl_quaternion, 512
gl_rotation, 512
gl_shownames, 512
gl_texture, 512, 647
gl_texture, 511
gl_x, 512
gl_x_axis_name, 512
gl_x_axis_unit, 512
gl_x_tick, 512
gl_y, 512
gl_y_axis_name, 512
gl_y_axis_unit, 512
gl_y_tick, 512
gl_z, 512
gl_z_axis_name, 512
gl_z_axis_unit, 512
gl_z_tick, 512
goto, 631
grad, 468

38 INDEX

gramschmidt, 464
Graph, 513
graph2tex, 70
graph3d2tex, 70
graphe_suite, 529
greduce, 302
green, 511
grid_paper, 646
groupermu, 148

hadamard, 391
half_cone, 788
half_line, 664, 743
halftan, 227
halftan_hyp2exp, 228
halt, 640
hamdist, 95
hamming_window, 254
hann_poisson_window, 255
hann_window, 255
harmonic_conjugate, 727
harmonic_division, 726
has, 502
hasard, 120, 555
head, 97, 352
Heaviside, 135
hermite, 299
hessenberg, 450
hessian, 469
heugcd, 287
hexagon, 678, 764
hidden_name, 511
highpass, 249
hilbert, 383
histogram, 542
histogramme, 542
hold, 154
homothety, 709, 785
horner, 272
hybrid_solverhybrid_solver, 608
hybridj_solverhybridj_solver, 609
hybrids_solverhybrids_solver, 608
hybridsj_solverhybridsj_solver, 609
hyp2exp, 259
hyperbola, 689, 769

i, 91
i[], 336
iabcuv, 114

ibasis, 415
ibpdv, 201
ibpu, 202
icdf, 585
ichinrem, 114
ichrem, 114
icomp, 119
icosahedron, 800
id, 180
identifier, 621
identity, 381
idivis, 108
idn, 381
iegcd, 114
if, 627
ifactor, 106
ifactors, 107
ifft, 240
IFTE, 88
ifte, 87
igamma, 139
igcd, 104
igcdex, 114
ihermite, 451
ilaplace, 492
im, 149
imag, 149
image, 415
implicitplot, 524
in, 640
in_ideal, 303
incircle, 686
indets, 500
inequationplot, 520
inf, 91
infinity, 91
Input, 620
input, 620
InputStr, 620
insert, 353
inString, 100
Int, 195
int, 195
intDiv, 108
integer, 231, 621
integer, 84
integrate, 195
inter, 659, 740

INDEX 39

interactive_odeplot, 531
interactive_plotode, 531
internal directories, 89
interp, 277
intersect, 339, 347
interval2center, 335
inv, 319, 321, 412
Inverse, 327
inverse, 321
inversion, 711, 786
invisible_point, 511
invlaplace, 492
invztrans, 499
iPart, 179
iquo, 108
iquorem, 110
iratrecon, 319
irem, 109
is_collinear, 715, 778
is_concyclic, 715, 778
is_conjugate, 723
is_coplanar, 775
is_cospherical, 779
is_cycle, 145
is_element, 714, 774
is_equilateral, 716, 779
is_harmonic, 724
is_harmonic_circle_bundle, 724
is_harmonic_line_bundle, 724
is_inside, 716
is_isosceles, 717, 780
is_orthogonal, 722, 777
is_parallel, 721, 776
is_parallelogram, 720, 782
is_permu, 145
is_perpendicular, 722, 776
is_Prime, 111
is_prime, 111
is_pseudoprime, 111
is_rectangle, 718, 780
is_rhombus, 719, 782
is_square, 719, 781
ismith, 451
isobarycenter, 661, 741
isom, 453
isopolygon, 679, 765
isosceles_triangle, 670, 754
ithprime, 113

jacobi_equation, 210
jacobi_linsolve, 480
jacobi_symbol, 118
jordan, 445
JordanBlock, 383
jusqua, 630

kde, 585
ker, 415
kernel, 415
kernel_density, 585
kill, 640
kolmogorovd, 582
kolmogorovt, 594
kovacicsols, 494

l1norm, 374, 439
l2norm, 374, 438, 439
label, 631
labels, 512
lagrange, 277
lagrange, 412
laguerre, 299
laplace, 492
laplacian, 469
LaTeX, 70
latex, 70
lcm, 106, 288
lcoeff, 266
ldegree, 266
left, 97, 334, 337, 354, 472
legend, 651
legend, 512
legendre, 298
legendre_symbol, 117
length, 96, 357
lgcd, 106
lhs, 472
Li, 134
ligne_polygonale, 549
limit, 215, 217
lin, 260
Line, 664
line, 517, 663, 742
line_inter, 659, 738
line_paper, 645
line_segments, 797
line_width_1, 511
line_width_2, 511

40 INDEX

line_width_3, 511
line_width_4, 511
line_width_5, 511
line_width_6, 511
line_width_7, 511
linear_interpolate, 549
linear_regression, 550
linear_regression_plot, 550
LineHorz, 518
LineTan, 519
LineVert, 519
linsolve, 479
linsolve, 412
LIST, 621
list2exp, 93
list2mat, 373
listplot, 549
lists, 349
lll, 461
ln, 180
ln, 220, 230
lname, 500
lncollect, 261
lnexpand, 260
load, 89
local, 617
locus, 729
log, 180
log, 220
log10, 180
logarithmic_regression, 552
logarithmic_regression_plot, 552
logb, 180
logistic_regression, 554
logistic_regression_plot, 554
loi_normal, 570
lowpass, 249
lpsolve, 420
LQ, 457
LSQ, 481
lsq, 481
LU, 459
lu, 458
lvar, 501

magenta, 511
makelist, 350, 371, 633
makemat, 386

makesuite, 356
makevector, 357
map, 367
Maple, 71
maple2xcas, 71
maple_ifactors, 107
markov, 589
MAT, 621
mat2list, 373
MathML, 70
mathml, 70
matpow, 446
matrix, 386
matrix, 230
matrix_norm, 439
max, 179
maximize, 430
maxnorm, 373, 438
mean, 377, 407, 537
median, 377, 407, 540
median_line, 668
member, 362
mgf, 584
mid, 97, 352
midpoint, 339, 660, 741
min, 179
minimax, 436
minimize, 430
minor_det, 412
minus, 348
mkisom, 454
mksa, 612
mod, 109, 324
modgcd, 287
mods, 109
moving_average, 249
mRow, 401
mRowAdd, 402
mul, 365
mult_c_conjugate, 151
mult_conjugate, 156
multinomial, 568
mustache, 541

ncols, 410
nCr, 120
nDeriv, 599
negbinomial, 567

INDEX 41

negbinomial_cdf, 568
negbinomial_icdf, 568
NewFold, 89
newList, 369
newMat, 381
newton, 599
newton_solvernewton_solver, 606
newtonj_solvernewtonj_solver, 609
nextperm, 143
nextprime, 112
nInt, 600
nlpsolve, 435
nodisp, 73, 654
noise removal, 257
NONE, 621
nop, 345
nops, 357
norm, 373, 438, 439
normal, 161, 315, 316, 318
normal_cdf, 570
normal_icdf, 571
normald, 570
normald_cdf, 570
normald_icdf, 571
normalize, 150, 374, 705
normalt, 590
not, 92
nPr, 120
nprimes, 113
nrows, 409
nSolve, 605
nstep, 647
nstep, 513
nuage_points, 548
Nullspace, 416
nullspace, 415
NUM, 621
numer, 123, 305

octahedron, 799
odd, 110
odeplot, 530
odesolve, 601, 602
of, 367
op, 177, 334, 356
open_polygon, 681, 766
or, 83, 92
ord, 98

order_size, 328, 329
ordinate, 693, 770
orthocenter, 660
orthogonal, 749
osculating_circle, 505
Output, 620
output, 620
Ox_2d_unit_vector, 644
Ox_3d_unit_vector, 736
Oy_2d_unit_vector, 644
Oy_3d_unit_vector, 736
Oz_3d_unit_vector, 736

p1oc2, 146
p1op2, 146
pa2b2, 117
pade, 332
parabola, 690, 769
parallel, 666, 746
parallelepiped, 794
parallelogram, 677, 763
parameq, 696, 772
paramplot, 526, 527, 790
parfrac, 230
pari, 128
part, 169
partfrac, 307
partfrac, 230
parzen_window, 255
Pause, 638
pcar, 447
pcar_hessenberg, 447
pcoef, 275
pcoeff, 275
perimeter, 703
perimeterat, 697
perimeteratraw, 697
perm, 120
perminv, 147
permu2cycles, 143
permu2mat, 145, 458
permuorder, 148
perpen_bisector, 668, 752
perpendicular, 666, 748
peval, 268
phi, 117
pi, 91
PIC, 621

42 INDEX

piecewise, 88
piecewise defined functions, 87
plane, 751
playsnd, 243, 804
plot, 516
plot3d, 517
plotarea, 522, 701
plotcontour, 523
plotdensity, 524
plotfield, 529
plotfunc, 190, 513
plotimplicit, 524
plotinequation, 520
plotlist, 549
plotode, 530
plotparam, 526, 527
plotpolar, 528
plotseq, 172, 529
plotspectrum, 246
plotwav, 245
plus_point, 511
pmin, 152, 448
point, 656, 737
point2d, 658
point3d, 738
point_milieu, 522
point_point, 511
point_polar, 658
point_width_1, 511
point_width_2, 511
point_width_3, 511
point_width_4, 511
point_width_5, 511
point_width_6, 511
point_width_7, 511
poisson, 569
poisson_cdf, 569
poisson_icdf, 569
poisson_window, 256
polar, 727
polar_coordinates, 695
polar_point, 658
polarplot, 528
pole, 727
poly1, 262
poly2symb, 263
polyEval, 268
polygon, 680, 766

polygonplot, 549
polyhedron, 795
polynom, 230, 275
polynomial_regression, 554
polynomial_regression_plot, 554
poslbdLMQ, 311
posubLMQ, 311
potential, 470
pow2exp, 261
power_regression, 553
power_regression_plot, 553
powermod, 318
powerpc, 687
powexpand, 261
powmod, 318
prepend, 359
preval, 168
prevperm, 143
prevprime, 113
primpart, 269
print, 622
printpow, 623
prism, 795
product, 365, 390, 391
program, 619
projection, 713, 787
proot, 610
propFrac, 123
propfrac, 123, 307
Psi, 140
psrgcd, 287
ptayl, 273
purge, 83, 85, 234, 618
pwd, 88
pyramid, 793

q2a, 462
QR, 457
qr, 456
quadric, 466
quadrilateral, 678, 763
quandrant1, 511
quandrant2, 511
quandrant3, 511
quandrant4, 511
quantile, 377, 407, 541
quartile1, 540
quartile3, 540

INDEX 43

quartiles, 377, 407, 540
quest, 77
Quo, 283, 324
quo, 283, 316
quorem, 285, 317
quote, 96, 154

r2e, 263
radical_axis, 687
radius, 704
rand, 120, 555
randbinomial, 557
randexp, 559
randmarkov, 589
randMat, 381, 559
randmatrix, 381, 559
randmultinomial, 558
randNorm, 558
randnorm, 558
random, 555
random_variable, 560
randperm, 143
randpoisson, 558
randPoly, 276
randpoly, 276
RandSeed, 557
randseed, 557
randvar, 560
randvector, 372
range, 370
rank, 414
ranm, 277, 381, 559
rat_jordan, 442
rational, 621
rational_det, 412
rationalroot, 312
ratnormal, 163
rdiv, 132
re, 149
read, 89
readrgb, 805
readwav, 243, 803
real, 149, 621
realroot, 309
reciprocation, 728
rectangle, 675, 761
rectangle_droit, 522
rectangle_gauche, 522

rectangular_coordinates, 695
red, 511
REDIM, 400
redim, 400
reduced_conic, 465
reduced_quadric, 466
ref, 476
reflection, 706, 784
regroup, 160
Rem, 285, 324
rem, 284, 317
remain, 109
remove, 361
reorder, 276
repeat, 630
repeter, 630
REPLACE, 400
replace, 400
resample, 244
residue, 332
resoudre, 158, 468, 520
restart, 85
resultant, 295
return, 617
reverse_rsolve, 483
revert, 331
revlist, 354
rhombus, 674, 759
rhombus_point, 511
rhs, 472
riemann_window, 256
right, 97, 334, 337, 354, 472
right_triangle, 671, 756
risch, 197
rm_a_z, 85
rm_all_vars, 85
rmbreakpoint, 640
rmbrk, 640
rmwatch, 641
rmwtch, 640
romberg, 600
root, 132
rootof, 273
roots, 274
rotate, 354
rotation, 708, 785
round, 179
row, 397

44 INDEX

rowAdd, 401
rowDim, 409
rowdim, 409
rowNorm, 438
rownorm, 438
rowspace, 417
rowSwap, 402
rowswap, 402
Rref, 327
rref, 321, 477
rsolve, 171

samplerate, 243
scalar_product, 376
scalarProduct, 376
SCALE, 401
scale, 401
SCALEADD, 402
scaleadd, 402
scatterplot, 548
sec, 221
secant_solversecant_solver, 607
segment, 664, 665, 744
select, 361
semi_augment, 404
seq, 342
seq[], 341
seqplot, 529
seqsolve, 170
series, 329
set[], 346
SetFold, 89
shift, 355
shift_phase, 222
shuffle, 143
Si, 135
sign, 179
signature, 147
similarity, 710, 786
simp2, 124, 306
simplex_reduce, 417
simplify, 161, 223
simult, 478
sin, 180, 221
sin, 220, 230
sin2costan, 226
sincos, 225
sincos, 230

single_inter, 659, 738
sinh, 180
size, 96, 357
sizes, 357
slope, 704
slopeat, 697
slopeatraw, 697
smith, 452
smod, 109
snedecor, 574
snedecor_cdf, 574
snedecor_icdf, 575
snedecord, 574
solid_line, 511
solve, 158, 468, 473, 520
sommet, 177, 334
sort, 359
SortA, 360
SortD, 360
soundsec, 804
specnorm, 439
sphere, 789
spline, 279
split, 156
spreadsheet, 78
sq, 180
sqrfree, 271
sqrt, 180
square, 674, 759
square_point, 511
srand, 557
sst, 640
sst_in, 640
star_point, 511
stdDev, 539
stddev, 377, 407
stddevp, 377, 539
stdev, 538
steffenson_solver, 607
step, 629
stereo2mono, 243
sto, 79
Store, 79
STR, 621
string, 621, 636
string, 230
student, 571
student_cdf, 572

INDEX 45

student_icdf, 572
studentd, 571
studentt, 591
sturm, 292
sturmab, 292
sturmseq, 293
subexpression, 75
subexpressions, 75, 76
subMat, 399
subs, 165
subsop, 355, 395
subst, 164
subtype, 621
sum, 198, 364, 390
sum_riemann, 200
supposons, 83
suppress, 353
surd, 180
svd, 460
SVL, 460
svl, 460
swapcol, 402
swaprow, 402
switch, 628
switch_axes, 644
sylvester, 294
symb2poly, 264
symbol, 618
symmetry, 784
syst2mat, 476

table, 380
tablefunc, 169, 190
tableseq, 172
tabvar, 186
tail, 97, 353
tan, 180, 221
tan, 230
tan2cossin2, 227
tan2sincos, 226
tan2sincos2, 227
tangent, 519, 667, 752
tanh, 180
taylor, 328
tchebyshev1, 300
tchebyshev2, 301
tcoeff, 267
tCollect, 223

tcollect, 223
tetrahedron, 793
tExpand, 218
texpand, 218
textinput, 620
then, 627
thickness, 647
thiele, 281
threshold, 250
throw, 638
title, 512
tlin, 221
to, 629
tpsolve, 429
trace, 412, 733
tran, 412
translation, 706, 784
transpose, 412
trapeze, 522
triangle, 670, 754
triangle_paper, 646
triangle_point, 511
triangle_window, 256
trig, 220
trig2exp, 228
trigcos, 229
trigexpand, 221
trigsimplify, 224
trigsin, 229
trigtan, 229
trn, 414
TRUE, 91
true, 91
trunc, 180
truncate, 275
try, 638
tsimplify, 262
tstep, 647
tukey_window, 257
tuple, 348
type, 621

ufactor, 614
ugamma, 139
unapply, 175
unarchive, 82
unfactored, 524
uniform, 579

46 INDEX

uniform_cdf, 579
uniform_icdf, 580
uniformd, 579
uniformd_cdf, 579
uniformd_icdf, 580
union, 339, 347
unitV, 150, 374
unquote, 155
Unquoted, 634
until, 630
user_operator, 174
usimplify, 614
ustep, 647
UTPC, 574
UTPF, 575
UTPN, 571
UTPT, 572

valuation, 266
vandermonde, 383
VAR, 621
variable, 79
variance, 377, 407, 538
VARS, 85, 89
VAS, 310
VAS_positive, 310
vector, 621, 665, 744
vectors, 349
version, 48
vertices, 661, 796
vertices_abc, 661
vertices_abca, 662
vpotential, 471
vstep, 647

WAIT, 638
watch, 640
weibull, 581
weibull_cdf, 581
weibull_icdf, 582
weibulld, 581
weibulld_cdf, 581
weibulld_icdf, 582
welch_window, 257
when, 88
while, 630
white, 511
widget_size, 67
wilcoxonp, 582

wilcoxons, 583
wilcoxont, 583
write, 633
writergb, 806
writewav, 243, 804
wz_certificate, 121

xcas_mode, 60, 67
xor, 92
xstep, 647
xstep, 513
xyztrange, 67

yellow, 511
ystep, 647
ystep, 513

zeros, 159
zeta, 141
zip, 368
zstep, 647
zstep, 513
ztrans, 498

Chapter 2

Introduction

2.1 Notations used in this manual

In this manual, the information that you enter will be typeset in typewriter font.
User input typically takes one of three forms:

• Commands that you enter on the command line.
For example, to compute the sin of π/4, you can type

sin(pi/4)

• Commands requiring a prefix key.
These will be indicated by separating the prefix key and the standard key with
a plus +. For example, to exit an Xcas session, you can type the control key
along with the q key, which will be denoted

Ctrl+Q

• Menu commands.
When denoting menu items, submenus will be connected using I. For ex-
ample, from within Xcas you can choose the File menu, then choose the
Open submenu, and then choose the File item. This will be indicated by

File I Open I File

The index will use different typefaces for different parts of the language. The
commands themselves will be written with normal characters, command options
will be written in italics and values of commands or options will be written in
typewriter font. For example (as you will see later), you can draw a blue parabola
with the command

plotfunc(xˆ2,color = blue)

In the index, you will see

• plotfunc, the command, written in normal text.

• color, the command option, written in italics.

• blue, the value given to the option, written in typewriter font.

47

48 CHAPTER 2. INTRODUCTION

2.2 Interfaces for the giac library

The giac library is a C++ mathematics library. It comes with two interfaces for
users to use it directly; a graphical interface and a command-line interface.

The graphical interface is called Xcas, and is the most full-featured interface.
As well being able to do symbolic and numeric calculations, it has its own pro-
gramming language, it can draw graphs, it has a built-in spreadsheet, it can do
dynamic geometry and turtle graphics.

The command-line interface can be run inside a terminal. It can also do sym-
bolic and numeric calculations and works with the programming language. In
a graphical environment, the command-line interface can also be used to draw
graphs.

There is also a web version, which can be run through a browser, either over
the internet or from local files. Other programs (for example, TeXmacs) have
interfaces for the command-line version.

2.2.1 The Xcas interface

How you run Xcas in a graphical environment depends on which operating system
you are using.

• If you are using Unix, you can usually find an entry for the program in a
menu provided by the environment. Otherwise, you can start it from a ter-
minal by typing

xcas &

If for some reason Xcas becomes unresponsive, you can open a terminal
and type

killall xcas

That will kill any running Xcas processes. When you restart Xcas, you
will be asked if you want to resume where you left off using an automatic
backup file.

• If you are running Windows, you can use the explorer to go to the directory
where Xcas is installed. In that directory will be a file called xcas.bat.
Clicking on that file will start Xcas.

• If you are running Mac OS, you can use the Finder to go to the xcas_image.dmg
file and double-click it. Then double-click the Xcas disk icon. Finally, to
launch Xcas, double-click the Xcas program.

When you start Xcas, a window will pop up with menu entries across the top, a
bar indicating information about the current Xcas configuration, and an entry line
you can use to enter commands. This interface will be described in more detail
later, and you can get help from within Xcas with the menu item

HelpIInterface

2.2. INTERFACES FOR THE GIAC LIBRARY 49

2.2.2 The command-line interface

In Unix and MacOS you can run giac from a terminal with the command icas
(the command giac also works). There are two ways to use the command-line
interface.

If you just want to evaluate one expression, you can give icas the expression
(in quotes) as a command line argument. For example, to factor the polynomial
x2 − 1, you can type

icas ’factor(xˆ2-1)’

at a command prompt. The result will be

(x-1)*(x+1)

and you will be returned to the operating system command line.
If you want to evaluate several commands, you can enter an interactive giac

session by entering the command icas (or giac) by itself at a command prompt.
You will then be given a prompt specifically for giac commands, which will look
like

0>>

You can enter a giac command at this prompt and get the result.

0>> factor(x^2-1)
(x-1)*(x+1)
1>>

After the result, you will be given another prompt for giac commands. You can
exit this interactive session by typing Ctrl+D.

You can also run icas in batch mode; that is, you can have icas run giac
commands stored in a file. This can be done in Windows as well as Unix and Mac
OS. To do this, simply enter

icas filename

at a command prompt, where filename is the name of the file containing the giac
commands.

2.2.3 The Firefox interface

You can run giac without installing it by using a javascript-enabled web browser.
Using Firefox for this is highly recommended; Firefox will run giac several times
faster than Chrome, for example, and Firefox also supports MathML natively.

To run giac through Firefox, you can open the url https://www-fourier.
ujf-grenoble.fr/~parisse/giac/xcasen.html. At the top of this
page is a button which will open a quick tutorial; the tutorial will also tell you how
to install the necessary files to run giac through Firefox without being connected
to the internet.

https://www-fourier.ujf-grenoble.fr/~parisse/giac/xcasen.html
https://www-fourier.ujf-grenoble.fr/~parisse/giac/xcasen.html

50 CHAPTER 2. INTRODUCTION

2.2.4 The TeXmacs interface

TeXmacs (http://www.texmacs.org) is a sophisticated word processor with
special mathematical features. As well as being designed to nicely typeset math-
ematics, it can be used as a frontend for various mathematics programs, such as
giac.

Once you’ve started TeXmacs, you can interactively run giacwithin TeXmacs
with the menu command InsertISessionIGiac. Once started, you can en-
ter giac commands as you would in the command-line interface. The TeXmacs
interface will also have a menu specifically for giac commands.

Within TeXmacs, you can combine giac commands and output with ordinary
text. To enter normal text within a giac session, use the menu item FocusIInsert
Text Field Above. You can reenter a giac entry line by clicking on it with
a mouse.

2.2.5 Checking the version of giac that you are using: version,
giac

The version (or giac) command returns the version of giac that is running.
Input:

version()

Output:

"giac 1.5.0, (c) B. Parisse and R. De Graeve, Institut
Fourier, Universite de Grenoble I"

http://www.texmacs.org

Chapter 3

The Xcas interface

3.1 The entry levels

The Xcas interface can run several independent calculation sessions, each session
will be contained in a separate tab. Before you understand the Xcas interface, it
would help to be familiar with the components of a session.

Each session can have any number of input levels. Each input level will have a
number to the left of it; the number is used to identify the input level. Each level
can have one of the following:

• A command line.
This is the default; you can open a new command line with Alt+N.
You can enter a giac command (or a series of commands separated by
semicolons) on a command line and send it to be evaluated by hitting en-
ter. You can also scroll through the command history with Shift+Up and
Shift+Down.

If the output is a number or an expression, then it will appear in blue text in
a small area below the input region; this area is an expression editor. There
will be a scrollbar and a small M to the right of this area; the M is a menu
which gives you various options.

If the output is a graphic, then it will appear in a graphing area below the
input region. To the right of the graphic will be a control panel allowing you
to manipulate the graphic.

• An expression editor.
You can open an expression editor with Alt+E.

• A two-dimensional geometry screen.
You can open up such a screen with Alt+G. This level will have a screen,
as well as a control panel, menus and a command line to control the screen.

• A three-dimensional geometry screen.
You can open up such a screen with Alt+H. This level will have a screen,
as well as a control panel, menus and a command line to control the screen.

• A turtle graphics screen.
You can open up such a screen with Alt+D. This level will have a screen,
as well as a program editor and command line.

51

52 CHAPTER 3. THE XCAS INTERFACE

• A spreadsheet.
You can open up a spreadsheet with Alt+T. A spreadsheet will be able to
open a graphic screen.

• A program editor.
You can open up a program editor with Alt+P.

• A comment line. You can open up a comment line with Alt+C.

Using commands discussed later, different types of levels can be combined to form
a single hybrid level. Levels can also be moved up or down in a session, or even
moved to a different session.

The level containing the cursor is the current level. The current level can be
evaluated or re-evaluated by typing enter.

A level can be selected (for later operations) by clicking on the number in the
white box to the left of the level. Once selected, the box containing the number
will turn black. You can select a range of levels by clicking on the number for the
beginning level, and then holding the shift key while you click on the number for
the ending level.

You can copy the instructions in a range of levels by selecting the range, and
then clicking the middle mouse button on the number of the target level.

3.2 The starting window

When you first start Xcas, you will be given a largely blank window.

The first row will be the main menus; you can save and load Xcas sessions, con-
figure Xcas and its interface and run various commands with entries from these
menus.

The second row will be tabs; one tab for each session that you are running in
Xcas. The tabs will contain the name of the sessions, or Unnamed if a session has
no name. The first time you start Xcas, there will be only one unnamed session.

The third row will contain various buttons.

• The first button, ? , will open the help index. (The same as the HelpIIndex
menu entry.) If there is a command on the command line, the help index (see
help index ,p.53) will open at this command.

3.2. THE STARTING WINDOW 53

• The second button Save , will save the session in a file. The first time you
click on it, you will be prompted for a file name ending in .xws to save the
session in. The button will be pink if the session is not saved or if it has
changed since the last change, it will be green once the session is saved. The
name in the title will be the name of the file used to save the session.

• The third button, which in the picture above is
Config : exact real RAD 12 xcas 6.2148M , is a status line

indicating the current Xcas configuration. (See section 3.5.) If the session
is unsaved, it will begin with Config :; if the session is saved in a file file-
name.xws, this button will begin with Config filename.xws :. Other
information on this status line:

– exact or approx. (See subsection 3.5.4.) This tells you whether
Xcas will give you exact values, such as

√
2, when possible or to give

you decimal approximations.

– real, cplx or CPLX. (See subsections 3.5.5 and 3.5.6.) When this
shows real, then (for example) Xcas will by default only find real
solutions of equations. When this shows cplx, the Xcas will find
complex solutions of equations. When this shows CPLX, then Xcas
will regard variables as complex; for example, it won’t simplify re(z)
(the real part of the variable z) to z.

– RAD or DEG. (See subsection 3.5.3.) This tells you whether angles, as
in trigonometric arguments, are measured in radians or degrees.

– An integer. (See subsection 3.5.1, indicating how many significant dig-
its will be used in floating point calculations.

– xcas, maple, mupad or ti89. (See subsection 3.5.2.) This tells you
what syntax Xcas will use. Xcas can be set to emulate the languages
of Maple, MuPAD or the TI89 series of calculators.

– The last item indicates how much memory Xcas is using.

Clicking on this status line button will open a window where you can con-
figure the settings shown on this line as well as some other settings; you
can do the same with the menu item CfgICAS Configuration. (See
subsection 3.5.7.)

• The fourth button, STOP (in red), can be used to halt a computation which
is running on too long.

• The fifth button, Kbd , can be used to toggle an on-screen scientific key-
board at the bottom of the window.

Along the right hand side of the keyboard are some keys that can be used to
change the keyboard.

– The X key will hide the keyboard, just like pressing the Kbd button
again.

54 CHAPTER 3. THE XCAS INTERFACE

– The cmds key will toggle a menu bar at the bottom of the screen which
can be used as an alternate menu or persistent submenu. This bar will
contain buttons, home, <<, some menu titles, >>, var, cust and X.

The << and >> buttons will scroll through menu items. Clicking on
one of the menu buttons will perform the appropriate action or replace
the menu items by submenu items. When submenu items appear, there
will also be a BACK button to return to the previous menu. Clicking on
the home button returns the menu buttons to the main menu.

After the menu buttons is a var button. This will replace the menu
buttons by buttons representing the variables that you have defined.
After that is a cust button, which will display commands that you
store in a list variable CST (see section ??).

The last button, X, will close the menu bar.

– The msg key will bring up a message window at the bottom of the
window which will give you helpful messages; for example, if you
save a graphic, it will tell you the name of the file it is saved in and how
to include it in a LATEX file.

– The abc key will toggle the keyboard between the scientific keyboard
and an alphabetic keyboard.

• The fifth button, X , will close the current session.

3.3 Getting help

Xcas is an extensive program, but you can get help in several different ways. The
help menu (see section 3.4.4) has several submenus for various forms of help, some
of which are mentioned below.

Tooltips

If you hover the mouse cursor over certain parts of the Xcas window, a temporary
window will appear with information about the part. For example, if you move the
mouse cursor over the status line, you will get a message saying Current CAS
status. Click to modify.

If you type a function name into the Xcas command line, a similar temporary
window will appear with information about the function.

HTML help

If you hit the F12 button, you will be given a window in which you can use to
search the html version of the manual. If you type a string in the search area, you
will be given a list of help topics that contain the string. If you choose a topic and
click View, your web browser will show the appropriate page of the manual.

You can also get HTML help with the menu entry HelpIFind word in
HTML help.

3.4. THE MENUS 55

The help index

If you click on the ? button on the status line you will get the help index.
The help index is a list of the giac function and variable names. Along with

the list, the help index window has an area listing words related to any chosen word
and words synonymous to the chosen word.

You can scroll through the help index items and click on the word that you
want. There is also a line in the help index window that you can use to search the
index; you can enter some text and be taken to the part of the index with words
beginning with that text. The ? button next to this search line will open the HTML
help window.

Below the search line, there is an area which will have a description of the
chosen command, and below that is an area which will have examples of the com-
mand being used. If the command is a function, then between the description and
examples will be some boxes in which you can enter arguments for the command.
Filling in these boxes and hitting enter will put the function on the command line.

At the top of the help index window is a Details button. If you click on that,
a web page will open up in your browser with the relevant portion of the manual.
If you click on the ? next to the search line, you will be taken to the HTML help
window.

Besides clicking on the ? on the status line, there are other ways to get to the
help index.

• You can get to the help index by using the menu item HelpIIndex.

• You can press the tab button while at the Xcas command line to get to the
help index. If you have entered part of a command name, you will be at the
part of the index with words beginning with the text that you entered.

• If you select a command from the menu, then as well as putting the command
on the command line, you will be taken to the help index window with the
command chosen.

findhelp

You can get help from Xcas by using the findhelp function. If you enter
findhelp(function) (or equivalently ?function) at the command input, where
function is the name of a giac function, then some notes on function will ap-
pear in the answer portion and the appropriate page of the manual will appear in
your web browser.

3.4 The menus

3.4.1 The File menu

The File menu contains commands that are used to save sessions and parts of
sessions and load previously saved sessions. This menu contains the following
entries:

56 CHAPTER 3. THE XCAS INTERFACE

• New Session
This will create and open a new session. This session will be in a new tab
labeled Unnamed until you save it (using the menu item FileISave or
the keystroke Alt+S).

• Open
This will open a previously saved session. There will be a submenu with a
list of saved session files in the primary directory that you can open, as well
as a File item which will open a directory browser you can use to find a
session file. This directory browser can also be opened with Alt-O.

• Import
This will allow you to open a session that was created with the Maple CAS,
a TI89 calculator or a Voyage200 calculator. These sessions can then be
executed with the EditIExecute Session menu entry, but it may be
better to execute the commands one at a time to see if any modifications need
to be done.

• Clone
This will create a copy of the current session in a Firefox interface; ei-
ther using the server at http://www-fourier.ujf-grenoble.fr/
~parisse/xcasen.html (Online) or a local copy (Offline).

• Insert
This allows you to insert a previously saved session, a link to a Firefox ses-
sion, or a previously saved figure, spreadsheet or program.

• Save (Alt+S)
This will save the current session.

• Save as
This will save the current session under a different name.

• Save all
This will save all of the sessions.

• Export as
This will allow you to save the current session in different formats; either
standard Xcas format, Maple format, MuPAD format or TI89 format.

• Kill
This will kill the current session.

• Print
This will allow you to save the session in various ways. preview will
save an image of the current session in a file that you name. print will
send an image of the current session to the printer. preview selected
levels will save the images of the commands and outputs of the current
session, each in a separate file.

• LaTeX
This will render the session in LATEX and give you the result in various ways.

http://www-fourier.ujf-grenoble.fr/~parisse/xcasen.html
http://www-fourier.ujf-grenoble.fr/~parisse/xcasen.html

3.4. THE MENUS 57

latex preview will display a compiled LATEX version of the current ses-
sion. latex print will send a copy of the LATEXed session to a printer.
latex print selection will save a copy.

• Screen capture
This will create a screenshot that will be saved in various formats.

• Quit and update Xcas
This will quit Xcas after checking for a newer version.

• Quit (Ctrl+Q)
This will quit Xcas.

3.4.2 The Edit menu

The Edit menu contains commands that are used to execute and undo parts of the
current session. This menu contains the following entries:

• Execute worksheet (Ctrl-F9)
This will recalculate each level in the session.

• Execute worksheet with pauses
This will recalculate each level in the session, pausing between calculations.

• Execute below
This will recalculate the current level and each level below it.

• Remove answers below
This will remove the answers to the current level and the levels below it.

• Undo (Ctrl+Z)
This will undo the latest edit done to the levels, including the deletion of
levels. It can be repeated to undo more than one edit.

• Redo (Ctrl+Y)
This will redo the undone editing.

• Paste
This will paste the contents of the system clipboard to the cursor position.

• Del selected levels
This will delete any entry levels that you have selected.

• selection -> LaTeX (Ctrl+T)
If you select a level, part of a level, or answer with the mouse (click and
drag), this menu item will put a LATEX version of the selection on the system
clipboard.

• New entry (Alt+N)
This will insert a new entry level above the current one.

• New parameter (Ctrl+P)
This will bring up a window in which you can enter a name and conditions
for a new parameter.

58 CHAPTER 3. THE XCAS INTERFACE

• Insert newline. This will insert a newline below the cursor. Note that
simply typing return will cause the current entry to be evaluated rather than
inserting a newline.

• Merge selected levels. This will merge the selected levels into a
single level.

3.4.3 The Cfg menu

The Cfg menu contains commands that are used to set the behaviour of Xcas.
This menu contains the following entries:

• Cas configuration
This will open a window that you can use to configure how Xcas performs
calculations. This is the same window you get when you click on the status
line.

• Graph configuration
This will open a window that you can use to configure the default settings
for a graph. This includes such things as the initial ranges of the variables.
Each graph will also have a cfg button to configure the settings on a per
graph basis.

• General configuration
This will open a window that you can use to configure various non-computational
aspects of Xcas, such as the fonts, the default paper size, and the like.

• Mode (syntax)
This will allow you to change the default syntax. To begin with, it is Xcas
syntax, but you can change it to Maple syntax, MuPAD syntax or TI89 syn-
tax.

• Show
This will allow you to control parts of Xcas to show.

– DispG
This will show the graphics display screen. This screen will show all
graphical commands from the session together.

– keyboard
This will show the on-screen keyboard; the same as clicking on the
Kbd button on the status line.

– bandeau
This will show the menu buttons at the bottom of the window; the same
as clicking on cmds on the on-screen keyboard.

– msg
This will show the messages window; the same as clicking on msg on
the on-screen keyboard.

• Hide
This will hide the same items that you can show with Show.

3.4. THE MENUS 59

• Index language
This will let you choose a language in which to display the help index.

• Colors
This will let you choose colors for various parts of the display.

• Session font
This will let you choose a font for the sessions.

• All fonts
This will let you choose a font for the session, the main menu and the key-
board.

• browser
This will let you choose a browser that Xcas will use when needed. If this
is blank, then Xcas will use its own internal browser.

• Save configuration
This will save the configurations that you chose with the Cfg menu or by
clicking on the status line.

3.4.4 The Help menu

The Helpmenu contains commands that let you get information about Xcas from
various sources. This menu contains the following entries:

• Index
This will bring up the help index. (See help index , p.53)

• Find word in HTML help (F12)
This will bring up a page which will help you search for keywords in the
html documentation that came with Xcas. The help will be displayed in
your browser.

• Interface
This will bring up a tutorial for the Xcas interface. The tutorial will be
displayed in your browser.

• Reference card, fiches
This will bring up (in your browser) a pdf reference card for Xcas.

• Manuals
This will let you choose from a variety of manuals for XCAS. They will
appear in your browser unless otherwise noted.

– CAS reference
This will bring up a manual for Xcas.

– Algorithmes (HTML)
This will bring up a manual for the algorithms used by Xcas.

– Algorithmes (PDF)
This will bring up a pdf version of the manual for the algorithms used
by Xcas.

60 CHAPTER 3. THE XCAS INTERFACE

– Geometry
This will bring up a manual for two-dimensional geometry in Xcas.

– Programmation
This will bring up a manual for programming in Xcas.

– Simulation
This will bring up a manual for statistics and using the Xcas spread-
sheet.

– Turtle
This will bring up a manual for using the Turtle drawing screen in
Xcas.

– Exercices
This will bring up a page of exercises that you can do with Xcas.

– Amusement
This will bring up a page of mathematical amusements that you can
work through with Xcas.

– PARI-GP
This will bring up documentation for the GP/PARI functions.

• Internet
The Internet menu contains commands that take you to various web
pages related to Xcas. Among them are the following entries:

– Forum
This will take you to the Xcas forum.

– Update help
This will install updated help files (retrieved from the Xcas website).

• Start with CAS
This menu has the following entries.

– Tutorial
This opens up the tutorial.

– solutions
This opens up the solutions to the exercises in the tutorial.

• Tutoriel algo
This opens up a tutorial on algorithms and programming with Xcas.

• Rebuild help cache
This will rebuild the help index.

• About
This will display a message window with information about Xcas.

• Examples
This will allow you to choose from a variety of example worksheets, which
will then be copied to your current directory and opened.

3.4. THE MENUS 61

3.4.5 The Toolbox menu

The Toolbox menu contains commands that are used to insert operators into the
session. This menu includes the following entries:

• New entry (Alt+N)
This will insert a new level after the current one.

• New comment (Alt+C)
This will insert a new comment level after the current level.

The other entries allow you to insert mathematical operations into the current level.
When you do that, you will also be taken to the help index (See help index , p.53)
with help on the chosen command.

3.4.6 The Expression menu

The Expression menu contains commands that are used to transform expres-
sions. The first entry is New expression (which is equivalent to Alt+E),
which will insert a new level above the current level and bring up the on-screen
keyboard. The rest of the entries can be used to insert a transformation.

3.4.7 The Cmds menu

The Cmds menu contains various giac functions and constants.

3.4.8 The Prg menu

The Prg menu contains commands that are used to write giac programs. The
first entry, PrgINew program (equivalent to Alt+P) , will insert a program
level and bring up the program editor. The other entries are useful commands for
writing giac programs.

3.4.9 The Graphic menu

The Graphic menu contains commands that are used to create graphs. The first
entry, GraphicIAttributs (equivalent to Alt+K) , will bring up a window
contains different attributes of the graph (such as line width, color, etc.) The other
entries are commands for creating and manipulating graphs.

3.4.10 The Geo menu

The Geo menu contains commands that are used to work with two- and three-
dimensional geometric figures. The first two entries, GeoINew figure 2d
(equivalent to Alt+G) and GeoINew figure 3d (equivalent to Alt+H) will
create a level for creating two- and three-dimensional figures, respecitively. The
other menu items are for working with the figures.

62 CHAPTER 3. THE XCAS INTERFACE

3.4.11 The Spreadsheet menu

The Spreadsheet menu contains commands that are used to work with spread-
sheets. The first menu item, SpreadsheetINew spreadsheet (equivalent
to Alt+T), will bring up a window where you can set the size and other attributes
of a spreadsheet and then one will be created. The submenus contain commands
for working with spreadsheets. Notice that the spreadsheet itself will have menus
that are the same as these submenus.

3.4.12 The Phys menu

The Phys menu contains submenus with various categories of constants, as well
as functions for converting units.

3.4.13 The Highschool menu

The Highschool menu contains computer algebra commands that are useful
at different levels of highschool. There is also a Program submenu with some
program control functions.

3.4.14 The Turtle menu

The Turtle menu contains the commands that are used to in a Turtle screen. The
first menu item, TurtleINew turtle, will create a Turtle drawing screen, the
other menu items contain commands for working with the screen.

3.5 Configuring Xcas

3.5.1 The number of significant digits: Digits DIGITS

By default Xcas uses and displays 12 significant digits, but you can set the number
of digits to other positive integers. If you set the number of significant digits to a
number less than 14, then Xcas will use the computer’s floating point hardware,
and so calculations will be done to more significant digits than you asked for, but
only the number of digits that you asked for will be displayed. If you set the
number of significant digits to 14 or higher, then both the computations and the
display will use that number of digits.

You can set the number of significant digits for Xcas by using the CAS con-
figuration screen (see subsection 3.5.7). The number of significant digits is stored
in the variable DIGITS or Digits, so you can also set it by giving the variable
DIGITS a new value, as in DIGITS:= 20. The value will be stored in the con-
figuration file (see subsection 3.5.10), and so can also be set there.

3.5.2 The language mode: xcas_mode

Xcas has its own language which it uses by default, but you can have it use the
language used by Maple, MuPAD or the TI89 calculator.

You can set which language Xcas uses in the CAS configuration screen (see
subsection 3.5.7). You can also use the function xcas_mode. If you give it an

3.5. CONFIGURING XCAS 63

argument of 0, xcas_mode(0), then Xcaswill use its own language. If you give
it an argument of 1, xcas_mode(1), then Xcas will use the Maple language.
If you give it an argument of 2, xcas_mode(2), then Xcas will use the MuPAD
language. Finally, if you give it an argument of 3, xcas_mode(3), then Xcas
will use the TI89 language.

The language you want to use will be stored in the configuration file (see sub-
section 3.5.10), and so can also be set there.

3.5.3 The units for angles: angle_radian

By default, Xcas will assume that any angles you give (for example, as the argu-
ment to a trigonometric function) is being measured in radians. If you want, you
can have Xcas use degrees.

You can set which angle measure Xcas uses in the CAS configuration screen
(see subsection 3.5.7). Your choice will be stored in the variable angle_radian;
this will be 1 if you measure your angles in radians and 0 if you measure your
angles in degrees. You can also change which angle measure you use by setting
the variable angle_radian to the appropriate value. The angle measure you
want to use will be stored in the configuration file (see subsection 3.5.10), and so
can also be set there.

3.5.4 Exact or approximate values: approx_mode

Some number, such as π and
√

2, can’t be written down exactly as a decimal num-
ber. When computing with such numbers, Xcaswill leave them in exact, symbolic
form. If you want, you can have Xcas automatically give you decimal approxima-
tions for these numbers.

You can set whether or not Xcas will give you exact or approximate values
from the CAS configuration screen. Your choice will be stored in the variable
approx_mode, where a value of 0 means that Xcas should give you exact an-
swers when possible and a value of 1 means that Xcas should give you decimal
approximations. Your choice will be stored in the configuration file (see subsection
3.5.10), and so can also be set there.

3.5.5 Complex numbers: complex_mode

When factoring polynomials, Xcaswon’t introduce complex numbers if they aren’t
already being used. For example,

factor(xˆ2 + 2)

will simply return

xˆ2 + 2

but if an expression already involves complex numbers then Xcas will use them;

factor(i*xˆ2 + 2*i)

will return

(x - i*sqrt(2))*(i*x - sqrt(2))

64 CHAPTER 3. THE XCAS INTERFACE

Xcas also has ways of finding complex roots even when complex numbers are
not present; for example, the command cfactor will factor over the complex
numbers

cfactor(xˆ2 + 2)

will return

(x - i*sqrt(2))*(x + i*sqrt(2))

If you want Xcas to use complex numbers by default, you can turn on complex
mode. In complex mode,

factor(xˆ2 + 2)

will return

(x - i*sqrt(2))*(x + i*sqrt(2))

You can turn on complex mode from the CAS configuration screen. This mode
is determined by the value of complex_mode; if this is 1 then complex mode is
on, if this variable is 0 then complex mode is off. This option will be stored in the
configuration file (see subsection 3.5.10), and so can also be set there.

3.5.6 Complex variables: complex_variables

New variables will be assumed to be real; functions which work with the real and
imaginary parts of variables will assume that a variable is real. For example, re
returns the real part of its argument and im returns the imaginary part, and so

re(z)

returns

z

and

im(z)

returns

0

If you want variables to be complex by default, you can have Xcas use com-
plex variable mode. You can set this from the CAS configuration screen. Your
choice will be stored in the variable complex_variables, where a value of 0
means that Xcas will assume that variables are real and and a value of 1 means
that Xcas will assume that values are complex. Your choice will be stored in the
configuration file (see subsection 3.5.10), and so can also be set there.

3.5. CONFIGURING XCAS 65

3.5.7 Configuring the computations

You can configure how Xcas computes by using the menu item CfgICas configuration
or by clicking on the status line. You will then be given a window in which you
can change the following options:

• Prog style (default: Xcas)
You will have a menu from which you can choose a different language to pro-
gram in; you can choose from Xcas, Xcas (Python), Maple, Mupad
and TI89/92.

• eval (default: 25)
You can type in a positive integer indicating the maximum number of recur-
sions allowed when evaluating expressions.

• prog (default: 1)
You can type in a positive integer indicating the maximum number of recur-
sions allowed when executing programs.

• recurs (default: 100)
You can type in a positive integer indicating the maximum number of recur-
sive calls.

• debug (default: 0)
You can type in an integer, 0 or 1. If this is 1, then Xcas will display
intermediate information on the algorithms used by giac. If this number is
0, then no such information is displayed.

• maxiter (default: 20)
You can type in an integer indicating the maximum number of iterations in
Newton’s method.

• Float format (default: standard)
You will have a menu from which you can choose how to display decimal
numbers. Your choices will be:

– standard In standard notation, a number will be written out com-
pletely without using exponentials; for example, 15000.12 will be
displayed as 15000.12.

– scientific In scientific notation, a number will be written as a
number between 1 and 10 times a power of ten; for example, 15000.12
will be displayed as 1.500012000000e+04 (where the number af-
ter e indicates the power of 10).

– engineer In engineer notation, a number will be written as a number
between 1 and 1000 times a power of ten, where the power of 10 is
a multiple of three. For example, 15000.12 will be displayed as
15.00012e3.

• Digits (default: 12)
You can enter a positive integer which will indicate the number of significant
digits.

66 CHAPTER 3. THE XCAS INTERFACE

• epsilon (default: 1e-12)
You can enter a floating point number which will be the value of epsilon
used by epsilon2zero, which is a function which replaces numbers with
absolute value less than epsilon by 0.

• proba (default: 1e-15)
You can enter a floating point number. If this number is greater than zero,
then in some cases giac can use probabilistic algorithms and give a result
with probability of being false less than this value. (One such example of
a probabilistic algorithm that giac can use is the algorithm to compute the
determinant of a large matrix with integer coefficients.)

• approx (default: unchecked)
You will be given a checkbox. If the box is checked, then exact numbers such
as
√

2 will be given a floating point approximation. If the box in unchecked,
then exact values will be used when possible.

• autosimplify (default: 1)
You can enter a simplification level of 0, 1 or 2. A value of 0 means no
automatic simplification will be done, a value of 1 means grouped simplifi-
cation will be automatic. A value of 2 means that all simplification will be
automatic.

• threads (default: 1)
You can enter a positive integer to indicate the number of threads (for a
possible future threaded version).

• Integer basis (default: 10)
You will be given a menu from which you can choose an integer base to
work in; your choices will be 8, 10 and 16.

• radian (default: checked)
You will be given a checkbox. If the box is checked, then angles will be
measured in radians, otherwise they will be measured in degrees.

• Complex (default: unchecked)
You will be given a checkbox. If this box is checked, then giac will work
in complex mode, meaning, for example, that polynomials will be factored
with complex numbers if necessary.

• Cmplx_var (default: unchecked)
You will be given a checkbox. If this box is checked, then variables will
by default be assumed to be complex. For example, the expression re(z)
won’t be simplified to simply z. If this box is unchecked, then re(z) will
be simplified to z.

• increasing power (default: unchecked)
You will be given a checkbox. If this box is checked, then polynomials will
be written out in increasing powers of the variable; otherwise they will be
written in decreasing powers.

3.5. CONFIGURING XCAS 67

• All_trig_sol (default: unchecked)
You will be given a checkbox. If this box is unchecked, then only the pri-
mary solutions of trigonometric equations will be given. For example, the
solutions of cos(x)=0 will be the pair [-pi/2,pi/2]. If this box is
checked, then the solutions of cos(x)=0will be [(2*n_0*pi + pi)/2],
where n_0 can be any integer.

• Sqrt (default: checked)
You will be given a checkbox. If this box is checked, then the factor
command will factor second degree polynomials, even when the roots are
not in the field determined by the coefficients. For example, factor(xˆ2
- 3) will return (x - sqrt(3))*(x + sqrt(3)). If this box is
unchecked, then factor(xˆ2 - 3) will return xˆ2 - 3.

This page will also have buttons for applying the settings, saving the settings for
future sessions, canceling any new settings, or restoring the default settings.

3.5.8 Configuring the graphics

You can configure each graphics screen by clicking on the cfg button on the graph-
ics screen’s control panel to the right of the graph. You can also change the default
graphical configuration using the the menu item CfgIGraph configuration.
You will then be given a window in which you can change the following options:

• X- and X+
These will determine the x values for which calculations will be done.

• Y- and Y+
These will determine the y values for which calculations will be done.

• Z- and Z+
These will determine the z values for which calculations will be done.

• t- and t+
These will determine the t values for which calculations will be done, when
plotting parametric curves, for example.

• WX- and WX+
These will determine the range of x values for the viewing window. done.

• WY- and WY+
These will determine the range of y values for the viewing window.

• class_min
This will determine the minimum size of a statistics class.

• class_size
This will determine the default size of a statistics class.

• autoscale
When checked, the the graphic will be autoscaled.

68 CHAPTER 3. THE XCAS INTERFACE

• ortho
When checked, all axes of the graphic will be scaled equally.

• >W and W>
These are convenient shortcuts to copy the X-, X+, Y- and Y+ values to
WX-, WX+, WY- and WY+, or the other way around.

This page will also have buttons for applying the settings, saving the settings for
future sessions, or canceling any new settings.

3.5.9 More configuration

You can configure other aspects of Xcas (besides the computatioonal aspects and
graphics) using the the menu item CfgIGeneral configuration. You will
then be given a window in which you can change the following options:

• Font
This lets you choose a session font, the same as choosing the menu item
CfgISession font.

• Level
This will determine what type of level should be open when you start a new
session.

• browser
This will determine what browser Xcas should use when it requires one, for
example when displaying help. If this is empty, Xcas will use its built-in
browser.

• Auto HTML help
If this box is checked, then whenever you choose a function from a menu,
a help page for that function will appear in your browser. Regardless of
whether this box is checked or not, the help page will also appear in your
browser if you type ?function in a command box.

• Auto index help If this box is checked, then whenever you choose a
function from a menu, the help index page for that function will appear. This
is the same page you would get from choosing the function from the help
index.

• Print format
This will determine the paper size for printing and saving files. There is also
a button you can use to have the printing done in landscape mode; if this
button is not checked, the printing will be done in portrait.

• Disable Tool tips
If this is checked, Xcas will stop displaying tool tips.

• rows and columns
These will determind the default number of rows and columns for the matrix
editor and spreadsheet.

• PS view
This determines what program will be used to preview Postscript files.

3.5. CONFIGURING XCAS 69

3.5.10 The configuration file: widget_size cas_setup xcas_mode
xyztrange

When you save changes to your configuration, this is stored in a configuration
file, which will be .xcasrc in your home directory in Unix and xcas.rc in
Windows. This file will have four functions – widget_size, cas_setup,
xcas_mode and xyztrange – which determine the configuration and which
are evaluated when Xcas starts.

The widget_size function has between 1 and 12 arguments. The arguments
(in order) are:

• The first argument is a postive integer specifying the font size. Optionally,
this can be a bracketed list whose first number indicates the font and the
second the font size.

• The second and third arguments are horizontal and vertical distances in pix-
els from the upper left hand corner of the screen. They specify where the
upper left corner of the Xcas window is when it opens.

• The fourth and fifth arguments specify the width and height of the Xcas
window when it opens.

• The sixth argument is either 0 or 1; a 1 indicates that the on-screen keyboard
should be open when Xcas starts, a 0 indicates that the keyboard should be
hidden.

• The seventh argument is either 0 or 1; a 1 indicates that the browser should
be automatically opened to display help for the selected command in the
menu or index, a 0 indicates that the browser should not be automatically
opened.

• The eighth argument is either 0 or 1; a 1 indicates that Xcas should open
with the message window, a 0 indicates that Xcas should open without the
message window.

• The ninth argument is currently not used.

• The tenth argument is a string with the name of the browser to use to read the
help pages. A value of "builtin" means that Xcas should use a small
browser built into Xcas.

• The eleventh argument indicates what level Xcas should start at; a 0 means
command line, a 1 means program editor, a 2 means spreadsheet, and a 3
means a 2-d geometry screen.

• The twelfth argument is a string with the name of a program for postscript
previews; for example, "gv".

The cas_setup function has nine arguments. The arguments (in order) are:

• approx. A 1 means Xcas works in approximate mode, a 0 means numeric
mode.

70 CHAPTER 3. THE XCAS INTERFACE

• complex_var. A 1 means work with complex variables, a 0 means real
variables.

• complex. A 1 means work with in complex mode, a 0 means real mode.

• radian. A 1 means work in radians, a 0 means work in degrees.

• display_format. A 0 means use the standard format to display num-
bers, a 1 means use scientific format, a 2 means use engineering format, and
a 3 means use floating hexademical format (which is standardized with a
non-zero first digit).

• epsilon. This is the value of epsilon used by Xcas.

• Digits. This is the number of digits to use to display a float.

• tasks. This will be used in the future for parallelism.

• increasing_power. This is 0 to display polynomials in increasing power,
1 to display polynomials in decreasing powers.

The xcas_mode function has one argument; a 0 to work in Xcas mode, a 1
to work in Maple mode, a 2 to work in MuPAD mode, and a 3 to work in TI89
mode.

The xyztrange function inserts or removes the axes of a geometric screen;
it has 15 parameters, which are the parameters which can be set with the graphics
configuration screen (see section 3.5.8).
Input:

xyztrange (-5.5, -5.2, -10.10, -1.6, -5.5,
-1.2384,2,1,0,1)

(or enter the information in the configuration screen) will result in a visible graphics
window of [-5,5] by [-1.2384,2]. Note that the visible window is not the same as
the calculation window; if the calculation window is larger than the visible window,
then you can scroll to bring other parts of the calculation window into view.

3.6 Printing and saving

3.6.1 Saving a session

Each tab above the status line represents a session, the active tab will be yellow.
The label of each tab will be the name of the file that the session is saved in; if the
session hasn’t been saved the tab will read Unnamed.

You can save your current session by clicking on the Save button on the status
line. If the session contains unsaved changes the Save button will be red; the
button will be green when nothing needs to be saved. The first time that you save a
session you will be prompted for a file name; you should choose a name that ends
in .xws. Subsequent times that you save a session it will be saved in the same file;
to save a session in a different file you can use the menu item FileISave as.

If you have a session saved in a file and you want to load it in a tab, you can
use the menu item FileIOpen. From there you can choose a specific file from

3.7. TRANSLATING TO OTHER COMPUTER LANGUAGES 71

a list or open a directory browser that you can use to choose a file. The directory
browser can also be opened with Alt-O.

3.6.2 Saving a spreadsheet

If you have a spreadsheet in one of the levels, you can save it separately from the
rest of the session.

Once a spreadsheet is inserted, it will have menus right next to the level number.
If you select the TableISave sheet as text menu, you will be prompted
for a file name. You should choose a file name that ends in .tab. Once you
save the spreadsheet, there will be a button to the right of the menus which you
can use to save any changes you make. If you want to save the spreadsheet under
a different name, you can use the TableISave as alternate filename
menu entry. You can also use the TableISave as CSV and TableISave
as mathml menu entries to save the spreadsheet in other formats.

You can use the Tablemenu to insert previously saved spreadsheets; the menu
item TableIInsert will bring up a directory browser you can use to select a
file to enter.

3.6.3 Saving a program

You can open up a level in which to write an Xcas program with the menu item
PrgINew program (which is equivalent to Alt-P). If you select this item, you
will be prompted for information to fill out a template for a program and then be
left in the program editor.

At the top of the program editor there will be menus and buttons, at the far right
will be a Save button that you can press to save the program. The first time you
save a program, you will be prompted for a file name, you should choose a name
ending in .cxx. Once a program is saved, the file name will appear to the right of
the Save button. If you want to save the program under a different name, you can
use the ProgISave as item from the program editor menu.

To insert a previously saved program, you can use the ProgILoad item from
the program editor menu.

3.6.4 Printing a session

You can print a session with the FileIPrintIto printer menu item.
If you prefer to save the printed form as a file, you can use the FileIPrintIpreview

menu item. You will prompted for a file name to save the printed form in; the
file will be a PostScript file, so the name should end in .ps.If you only want to
save certain levels in printable form, you can use the FileIPrintIpreview
selected levels menu item; this file will be encapsulated PostScript, so the
name should end in .eps.

3.7 Translating to other computer languages

Xcas can translate a session, or parts of a session, to other computer languages;
notably LATEX and MathML.

72 CHAPTER 3. THE XCAS INTERFACE

3.7.1 Translating an expression to LATEX: latex

The command latex will translate an expression to a LATEX expression. If you
enter latex(expression), then the expression will be evaluated and the result
will be given to you in the LATEX typesetting language. For example, if you enter

latex(1+1/2)

you will get

\frac{3}{2}

3.7.2 Translating the entire session to LATEX

If you want to save your entire document as a complete LATEX file, you can use the
menu item FileIlaTeX preview selection

3.7.3 Translating graphical output to LATEX: graph2tex graph3d2tex

You can see all of your graphic output at once on the DispG screen, which you
can bring up with the command DispG(). (This screen can be cleared with the
command line command erase().) On the DispG screen there will be a Print
menu; the PrintIlatex print will give you several in files DispG.tex,
DispG.ps, DispG.ps and DispG.png with the graphics in different formats.
To save it without using the DispG() command you can use the graph2tex
command, which will save all graphic output to a LATEX file of your choosing. For
example, to save your graphs to myfile.tex, you can enter the command

graph2tex("myfile.tex")

to get a LATEX file myfile.tex with the graphs. To save a three-dimensional
graph, you can use the command graph3d2tex.

To save a single graph as a LATEX file, you can use the M menu to the right of the
graph. Selecting MIExport PrintIPrint (LaTeX) will save the current
graph. You can also save a single graph by selecting that level, then use the menu
item FileILaTeXILaTeX print selection. This method will save the
graph in several formats; session0.tex, session0.dvi, session0.ps
and session0.png, or with session0 replaced by the session name.

3.7.4 Translating an expression to MathML: mathml

The mathmml command will take an expression and return the result in MathML.
For example, if you enter

mathml(1/4 + 1/4)

you will get

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN"
"http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd" [
<!ENTITY mathml "http://www.w3.org/1998/Math/MathML">

3.7. TRANSLATING TO OTHER COMPUTER LANGUAGES 73

]>
<html xmlns="http://www.w3.org/1999/xhtml">
<body>

<math mode="display" xmlns="http://www.w3.org/1998/Math/MathML">

<mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac>

</math>

</body>
</html>

which is the number 1/2 in MathML form, along with enough information to make
it a complete HTML document.

3.7.5 Translating a spreadsheet to MathMML

You can translate an entire spreadsheet to MathML with the spreadsheet menu
command TableISave as mathml.

3.7.6 Translating a Maple file to Xcas: maple2xcas

You can translate a file of Maple commands to the Xcas language with the maple2xcas
command, as in

maple2xcas("MapleFile","XcasFile")

This command takes two arguments, the name of the Maple input file and the name
of the file where you want to save the Xcas commands.

74 CHAPTER 3. THE XCAS INTERFACE

Chapter 4

Entry in Xcas

4.1 Suppressing output

If you enter a command into Xcas, the result will appear in the output box below
the input. If you enter

a := 2+2

then

4

will appear in the output box. You can evaluate the input and suppress the output
with the nodisp command. If you enter

nodisp(a := 2+2)

then a will still be set to 4, but the result will not appear in the output box. Instead,

Done

will appear.
An alternate way of suppressing the output is to end the input with :;, if you

enter

b := 3+3:;

then b will be set to 6 but it won’t be displayed.

4.2 Entering comments

You can annotate an Xcas session by adding comments. You can enter a comment
on the current line at any time by typing Alt+C. The line will appear in green text
and conclude when you type Enter. Comments are not evaluated and so have no
output. If you have begun entering a command when you begin a comment, the
command line be pushed down so that you can finish it when you complete the
comment.

You can open the browser in a comment line by entering the web address be-
ginning with the @ sign. If you enter the comment line

75

76 CHAPTER 4. ENTRY IN XCAS

The Xcas homepage is at
@www-fourier.ujf-grenoble.fr/˜parisse/giac.html

then the browser will open to the Xcas home page.
To add a comment to a program, rather than a session, you can use the comment

command, which takes a string as an argument. Alternatively, any part of a pro-
gram between // and the end of the line is a comment. So both

bs() := {comment("Hello"); return "Hi there!";}

and

bs() := { // Hello
return "Hi there!";}

are programs with the comment "Hello".

4.3 Editing expressions

You can enter expressions on the command line, but Xcas also has a built-in ex-
pression editor that you can use to enter expressions in two dimensions, the way
they normally look when typeset. When you have an expression in the editor, you
can also manipulate subexpressions apart from the entire expression.

4.3.1 Entering expressions in the editor

The expression
x+ 2

x2 − 4

can be entered on the command line with

(x+2)/(xˆ2-4)

You also can use the expression editor to enter it visually, as x+2 on top of x2−4.
To do this, you can start the expression editor with the Alt+E keystroke (or the
Expression I New Expression menu command). There will be a small
M on the right side of the expression line, which is a menu with some commands
you can use on the expressions. There will also be a 0 selected on the expression
line and an on-screen keyboard at the bottom. If you type x + 2, it will overwrite
the 0. To make this the top of the fraction, you can select it with the mouse (you
can also make selections with the keyboard, as will be discussed later) and then
type /. This will leave the x + 2 on the top and the cursor on the bottom. To
enter x2 − 4 on the bottom, begin by typing x. Selecting this x and typing ˆ2
will put on the superscript. Finally, selecting the x2 and typing - 4 will finish the
bottom. If you then hit Enter, the expression will be evaluated and will appear
on the output line.

4.3. EDITING EXPRESSIONS 77

4.3.2 Subexpressions

Xcas can operate on expressions in the expression editor or subexpressions of the
expression. To understand subexpressions and how to select them, it helps to know
that Xcas stores expressions as trees.

A tree, in this sense, consists of objects called nodes. A node can be connected
to lower nodes, called the children of the first node. Each node (except one) will be
connected to exactly one node above it, called the parent node. One special node,
called the root node, won’t have a parent node. Two nodes with the same parent
nodes are called siblings. Finally, if a node doesn’t have any children, it is called a
leaf. This terminology comes from a visual representation of a tree,

which looks like an upside-down tree; the root is at the top and the leaves are at the
bottom.

Given an expression, the nodes of the corresponding tree are the functions, op-
erators, variables and constants. The children of a function node are its arguments,
the children of an operator node are its operands, and the constants and variables
will be the leaves. For example, the tree for sin(2 ∗ x+ y) will look like

A subexpression of an expression will be a selected node together with the nodes
below it. For example, both 2∗x and 2∗x+y are subexpressions of sin(2∗x+y),
but x+ y is not.

A subexpression of the contents of the expression editor can be selected with
the mouse; the selection will appear white on a black background. A subexpression
can also be chosen with the keyboard using the arrow keys. Given a selection:

78 CHAPTER 4. ENTRY IN XCAS

• The up arrow will go to the parent node.

• The down arrow will go to the leftmost child node.

• The right and left arrows will go to the right and left sibling nodes.

• The control key with the right and left arrows will switch the selection with
the corresponding sibling.

• If a constant or variable is selected, the backspace key will delete it. For
other selections, backspace will delete the function or operator, and another
backspace will delete the arguments or operands.

You can use the arrow keys to navigate the tree structure of an expression,
which isn’t always evident by looking at the expression itself. For example, sup-
pose you enter x*y*z in the editor. The two multiplications will be a different
levels; the tree will look like

If you select the entire expression with the up arrow and then go to the M menu to
the right of the line and choose eval, then the expression will look the same but, as
you can check by navigating it with the arrow keys, the tree will look like

4.3.3 Manipulating subexpressions

If a subexpression is selected in the expression editor, then any menu command
will be applied to that subexpression.

For example, suppose that you enter the expression

(x+1)*(x+2)*(x-1)

in the expression editor. Note that you can use the abilities of the editor to make
this easier. First, enter x+1. Select this with the up arrow, then type * followed by
x+2. Select the x+2 with the up arrow and then type * followed by x-1. Using
the up arrow again will select the x-1. Select the entire expression with the up
arrow, and then select eval from the M menu. This will put all factors at the same
level. Suppose you want the factors (x+1)*(x+2) to be expanded. You could
select (x+1)*(x+2) with the mouse and do one of the following:

4.4. PREVIOUS RESULTS 79

• Select the ExpressionIMiscInormal menu item. You will then have
normal((x+1)*(x+2))*(x-1) in the editor. If you hit enter, the result
(x2 + 3x+ 2) ∗ (x− 1) will appear in the output window.

• Again, select the ExpressionIMiscInormal menu item, so again you
have normal((x+1)*(x+2))*(x-1) in the editor. Now if you select
eval from the M menu, then the expression in the editor will become the
result (x2 + 3x+ 2) ∗ (x− 1), which you can continue editing.

• Choose normal from the M menu. This will apply normal to the selection,
and again you will have the result (x2 + 3x+ 2) ∗ (x− 1) in the editor.

There are also keystroke commands that you can use to operate on subexpres-
sions that you’ve selected. There are the usual Ctrl+Z and Ctrl+Y for undoing
and redoing. Some of the others are given in the following table.

Key Action on selection
Ctrl+D differentiate
Ctrl+F factor
Ctrl+L limit
Ctrl+N normalize
Ctrl+P partial fraction
Ctrl+R integrate
Ctrl+S simplify
Ctrl+T copy LATEX version to clipboard

4.4 Previous results

The ans command will return the results of previous commands. The input to
ans is the number of the command, beginning with 0. If the first command that
you enter is

2+5

resulting in

7

then later references to ans(0) will evaluate to 7.
Note that the argument to ans doesn’t correspond to the line number in Xcas.

For one thing, the line numbers begin at 1. What’s more, if you go back and re-
evaluate a previous line, then that will become part of the commands that ans
keeps track of.

If you give ans a negative number, then it counts backwards from the current
input. To get the latest output, for example, you can use ans(-1). With no
argument, ans() wil also return the latest output.

Similarly, quest will return the previous inputs. Since these will often be
simplified to be the same as the output, quest(n) sometimes has the same value
as ans(n).

You can also use Ctrl plus the arrow keys to scroll through previous inputs.
With the cursor on the command line, Ctrl+uparrow will go backwards in the
list of previous commands and Ctrl+downarrow will go forwards.

80 CHAPTER 4. ENTRY IN XCAS

4.5 Spreadsheet

4.5.1 Opening a spreadsheet

You can open a spreadsheet (or a matrix editor) with the SpreadsheetINew
Spreadsheet menu item or with the key Alt+T.

When you open a new spreadsheet, you will be given a configuration screen.
The configuration screen allows you to set the following options:

• Variable The name of the file where the spreadsheet will be saved.

• Rows and Columns The number of rows and columns in the spreadsheet.

• Eval Whether or not to automatically re-evaluate the entries in the spread-
sheet after each change. If this is not checked, then you can re-evaluate the
spreadsheet with the eval button on the spreadsheet menu bar.

• Distribute Whether or not entering a matrix into a cell will keep the
entry in a single cell or distribute it across an appropriate array of cells.

• LandscapeWhether the graphical representation of the spreadsheet should
be displayed below the spreadsheet or to the right of the spreadsheet. If this
is checked, it will be displayed below the spreadsheet.

• Move right Whether or not to move to the cell to the right of the current
cell when data is entered. If this is not checked, you will be moved to the
cell below the current cell.

• Spreadsheet Whether to format a spreadsheet or a matrix.

• Graph Whether or not to display the graphical representation of the spread-
sheet.

The configuration screen can be reopened with the EditIConfigurationICfg
window menu attached to the spreadsheet.

4.5.2 The spreadsheet window

When you open a spreadsheet, the input line will become the spreadsheet.

The top will be a menu bar with Table, Edit and Maths menus as well as
eval, val, init, 2-d and 3-d buttons. To the right will be the name of the file
the spreadsheet will be saved into. Below the menu bar will be two boxes; a box
which displays the active cell (and can be used to choose a cell) and a command
line to enter information into the cell. Below that will be a status line, you can click
on this to return to the configuration screen.

4.6. VARIABLES 81

4.6 Variables

4.6.1 Variable names

A variable or function name is a sequence of letters, numbers and underscores that
begins with a letter. If you define your own variable or function, you can’t use the
names of built-in variables or functions, or other keywords reserved by Xcas.

4.6.2 The CST variable

The menu available with the cust button on the onscreen keyboard is defined with
the CST variable. It is a list where each list item determines a menu item; a list
item is either a builtin command name or a list itself consisting of a string to be
displayed in the menu and the input to be entered when the item is selected.

For example, to create a custom defined menu with the builtin function diff,
a user defined function foo, and a menu item to insert the number 22/7, you can
set

CST := [diff,["foo",foo],["My pi approx",22/7]]

Note that if the input to be entered is a variable and the variable has a value
when CST is defined, then CST will contain the value of the variable. For example,
Input:

app := 22/7
CST := [diff,["foo",foo],["My pi approx",app]]

will be equivalent to the previous definition of CST. However, if the variable does
not have a value when CST is defined, for example, Input:

CST := [diff,["foo",foo],["My pi approx",app]]
app := 22/7

will behave as the previous values, to begin with, but in this case if the variable
app is changed, so will the the result of pressing the My pi approx button.

Since CST is a list, a function can be added to the cust menu with the
concat command;
Input:

CST := concat(CST,evalc)

will add the evalc command to the cust menu.

4.6.3 Assigning values: := => = assign sto Store

You can assign a value to a variable with the := operator. For example, to give the
variable a the value of 4, you can enter

a := 4

Alternatively, you can use the => operator; when you use this operator, the value
comes before the variable;

82 CHAPTER 4. ENTRY IN XCAS

4 => a

The function sto or Store can also be used; again, the value comes before the
variable

sto(4,a)

After any one of these commands, any time you use the variable a in an expression,
it will be replaced by 4.

You can use sequences or lists to make multiple assignments at the same time.
For example,

(a,b,c) := (1,2,3)

will assign a the value 1, b the value 2 and c the value 3. Note that this can be
used to switch the values of two variables; with a and b as above, the command

(a,b) := (b,a)

will set a equal to b’s original value, namely 2, and will set b equal to a’s original
value, namely 1.

Another way to assign values to variables, useful in Maple mode, is with the
assign command. If you enter

assign(a,3)

or

assign(a = 3)

then a will have the value 3. You can assign multiple values at once; if you enter

assign([a = 1, b = 2])

then a will have the value 1 and b will have the value 2. This command can be
useful in Maple mode, where solutions of equations are returned as equations. For
example, if you enter (in Maple mode)

sol := solve([x + y = 1, y = 2])

you will get

[x = -1, y = 2]

If you then enter

assign(sol)

the variable x will have value -1 and y will have the value 2. This same effect can
be achieved in standard Xcas mode, where

sol := solve([x + y = 1, y = 2])

will return

[[x = -1, y = 2]]

In this case, the command

[x,y] := sol[0]

will assign x the value -1 and y the value 2.

4.6. VARIABLES 83

4.6.4 Assignment by reference: =<

A list is simply a sequence of values separated by commas and delimited by [and
] (see section 5.41). Suppose you give the variable a the value [1,1,3,4,5],

a := [1,2,3,4,5]

If you later assign to a the value [1,2,3,4,5], then a new list is created. It may
be better to just change the second value in the original list by reference. This can
be done with the =< command. Recalling that lists are indexed beginning at 0, the
command

a[1] =< 2

will simply change the value of the second element of the list instead of creating a
new list, and is a more efficient way to change the value of a to [1,2,3,4,5].

4.6.5 Copying values of list: copy

If you enter

list1 := [1,2,3]

and then

list2 := list1

then list1 and list2 will be equal to the same list, not simply two lists with the
same elements. In particular, if you change (by reference) the value of an element
of list1, then the change will also be reflected in list2. For example, if you
enter

list1[1] =< 5

then both list1 and list2 will be equal to [1,5,3].
The copy command will create a copy of a list (or vector or matrix) which is

equal to the original list, but distinct from it. For example, if you enter

list1 := [1,2,3]

and then

list2 := copy(list1)

then list1 and list2 will both be [1,2,3], but now if you enter

list1[1] =< 5

then both list1 will be equal to [1,5,3] but list2 will still be [1,2,3].

84 CHAPTER 4. ENTRY IN XCAS

4.6.6 Incrementing variables: += -= *= /=

You can increase the value of a variable a by 4, for example, with

a := a + 4

If beforehand a were equal to 4, it would now be equal to 8. A shorthand way of
doing this is with the += operator;

a += 4

will also increase the value of a by 4.
Similar shorthands exist for subtraction, multiplication and division. If a is

equal to 8 and you enter

a -= 2

then a will be equal to 6. If you follow this with

a *= 3

then a will be equal to 18, and finally

a /= 9

will end with a equal to 2.

4.6.7 Storing and recalling variables and their values: archive unarchive

You can store variables and their values for later use in a file of your choosing with
the archive function. This function takes two arguments, a filename to store the
variables in and a variable or list of variables.

If you have given the variable a the value 2 and the variable bee the value
"letter" (a string), then entering

archive("foo",[a,bee])

will create a file named “foo” which contains the values 2 and "letter" in a
format meant to be efficiently read by Xcas.

You can recall the values stored by archivewith the unarchive command,
which takes a file name as argument. If the file “foo” is as above, then

unarchive("foo")

will result in

[2, letter]

If you want to reassign these values to a and bee, you can enter

[a,bee] := unarchive("foo")

4.6. VARIABLES 85

4.6.8 Copying variables: CopyVar

If a variable has a value, such as

a := 1

and you set a second variable to the first variable

b := a

the new variable will have the same value as the first; in this case b will be equal
to 1. If you later give the first variable a new value;

a := 5

the new value will still have the old value, in this case, b will still be equal to 1.
The CopyVar command will copy one variable to another without evaluating

the first variable; the new variable will simply be a copy of the first. With a having
the value of 5, as above, the command

CopyVar(a,c)

will make c a copy of the variable a, so it will have the value 5 also. If you now
change the value of a

a := 10

then the value of c will also change; here, c will now have the value 10.

4.6.9 Assumptions on variables: about additionally assume
purge supposons and or

If you enter

abs(var)

the Xcas will return it unevaluated, since Xcas doesn’t know what type of value
the variable is supposed to represent.

The assume (or supposons) command will let you tell Xcas some proper-
ties of a variable without giving the variable a specific value. For example, if you
enter

assume(var > 0)

then Xcas will assume that var is a positive real number, and so for example

abs(var)

will be evaluated to

var

You can put one or more conditions in the assume command by combining
them with and and or. For example, if you want the variable a to be in [2, 4) ∪
(6,∞), you can enter

86 CHAPTER 4. ENTRY IN XCAS

assume((a >= 2 and a < 4) or a > 6)

If a variable has attached assumptions, then making another assumption with
assume will remove the original assumptions. To add extra assumptions, you can
either use the additionally command or give assume a second argument of
additionally. If you assume that b > 0 with

assume(b > 0)

and you want to add the condition that b < 1, you can either enter

assume(b < 1, additionally)

or

additionally(b < 1)

As well as equalities and inequalities, you can make assumptions about the
domain of a variable. If you want n to represent a positive integer, for example,
you can enter

assume(n, integer)

If you want n to be a positive integer, you can add the condition

additionally(n > 0)

You can use the about command to check the assumptions on a variable; for
the above positive integer n, if you enter

about(n)

you will get

assume[integer,[line[0,+infinity]],[0]]

The first element tells you that n is an integer, the second element tells you that n
is between 0 and +infinity, and the third element tells you that the value 0 is
excluded.

If you assume that a variable is equal to a specific value, such as

assume(c = 2)

then by default the variable c will remain unevaluated in later levels. If you want
an expression involving c to be evaluated, you would need to put the expression
inside the evalf command; if you enter

evalf(cˆ2 + 3)

then you will get

7.0

Right below the assume(c = 2) command line there will be a slider, namely
arrows pointing left and right with the value 2 between them. These can be used
to change the values of c. If you click on the right arrow, the assume(c = 2)
command will transform to

4.6. VARIABLES 87

assume(c=[2.2,-10.0,10.0,0.0])

and the value between the arrows will be 2.2. Also, any later levels where the
variable c is evaluated will be re-evaluated with the value of c now 2.2. The
output to evalf(cˆ2 + 3 will become

7.84

The -10.0 and 10.0 in the assume line represent the smallest and largest values
that c can become using the sliders. You can set them yourself in the assume
command, as well as the increment that the value will change; if you want c to
start with the value 5 and vary between 2 and 8 in increments of 0.05, then you
can enter

assume(c = [5,2,8,0.05])

You can remove any assumptions you have made about a variable with the
purge command; if you enter

purge(a)

then a will no longer have any assumptions made about it. You can remove as-
sumptions from more than one variable at a time;

purge(a,b)

will remove any assumptions about a and b.

4.6.10 Unassigning variables: VARS purge DelVar del restart
rm_a_z rm_all_vars

The VARS() command will list the variables to which you have assigned values
or assumptions. If you begin by entering

a := 1

and

anothervar := 2

then

VARS()

will return

[a, anothervar]

The purge command will clear the values and assumptions you make on vari-
ables. To clear the values and assumptions on a, for example, you can enter
Input:

purge(a)

For TI compatibility, you can also enter
Input:

88 CHAPTER 4. ENTRY IN XCAS

DelVar a

and for Python compatibility, you can also enter Output:

del a

To clear the values and assumptions you have made on all variables you can
use the

restart

or

rm_all_vars()

command. The command rm_a_z will clear the values and assumptions of the
variables with single lowercase letter names. If you have variables names A,B,a,b,myvar,
then after
Input:

rm_a_z()

you will only have the variables named A,B,myvar.

4.7 Functions

4.7.1 Defining functions

You can use the := and => operators to define functions; both

f(x) := xˆ2

and

xˆ2 => f(x)

give the name f to the function which takes a value and returns the square of the
value. If you then enter

f(3)

you will get

9

You can give Xcas a function without a name with the -> operator; the squar-
ing function can be written without a name as

x -> xˆ2

You can use this form of the function to assign it to a name; both

f := x -> xˆ2

and

x -> xˆ2 => f

4.7. FUNCTIONS 89

are alternate ways to define f as the squaring function.
You can similarly define functions of more than one variable. For example,

to define a function which takes the lengths of the two legs of a right triangle and
returns the hypotenuse, you could enter

hypot(a,b) := sqrt(aˆ2 + bˆ2)

or

hypot := (a,b) -> sqrt(aˆ2 + bˆ2)

4.7.2 Defining piecewise defined functions

You can use Xcas’s control structures to define functions not given by a single
simple formula. Notably, you can use the ifte command or ? : operator to
define piecewise-defined functions.

The ifte command takes three arguments; the first argument is a condition,
the second argument tells the command what to return when the condition is true,
and the third argument tells the command what to return when the condition is
false. For example, you could define your own absolute value function with

myabs(x) := ifte(x >= 0, x -1*x)

Afterwards, for example, entering

myabs(-4)

will return

4

However, this will return an error if it can’t evaluate the conditional. For example,
if you enter

myabs(x)

you will get the error

Ifte: Unable to check test Error: Bad Argument Value

The ? : construct behaves similarly to ifte but is structured differently.
Here, the condition comes first, followed by ?, then what to return if the condition
is true, followed by the :, and then what to return if the condition is false. You
could define your absolute value function with

myabs(x) := (x >= 0)? x: -1*x

If you enter

myabs(-4)

you will again get

4

but now if the conditional can’t be evaluated, you won’t get an error.

90 CHAPTER 4. ENTRY IN XCAS

myabs(x)

will return

((x >= 0)? x: -x)

The when and IFTE commands are synonyms for the ? : construct;

(condition)? true-result: false-result

when(condition, true-result, false-result)

and

IFTE(condition, true-result, false-result)

all represent the same expression.
If you want to define a function with several pieces, it may be simpler to use the

piecewise function. The arguments to this function are alternately conditions
and results to return if the condition is true, with the last argument being what to
return if none of the conditions are true. For example, to define the function given
by

f(x) =


−2 if x < −2

3x+ 4 if − 2 ≤ x < −1

1 if − 1 ≤ x < 0

x+ 1 if x ≥ 0

you can enter

f(x) := piecewise(x < -2, -2, x < -1, 3*x+4, x < 0, 1,
x + 1)

4.8 Directories

4.8.1 Working directories

Xcas has a working directory that it uses to store files that it creates; typically the
user’s home directory. You can print the name of the current working directory
with the pwd() command; if you enter

pwd()

you might get something like

/home/username

You can change the working directory with the cd command; if you enter

cd("foo")

or (on a Unix system)

cd("/home/username/foo")

will change to the directory foo, if it exists. Afterwards, any files that you save
from Xcas will be in that directory.

If you have values saved in a file, then you’ll need to be in that working direc-
tory to load it. Note that if you have the same file name in different directories,
then the result of loading the file name will depend on which directory you are in.

4.8. DIRECTORIES 91

4.8.2 Reading files: read load

If you have a function or other Xcas information in a file, you can load it with the
read function. If the file is named myfunction.cxx, then

read("myfunction.cxx")

will load the file, as long as the directory is in the current working directory. If the
file is in a different directory, you can still load it by giving the path to the file,

read("/path/to/file/myfunction.cxx")

While read can be used to load files containing Xcas functions, which typ-
ically end in .cxx, if you want to load a saved session you should use the load
function;

load("mysession.cas")

4.8.3 Internal directories: NewFold SetFold GetFold DelFold
VARS

You can create a directory that isn’t actually on your hard drive but is treated like
one from Xcas. You can create such an internal directory with the NewFold
command, which takes a variable name as an argument. If you enter

NewFold(MyIntDir)

then there will be a new internal directory named MyIntDir. Internal directories
will also be listed with the VARS() command. To actually use this directory, you’ll
have to use the SetFold command;

SetFold(MyIntDir)

Finally, we can print out the internal directory that we are in with the GetFold
command; entering

GetFold()

will result in

MyIntDir

Afterwards, if this directory is empty, you can delete it with the DelFold com-
mand;

DelFold(MyIntDir)

92 CHAPTER 4. ENTRY IN XCAS

Chapter 5

The CAS functions

5.1 Symbolic constants : e pi infinity inf i euler_gamma

e (or %e) is the number exp(1);
pi (or %pi) is the number π.
infinity is unsigned∞.
+infinity or inf is +∞.
-infinity or -inf is −∞.
i (or %i) is the complex number i.
euler_gamma is Euler’s constant γ; namely, limit(sum(1/k,k,1,n)-ln(n),n,+infinity)

5.2 Booleans

5.2.1 The values of a boolean : true false

The value of a boolean is true or false.
The synonyms are :
true or TRUE or 1,
false or FALSE or 0.
Tests or conditions are boolean functions.

5.2.2 Tests : == != > >= < =<

==, !=, >, >=, <, =< are infixed operators.
a==b tests the equality between a and b and returns 1 if a is equal to b and 0
otherwise.
a!=b returns 1 if a and b are different and 0 otherwise.
a>=b returns 1 if a is greater than or equal to b and 0 otherwise.
a>b returns 1 if a is strictly greater than b and 0 otherwise.
a<=b returns 1 if a is less than or equal to b and 0 otherwise.
a<b returns 1 if a is strictly less than b and 0 otherwise.
To write an algebraic function having the same result as an if...then...else,
we use the boolean function ifte.
For example :

f(x):=ifte(x>0,true,false)

93

94 CHAPTER 5. THE CAS FUNCTIONS

defines the boolean function f such that f(x)= true if x ∈ (0; +∞[and f(x)=false
if x ∈ (−∞; 0].
Input :

f(0)==0

Output :

1

Look out !
a=b is not a boolean !!!!
a==b is a boolean.

5.2.3 Boolean operators : or xor and not

or (or ||), xor, and (or &&) are infixed operators.
not is a prefixed operators.
If a and b are two booleans :
(a or b) (a || b) returns 0 (or false) if a and b are equal to 0 and returns
1 (or true) otherwise.
(a xor b) returns 1 if a is equal to 1 and b is equal to 0 or if a is equal to 0 and
b is equal to 1 and returns 0 if a and b are equal to 0 or if a and b are equal to 1 (it
is the "exclusive or").
(a and b) or (a && b) returns 1 (or true) if a and b are equal to 1 and 0
(or false) otherwise.
not(a) returns 1 (or true) if a is equal to 0 (or false), and 0 (or false) if
a is equal to 1 (or true).
Input :

1>=0 or 1<0

Output :

1

Input :

1>=0 xor 1>0

Output :

0

Input :

1>=0 and 1>0

Output :

1

Input :

not(0==0)

Output :

0

5.2. BOOLEANS 95

5.2.4 Transform a boolean expression to a list : exp2list

exp2list returns the list [expr0,expr1]when the argument is (var=expr0)
or (var=expr1).
exp2list is used in TI mode for easier processing of the answer to a solve
command.
Input :

exp2list((x=2) or (x=0))

Output :

[2,0]

Input :

exp2list((x>0) or (x<2))

Output :

[0,2]

In TI mode input :

exp2list(solve((x-1)*(x-2)))

Output :

[1,2]

5.2.5 Transform a list into a boolean expression: list2exp

The list2exp command is the inverse of exp2list. It takes two arguments; a
list [val1, val2, ...] of values and a variable name var.
list2exp returns the boolean expression ((var = val1) or (var = val2)
or ...).
Input:

list2exp([0,1],a)

Output:

((a=0) or (a=1))

Input:

list2exp(solve(xˆ2-1=0,x),x)

Output:

((x=-1) or (x=1))

Alternatively, each element of the list could be a list with n values, followed by
a list of n variables. The output would be boolean expressions of the form ((var1
= val1) and (var2 = val2) ...) for each list of n values, combined
with ors. Input:

list2exp ([[3,9], [-1,1]], [x, y])

Output:

((((x=3) and (y=9))) or (((x=-1) and (y=1))))

96 CHAPTER 5. THE CAS FUNCTIONS

5.2.6 Evaluate booleans : evalb

Inside Maple, evalb evaluates an boolean expression. Since Xcas evaluates
booleans automatically, evalb is only here for compatibility and is equivalent
to eval
Input :

evalb(sqrt(2)>1.41)

or :

sqrt(2)>1.41

Output :

1

Input :

evalb(sqrt(2)>1.42)

or :

sqrt(2)>1.42

Output :

0

5.3 Bitwise operators

5.3.1 Operators bitor bitxor bitand

The integers may be written using hexadecimal notation 0x... for example 0x1f
represents 16+15=31 in decimal. Integers may also be output in hexadecimal no-
tation (click on the red CAS status button and select Base (Integers)).
bitor is the logical inclusive or (bitwise).
Input :

bitor(0x12,0x38)

or :

bitor(18,56)

Output :

58

because :
18 is written 0x12 in base 16 or 0b010010 in base 2,
56 is written 0x38 in base 16 or 0b111000 in base 2,
hence bitor(18,56) is 0b111010 in base 2 and so is equal to 58.

bitxor is the logical exclusive or (bitwise).
Input :

5.3. BITWISE OPERATORS 97

bitxor(0x12,0x38)

or :

bitxor(18,56)

Output :

42

because :
18 is written 0x12 in base 16 and 0b010010 in base 2,
56 is written 0x38 in base 16 and 0b111000 in base 2,
bitxor(18,56) is written 0b101010 in base 2 and so, is equal to 42.

bitand is the logical and (bitwise).
Input :

bitand(0x12,0x38)

or :

bitand(18,56)

Output :

16

because :
18 is written 0x12 in base 16 and 0b010010 in base 2,
56 is written 0x38 in base 16 and 0b111000 in base 2,
bitand(18,56) is written 0b010000 in base 2 and so is equal to 16.

5.3.2 Bitwise Hamming distance : hamdist

The Hamming distance is the number of differences of the bits of the two argu-
ments.
Input :

hamdist(0x12,0x38)

or :

hamdist(18,56)

Output :

3

because :
18 is written 0x12 in base 16 and 0b010010 in base 2,
56 is written 0x38 in base 16 and 0b111000 in base 2,
hamdist(18,56) is equal to 1+0+1+0+1+0 and so is equal to 3.

98 CHAPTER 5. THE CAS FUNCTIONS

5.4 Strings

5.4.1 Character and string : "

" is used to delimit a string. A character is a string of length one.
Do not confuse "with ’ (or quote) which is used to avoid evaluation of an expres-
sion . For example, "a" returns a string of one character but ’a’ or quote(a)
returns the variable a unevaluated.

When a string is input in a command line, it is evaluated to itself hence the
output is the same string. Use + to concatenate two strings or a string and another
object.
Example :
Input :

"Hello"

"Hello" is the input and also the output.
Input :

"Hello"+", how are you?"

Output :

"Hello, how are you?"

Index notation is used to get the n-th character of a string, (as for lists). Indices
begin at 0 in Xcas mode, 1 in other modes.
Example :
Input :

"Hello"[1]

Output :

"e"

5.4.2 The newline character: \n

A newline can be inserted into a string with \n.
Input:

Hello\nHow are you?

Output:

Hello
How are you?

5.4.3 The length of a string: size length

The size (or length) command can take a string as an argument. It will return
the length of the string.
Input:

size("hello")

Output:

5

5.4. STRINGS 99

5.4.4 The left and right parts of a string: left right

The left command takes two arguments, a string s and a non-negative integer n.
left returns the first n characters of the string.
Input:

left("hello",3)

Output:

"hel"

Similarly, the right command returns the last n characters.

Input:

right("hello",4)

Output:

"ello"

5.4.5 First character, middle and end of a string : head mid tail

• head(s) returns the first character of the string s.
Input :

head("Hello")

Output :

"H"

• mid(s,p,q) returns the part of the string s of size q beginning with the
character at index p.
Remember that the first index is 0 in Xcas mode.
Input :

mid("Hello",1,3)

Output :

"ell"

• tail(s) returns the string s without its first character.
Input :

tail("Hello")

Output :

"ello"

100 CHAPTER 5. THE CAS FUNCTIONS

5.4.6 Concatenation of a sequence of words : cumSum

cumSum works on strings like it does on expressions by doing partial concatena-
tion.
cumSum takes as argument a list of strings.
cumSum returns a list of strings where the element of index k is the concatenation
of the strings with indices 0 to k .
Input :

cumSum("Hello, ","is ","that ","you?")

Output :

"Hello, ","Hello, is ","Hello, is that ","Hello, is
that you?

5.4.7 ASCII code of a character : ord

ord takes as argument a string s (resp. a list l of strings).
ord returns the ASCII code of the first character of s (resp. the list of the ASCII
codes of the first character of the elements of l).
Input :

ord("a")

Output :

97

Input :

ord("abcd")

Output :

97

Input :

ord(["abcd","cde"])

Output :

[97,99]

Input :

ord(["a","b","c","d"])

Output :

[97,98,99,100]

5.4. STRINGS 101

5.4.8 ASCII code of a string : asc

asc takes as argument a string s.
asc returns the list of the ASCII codes of the characters of s.
Input :

asc("abcd")

Output :

[97,98,99,100]

Input :

asc("a")

Output :

[97]

5.4.9 String defined by the ASCII codes of its characters : char

char takes as argument a list l of ASCII codes.
char returns the string whose characters have as ASCII codes the elements of the
list l.
Input :

char([97,98,99,100])

Output :

"abcd"

Input :

char(97)

Output :

"a"

Input :

char(353)

Output :

"a"

because:
353− 256 = 97.

102 CHAPTER 5. THE CAS FUNCTIONS

5.4.10 Find a character in a string : inString

inString takes two arguments : a string S and a character c.
inString tests if the character c is in the string S.
inString returns the index of its first occurrence or -1 if c is not in S.
Input :

inString("abcded","d")

Output :

3

Input :

inString("abcd","e")

Output :

-1

5.4.11 Concat objects into a string : cat

cat takes as argument a sequence of objects.
cat concatenates these objects into a string.
Input :

cat("abcd",3,"d")

Output :

"abcd3d"

Input :

c:=5

cat("abcd",c,"e")

Output :

"abcd5e"

Input :

purge(c)

cat(15,c,3)

Output :

"15c3"

5.4. STRINGS 103

5.4.12 Add an object to a string : +

+ is an infixed operator (resp. ’+’ is a prefixed operator).
If + (resp. ’+’) takes as argument a string (resp. a sequence of objects with a
string as first or second argument), the result is the concatenation of these objects
into a string.
warning
+ is infixed and ’+’ is prefixed.
Input :

’+’("abcd",3,"d")

Output :

"abcd"+3+"d"

Output :

"abcd3d"

Input :

c:=5

Then input:

"abcd"+c+"e"

or :

’+’("abcd",c,"d")

Output :

"abcd5e"

5.4.13 Transform an integer into a string : cat +

Use cat with the integer as argument, or add the integer to an empty string
Input :

""+123

or :

cat(123)

Output :

"123"

104 CHAPTER 5. THE CAS FUNCTIONS

5.4.14 Transform a string into a number : expr

Use expr, the parser with a string representing a number.

• For integers, enter the string representing the integer without leading 0 for
basis 10, with prefix 0x for basis 16, 0 for basis 8 or 0b for basis 2. Input :

expr("123")

Output :

123

Input :

expr("0123")

Output :

83

because :
1 ∗ 82 + 2 ∗ 8 + 3 = 83
Input :

expr("0x12f")

Output :

303

Because : 1 ∗ 162 + 2 ∗ 16 + 15 = 303

• For decimal numbers, use a string with a . or e inside.
Input :

expr("123.4567")

Output :

123.4567

Input :

expr("123e-5")

Output :

0.00123

5.5. WRITE AN INTEGER IN BASE B: CONVERT 105

• Note that expr more generally transforms a string into a command if the
command exists.
Input :

expr("a:=1")

Output :

1

Then, input :

a

Output :

1

5.5 Write an integer in base b: convert

convert or convertir can do different kind of conversions depending on the
option given as the second argument.

To convert an integer n into the list of its coefficients in base b, the option is
base. The arguments of convert or convertir are an integer n, base and
b, the value of the basis.
convert or convertir returns the list of coefficients in a b basis of the integer
n.
Input :

convert(123,base,8)

Output :

[3,7,1]

To check the answer, input expr("0173") or horner(revlist([3,7,1]),8)
or convert([3,7,1],base,8), the output is 123
Input :

convert(142,base,12)

Output :

[10,11]

To convert the list of coefficients of an integer n in base b, the option is also
base. convert or convertir returns the integer n.
Input :

convert([3,7,1],base,8)

or :

106 CHAPTER 5. THE CAS FUNCTIONS

horner(revlist([3,7,1]),8)

Output :

123

Input :

convert([10,11],base,12)

or :

horner(revlist([10,11]),12)

Output :

142

5.6 Integers (and Gaussian Integers)

For all functions in this section, you can use Gaussian integers (numbers of the
form a+ ib, where a and b are in Z) in place of integers.

5.6.1 The factorial : factorial

Xcas can manage integers with unlimited precision, such as the following:
Input :

factorial(100)

Output :

9332621544394415268169923885626670049071596826438162
1468592963895217599993229915608941463976156518286253
697920827223758251185210916864000000000000000000000000

5.6.2 GCD : gcd igcd

gcd or igcd denotes the gcd (greatest common divisor) of several integers (for
polynomials, see also 5.30.7).
gcd or igcd returns the GCD of integers.
Input :

gcd(18,15)

Output :

3

Input :

gcd(18,15,21,36)

Output :

5.6. INTEGERS (AND GAUSSIAN INTEGERS) 107

3

Input :

gcd([18,15,21,36])

Output :

3

We can also put as parameters two lists of same size (or a matrix with 2 rows), in
this case gcd returns the greatest common divisor of the elements with same index
(or in the same column).
Input :

gcd([6,10,12],[21,5,8])

or :

gcd([[6,10,12],[21,5,8]])

Output :

[3,5,4]

An example
Find the greatest common divisor of 4n+ 1 and 5n+ 3 when n ∈ N.
Input :

f(n):=gcd(4*n+1,5*n+3)

Then, input :

essai(n):={
local j,a,L;
L:=NULL;
for (j:=-n;j<n;j++) {

a:=f(j);
if (a!=1) {
L:=L,[j,a];

}
}
return L;

}

Then, input :

essai(20)

Output :

[-16,7],[-9,7],[-2,7],[5,7],[12,7],[19,7]

So we now have to prove that :
If n 6= 5+k∗7 (for k ∈ Z), 4n+1 and 5n+3 are mutually prime, and n = 5+k∗7
(for k ∈ Z), then the greatest common divisor of 4n+ 1 and 5n+ 3 is 7.

108 CHAPTER 5. THE CAS FUNCTIONS

5.6.3 GCD : Gcd

Gcd is the inert form of gcd. See the section 5.30.7 for polynomials with coeffi-
cients in Z/pZ for using this instruction.
Input :

Gcd(18,15)

Output :

gcd(18,15)

5.6.4 GCD of a list of integers : lgcd

lgcd has a list of integers (or of a list of polynomials) as argument.
lgcd returns the gcd of all integers of the list (or the gcd of all polynomials of
the list).
Input :

lgcd([18,15,21,36])

Output :

3

Remark
lgcd does not accept two lists (even if they have the same size) as arguments.

5.6.5 The least common multiple : lcm

lcm returns the least common multiple of two integers (or of two polynomials, see
also 5.30.10).
Input :

lcm(18,15)

Output :

90

5.6.6 Decomposition into prime factors : ifactor

ifactor has an integer as parameter.
ifactor decomposes an integer into its prime factors.
Input :

ifactor(90)

Output :

2*3^2*5

Input :

ifactor(-90)

Output :

(-1)*2*3^2*5

5.6. INTEGERS (AND GAUSSIAN INTEGERS) 109

5.6.7 List of prime factors : ifactors

ifactors has an integer (or a list of integers) as parameter.
ifactors decomposes the integer (or the integers of the list) into prime factors,
but the result is given as a list (or a list of lists) in which each prime factor is
followed by its multiplicity.
Input :

ifactors(90)

Output :

[2,1,3,2,5,1]

Input :

ifactors(-90)

Output :

[-1,1,2,1,3,2,5,1]

Input :

ifactor([36,52])

Output :

[[2,2,3,2],[2,2,13,1]]

5.6.8 Matrix of factors : maple_ifactors

maple_ifactors has an integer n (or a list of integers) as parameter.
maple_ifactors decomposes the integer (or the integers of the list) into prime
factors, but the output follows the Maple syntax :
it is a list with +1 or -1 (for the sign) and a matrix with 2 columns and where the
lines are the prime factors and their multiplicity (or a list of lists...).
Input :

maple_ifactors(90)

Output :

[1,[[2,1],[3,2],[5,1]]]

Input :

maple_ifactor([36,52])

Output :

[[1,[[2,2],[3,2]]],[1,[[2,2],[13,1]]]]

110 CHAPTER 5. THE CAS FUNCTIONS

5.6.9 The divisors of a number : idivis divisors

idivis or divisors gives the list of the divisors of a number (or of a list of
numbers).
Input :

idivis(36)

Output :

[1,2,4,3,6,12,9,18,36]

Input :

idivis([36,22])

Output :

[[1,2,4,3,6,12,9,18,36],[1,2,11,22]]

5.6.10 The integer Euclidean quotient : iquo intDiv div

iquo (or intDiv) returns the integer quotient q of the Euclidean division of two
integers a and b given as arguments. (a = b ∗ q + r with 0 ≤ r < b).
For Gaussian integers, we choose q so that b ∗ q is as near by a as possible and it
can be proved that r may be chosen so that |r|2 ≤ |b|2/2.
Input :

iquo(148,5)

Output :

29

iquo works with integers or with Gaussian integers.
Input :

iquo(factorial(148),factorial(145)+2)

Output :

3176375

Input :

iquo(25+12*i,5+7*i)

Output :

3-2*i

Here a− b ∗ q = −4 + i and | − 4 + i|2 = 17 < |5 + 7 ∗ i|2/2 = 74/2 = 37
The infixed version of this command is div.

Input:

148 div 5

Output:

29

5.6. INTEGERS (AND GAUSSIAN INTEGERS) 111

5.6.11 The integer Euclidean remainder : irem remain smod mods
mod %

irem (or remain) returns the integer remainder r from the Euclidean division of
two integers a and b given as arguments (a = b ∗ q + r with 0 ≤ r < b).
For Gaussian integers, we choose q so that b ∗ q is as near to a as possible and it
can be proved that r may be chosen so that |r|2 ≤ |b|2/2.
Input :

irem(148,5)

Output :

3

irem works with long integers or with Gaussian integers.
Example :

irem(factorial(148),factorial(45)+2)

Output :

111615339728229933018338917803008301992120942047239639312

Another example

irem(25+12*i,5+7*i)

Output :

-4+i

Here a− b ∗ q = −4 + i and | − 4 + i|2 = 17 < |5 + 7 ∗ i|2/2 = 74/2 = 37
smod or mods is a prefixed function and has two integers a and b as arguments.

smod or mods returns the symmetric remainder s of the Euclidean division of the
arguments a and b (a = b ∗ q + s with −b/2 < s ≤ b/2).
Input :

smod(148,5)

Output :

-2

mod (or %) is an infixed function and has two integers a and b as arguments.
mod (or %) returns r%b of Z/bZ where r is the remainder of the Euclidean division
of the arguments a and b.
Input :

148 mod 5

or :

148 % 5

Output :

3 % 5

Note that the answer 3 % 5 is not an integer (3) but an element of Z/5Z (see 5.36
to have the possible operations in Z/5Z).

112 CHAPTER 5. THE CAS FUNCTIONS

5.6.12 Euclidean quotient and euclidean remainder of two integers :
iquorem

iquorem returns the list of the quotient q and the remainder r of the Euclidean
division between two integers a and b given as arguments (a = b ∗ q + r with
0 ≤ r < b).
Input :

iquorem(148,5)

Output :

[29,3]

5.6.13 Test of evenness : even

even takes as argument an integer n.
even returns 1 if n is even and returns 0 if n is odd.
Input :

even(148)

Output :

1

Input :

even(149)

Output :

0

5.6.14 Test of oddness : odd

odd takes as argument an integer n.
odd returns 1 if n is odd and returns 0 if n is even.
Input :

odd(148)

Output :

0

Input :

odd(149)

Output :

1

5.6. INTEGERS (AND GAUSSIAN INTEGERS) 113

5.6.15 Test of pseudo-primality : is_pseudoprime

If is_pseudoprime(n) returns 2 (true), then n is prime.
If it returns 1, then n is pseudo-prime (most probably prime).
If it returns 0, then n is not prime.
DEFINITION: For numbers less than 1014, pseudo-prime and prime are equivalent.
But for numbers greater than 1014, a pseudo-prime is a number with a large prob-
ability of being prime (cf. Rabin’s Algorithm and Miller-Rabin’s Algorithm in the
Algorithmic part (menu Help->Manuals->Programming)).
Input :

is_pseudoprime(100003)

Output :

2

Input :

is_pseudoprime(9856989898997)

Output :

2

Input :

is_pseudoprime(14)

Output :

0

Input :

is_pseudoprime(9856989898997789789)

Output :

1

5.6.16 Test of primality : is_prime isprime isPrime

is_prime(n) returns 1 (true) if n is prime and 0 (false) if n is not prime.
isprime returns true or false.
Use the command pari("isprime",n,1) to have a primality certificate (see
the documentation PARI/GP with the menu Help->Manuals->PARI-GP) and
pari("isprime",n,2) to use the APRCL test.

Input :

is_prime(100003)

Output :

1

114 CHAPTER 5. THE CAS FUNCTIONS

Input :

isprime(100003)

Output :

true

Input :

is_prime(98569898989987)

Output :

1

Input :

is_prime(14)

Output :

0

Input :

isprime(14)

Output :

false

Input :

pari("isprime",9856989898997789789,1)

This returns the coefficients giving the proof of primality by the p − 1 Selfridge-
Pocklington-Lehmer test :

[[2,2,1],[19,2,1],[941,2,1],[1873,2,1],[94907,2,1]]

Input :

isprime(9856989898997789789)

Output :

true

5.6.17 The smallest pseudo-prime greater than n : nextprime

nextprime(n) returns the smallest pseudo-prime (or prime) greater than n.
Input :

nextprime(75)

Output :

79

5.6. INTEGERS (AND GAUSSIAN INTEGERS) 115

5.6.18 The greatest pseudo-prime less than n : prevprime

prevprime(n) returns the greatest pseudo-prime (or prime) less than n.
Input :

prevprime(75)

Output :

73

5.6.19 The n-th pseudo-prime number : ithprime

ithprime(n) returns the n-th pseudo-prime number.
Input :

ithprime(75)

Output :

379

Input :

ithprime(k) $ (k=1..20)

Output :

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71

5.6.20 The number of pseudo-primes less than or equal to n: nprimes

nprimes(n) returns the number of pseudo-primes (or primes) less than or equal
to n.
Input :

nprimes(5)

Output :

3

Input :

nprimes(10)

Output :

4

116 CHAPTER 5. THE CAS FUNCTIONS

5.6.21 Bézout’s Identity : iegcd igcdex

iegcd(a,b) or igcdex(a,b) returns the coefficients of the Bézout’s Identity
for two integers given as arguments.
iegcd(a,b) or igcdex(a,b) returns [u,v,d] such that au+bv=d and
d=gcd(a,b).
Input :

iegcd(48,30)

Output :

[2,-3,6]

In other words :
2 · 48 + (−3) · 30 = 6

5.6.22 Solving au+bv=c in Z: iabcuv

iabcuv(a,b,c) returns [u,v] so that au+bv=c.
c must be a multiple of gcd(a,b) for the existence of a solution.
Input :

iabcuv(48,30,18)

Output :

[6,-9]

5.6.23 Chinese remainders : ichinrem ichrem

ichinrem([a,p],[b,q]) or ichrem([a,p],[b,q]) returns a list [c,lcm(p,q)]
of 2 integers.
The first number c is such that

∀k ∈ Z, d = c+ k × lcm(p, q)

has the properties

d = a (mod p), d = b (mod q)

If p and q are coprime, a solution d always exists and all the solutions are congru-
ent modulo p*q.
Examples :
Solve : {

x = 3 (mod 5)
x = 9 (mod 13)

Input :

ichinrem([3,5],[9,13])

or :

ichrem([3,5],[9,13])

5.6. INTEGERS (AND GAUSSIAN INTEGERS) 117

Output :

[-17,65]

so x=-17 (mod 65)
We can also input :

ichrem(3%5,9%13)

Output :

-17%65

Solve : 
x = 3 (mod 5)
x = 4 (mod 7)
x = 1 (mod 9)

First input :

tmp:=ichinrem([3,5],[4,7])

or :

tmp:=ichrem([3,5],[4,7])

Output :

[-17,35]

Then input :

ichinrem([1,9],tmp)

or :

ichrem([1,9],tmp)

Output :

[-17,315]

hence x=-17 (mod 315)
Alternative input:

ichinrem([3%5,4%7,1%9])

Output :

-17%315

Remark
ichrem (orichinrem)may be used to find the coefficients of a polynomial whose
equivalence classes are known modulo several integers, for example find ax + b
modulo 315 = 5× 7× 9 under the assumptions:

a = 3 (mod 5)
a = 4 (mod 7)
a = 1 (mod 9)

,


b = 1 (mod 5)
b = 2 (mod 7)
b = 3 (mod 9)

Input :

118 CHAPTER 5. THE CAS FUNCTIONS

ichrem((3x+1)%5,(4x+2)%7,(x+3)%9)

Output :

(-17%315× x+156%315

hence a=-17 (mod 315) and b=156 (mod 315).

5.6.24 Chinese remainders for lists of integers : chrem

chrem takes as argument 2 lists of integers of the same size.
chrem returns a list of 2 integers.
For example, chrem([a,b,c],[p,q,r]) returns the list [x,lcm(p,q,r)]
where x=a mod p and x=b mod q and x=c mod r.
A solution x always exists if p, q, r are mutually primes, and all the solutions
are equal modulo p*q*r.
BE CAREFUL with the order of the parameters, indeed :
chrem([a,b],[p,q])=ichrem([a,p],[b,q])=
ichinrem([a,p],[b,q])
Examples :
Solve : {

x = 3 (mod 5)
x = 9 (mod 13)

Input :

chrem([3,9],[5,13])

Output :

[-17,65]

so, x=-17 (mod 65)
Solve : 

x = 3 (mod 5)
x = 4 (mod 6)
x = 1 (mod 9)

Input :

chrem([3,4,1],[5,6,9])

Output :

[28,90]

so x=28 (mod 90)
Remark
chrem may be used to find the coefficients of a polynomial whose equivalence
classes are known modulo several integers, for example find ax+ b modulo 315 =
5× 7× 9 under the assumptions:

a = 3 (mod 5)
a = 4 (mod 7)
a = 1 (mod 9)

,


b = 1 (mod 5)
b = 2 (mod 7)
b = 3 (mod 9)

Input :

5.6. INTEGERS (AND GAUSSIAN INTEGERS) 119

chrem([3x+1,4x+2,x+3],[5,7,9])

Output :

[-17x+156,315]

hence, a=-17 (mod 315) and b=156 (mod 315).

5.6.25 Solving a2 + b2 = p in Z : pa2b2

pa2b2 decompose a prime integer p congruent to 1 modulo 4, as a sum of squares
: p = a2 + b2. The result is the list [a,b].
Input :

pa2b2(17)

Output :

[4,1]

indeed 17 = 42 + 12

5.6.26 The Euler indicatrix : euler phi

euler (or phi) returns the Euler indicatrix for a integer.
euler(n) (or phi(n)) is equal to the number of integers less than n and prime
with n.
Input :

euler(21)

Output :

12

In other words E={2,4,5,7,8,10,11,13,15,16,17,19} is the set of integers less than
21 and coprime with 21. There are 12 members in this set, hence Cardinal(E)=12.

Euler has introduced this function to generalize the little Fermat theorem:
If a and n are mutually prime then aeuler(n) = 1 mod n

5.6.27 Legendre symbol : legendre_symbol

If n is prime, we define the Legendre symbol of a written
(
a
n

)
by :

(a
n

)
=


0 if a = 0 mod n
1 if a 6= 0 mod n and if a = b2 mod n
−1 if a 6= 0 mod n and if a 6= b2 mod n

Some properties

• If n is prime :

a
n−1
2 =

(a
n

)
mod n

120 CHAPTER 5. THE CAS FUNCTIONS

• (
p

q

)
.

(
q

p

)
= (−1)

p−1
2 .(−1)

q−1
2 if p and q are odd and positive(

2

p

)
= (−1)

p2−1
8(

−1

p

)
= (−1)

p−1
2

legendre_symbol takes two arguments a and n and returns the Legendre sym-
bol
(
a
n

)
.

Input :

legendre_symbol(26,17)

Output :

1

Input :

legendre_symbol(27,17)

Output :

-1

Input :

legendre_symbol(34,17)

Output :

0

5.6.28 Jacobi symbol : jacobi_symbol

If n is not prime, the Jacobi symbol of a, denoted as
(
a
n

)
, is defined from the

Legendre symbol and from the decomposition of n into prime factors. Let

n = pα1
1 ..pαkk

where pj is prime and αj is an integer for j = 1..k. The Jacobi symbol of a is
defined by : (a

n

)
=

(
a

p1

)α1

...

(
a

pk

)αk
jacobi_symbol takes two arguments a and n, and it returns the Jacobi symbol(
a
n

)
.

Input :

jacobi_symbol(25,12)

Output :

5.7. COMBINATORIAL ANALYSIS 121

1

Input :

jacobi_symbol(35,12)

Output :

-1

Input :

jacobi_symbol(33,12)

Output :

0

5.6.29 Listing all compositions of an integer into k parts : icomp

icomp accepts two or three arguments : a positive integer n, a positive integer
k not larger than n and optionally zeros=true or zeros=false. The return
value is the list of all compostions of n into k parts. Each composition is a list
of nonnegative integers which sum up to n. If the option zeros is set to true
(which is the default), a part can have zero value. Else, each part has nonzero
(positive) value.

For example, input :

icomp(4,2)

Output :

[[4,0],[3,1],[2,2],[1,3],[0,4]]

Input :

icomp(6,3,zeros=false)

Output :

[[4,1,1],[3,2,1],[2,3,1],[1,4,1],[3,1,2],
[2,2,2],[1,3,2],[2,1,3],[1,2,3],[1,1,4]]

5.7 Combinatorial analysis

5.7.1 Factorial : factorial !

factorial (prefix) or ! (postfix) takes as argument an integer n.
factorial(n) or n! returns n!.
Input :

factorial(10)

or

10!

Output :

3628800

122 CHAPTER 5. THE CAS FUNCTIONS

5.7.2 Binomial coefficients : binomial comb nCr

comb or nCr or binomial takes as argument two integers n and p.
comb(n,p) or nCr(n,p) or binomial(n,p) returns

(
n
p

)
= Cpn.

Input :

comb(5,2)

Output :

10

Remark
binomial (unlike comb, nCr) may have a third real argument, in this case
binomial(n,p,a) returns

(
n
p

)
ap(1− a)n−p.

5.7.3 Permutations : perm nPr

perm or nPr takes as arguments two integers n and p.
perm(n,p) or nPr(n,p) returns P pn .
Input :

perm(5,2)

Output :

20

5.7.4 Random integers : rand

rand takes as argument an integer n or no argument.

• rand(n) returns a random integer p such that 0 ≤ p < n.
Input :

rand(10)

Output for example :

8

• rand() returns a random integer p such that 0 ≤ p < 231 (or on 64 bits
architecture 0 ≤ p < 263).
Input :

rand()

Output for example :

846930886

5.7. COMBINATORIAL ANALYSIS 123

5.7.5 Wilf-Zeilberger pairs: wz_certificate

The wz_certificate takes four arguments; an expression U(n,k) in two
variables, an expression res(k) in one of the variables, the variable n and the
variable k.
wz_certificate returns the Wilf-Zeilberger certificate R(n,k) for the iden-
tity sum(U(n,k),k=-infinity..+infinity) = res(n).

The Wilf-Zeilberger certificate R(n, k) is used to prove the identity∑
k

U(n, k) = Cres(n)

for some constant C (typically 1) whose value can be determined by evaluating
both sides for some value of k. To see how that works, note that the above identity
is equivalent to ∑

k

F (n, k)

being constant, where F (n, k) = U(n, k)/res(n). The Wilf-Zeilberger certificate
is a rational function R(n, k) that make F (n, k) and G(n, k) = R(n, k)F (n, k) a
Wilf-Zeilberger pair, meaning

• F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k) for integers n ≥ 0, k.

• limk→±∞G(n, k) = 0 for each n ≥ 0.

To see how this helps, adding the first equation from k = −M to k = N gives
us
∑N

k=−M (F (n+ 1, k)− F (n, k)) =
∑

k=−M N(G(n, k + 1)−G(n, k)). The
right-hand side is a telescoping series, and so the equality can be written

N∑
k=−M

F (n+ 1, k)−
N∑

k=−M
F (n, k) = G(n,N + 1)−G(n,−M).

Taking the limit as N,M →∞ and using the second condition of Wilf-Zeilberger
pairs, we get ∑

k

F (n+ 1, k) =
∑
k

F (n, k)

and so
∑

k F (n, k) does not depend on n, and so is a constant.
For example, to show

∑
k

(−1)k
(
n

k

)(
2k

k

)
4n−k =

(
2n

n

)
Input:

wz_certificate((-1)ˆk*comb(n,k)*comb(2k,k)*4ˆ(n-k),comb(2n,n),n,k)

Output:

(2*k-1)/(2*n+1)

124 CHAPTER 5. THE CAS FUNCTIONS

This means that R(n, k) = (2k − 1)/(2n + 1) is a Wilf-Zeilberger certificate; in
other words F (n, k) = (−1)k

(
n
k

)(
2k
k

)
4n−k/

(
2n
n

)
and G(n, k) = R(n, k)F (n, k)

are a Wilf-Zeilberger pair. So
∑

k F (n, k) is a constant. Since F (0, 0) = 1 and
F (0, k) = 0 for k > 0,

∑
k F (0, k) = 1 and so

∑
k F (n, k) = 1 for all n, showing

∑
k

(−1)k
(
n

k

)(
2k

k

)
4n−k =

(
2n

n

)
.

5.8 Rationals

5.8.1 Transform a floating point number into a rational : exact float2rational

float2rational or exact takes as argument a floating point number d and
returns a rational number q close to d such that abs(d-q)<epsilon. epsilon
is defined in the cas configuration (Cfg menu) or with the cas_setup com-
mand.
Input :

float2rational(0.3670520231)

Output when epsilon=1e-10:

127/346

Input :

evalf(363/28)

Output :

12.9642857143

Input :

float2rational(12.9642857143)

Output :

363/28

If two representations are mixed, for example :

1/2+0.7

the rational is converted to a float, output :

1.2

Input :

1/2+float2rational(0.7)

Output :

6/5

5.8. RATIONALS 125

5.8.2 Integer and fractional part : propfrac propFrac

propfrac(A/B) or propFrac(A/B) returns

q +
r

b
with 0 ≤ r < b

if
A

B
=
a

b
with gcd(a, b) = 1 and a = bq + r.

For rational fractions, cf. 5.33.8.
Input :

propfrac(42/15)

Output :

2+4/5

Input :

propfrac(43/12)

Output :

3+7/12

5.8.3 Numerator of a fraction after simplification : numergetNum

numer or getNum takes as argument a fraction and returns the numerator of this
fraction after simplification (for rational fractions, see 5.33.2).
Input :

numer(42/12)

or :

getNum(42/12)

Output :

7

To avoid simplifications, the argument must be quoted (for rational fractions see
5.33.1).
Input :

numer(’42/12’)

or :

getNum(’42/12’)

Output :

42

126 CHAPTER 5. THE CAS FUNCTIONS

5.8.4 Denominator of a fraction after simplification : denom getDenom

denom or getDenom takes as argument a fraction and returns the denominator of
this fraction after simplification (for rational fractions see 5.33.4).
Input :

denom(42/12)

or :

getDenom(42/12)

Output :

2

To avoid simplifications, the argument must be quoted (for rational fractions see
5.33.3).
Input :

denom(’42/12’)

or :

getDenom(’42/12’)

Output :

12

5.8.5 Numerator and denominator of a fraction : f2nd fxnd

f2nd (or fxnd) takes as argument a fraction and returns the list of the numera-
tor and denominator of this fraction after simplification (for rational fractions see
5.33.5).
Input :

f2nd(42/12)

Output :

[7,2]

5.8.6 Simplification of a pair of integers : simp2

simp2 takes as argument two integers or a list of two integers which represent a
fraction (for two polynomials see 5.33.6).
simp2 returns the list of the numerator and the denominator of an irreducible
representation of this fraction (i.e. after simplification).
Input :

simp2(18,15)

Output :

[6,5]

Input :

simp2([42,12])

Output :

[7,2]

5.8. RATIONALS 127

5.8.7 Continued fraction representation of a real : dfc

dfc takes as argument a real or a rational or a floating point number a and an
integer n (or a real epsilon).
dfc returns the list of the continued fraction representation of a of order n (or
with precision epsilon i.e. the continued fraction representation which approx-
imates a or evalf(a) with precision epsilon, by default epsilon is the
value of the epsilon defined in the cas configuration with the menu CfgICas
Configuration).
convert with the option confrac has a similar functionality: in that case the
value of epsilon is the value of the epsilon defined in the cas configuration
with the menu CfgICas Configuration (see 5.24.27) and the answer may
be stored in an optional third argument.

Remarks

• If the last element of the result is a list, the representation is ultimately peri-
odic, and the last element is the period. It means that the real is a root of an
equation of order 2 with integer coefficients.

• if the last element of the result is not an integer, it represents a remainder r
(a = a0 + 1/....+ 1/an+ 1/r). Be aware that this remainder has lost most
of its accuracy.

If dfc(a)=[a0,a1,a2,[b0,b1]] that means :

a = a0 +
1

a1 + 1
a2+ 1

b0+ 1

b1+ 1
b0+...

If dfc(a)=[a0,a1,a2,r] that means :

a = a0 +
1

a1 + 1
a2+ 1

r

Input :

dfc(sqrt(2),5)

Output :

[1,2,[2]]

Input :

dfc(evalf(sqrt(2)),1e-9)

or :

dfc(sqrt(2),1e-9)

Output :

[1,2,2,2,2,2,2,2,2,2,2,2,2]

Input :

128 CHAPTER 5. THE CAS FUNCTIONS

convert(sqrt(2),confrac,’dev’)

Output (if in the cas configuration epsilon=1e-9) :

[1,2,2,2,2,2,2,2,2,2,2,2,2]

and [1,2,2,2,2,2,2,2,2,2,2,2,2] is stored in dev.
Input :

dfc(9976/6961,5)

Output :

[1,2,3,4,5,43/7]

Input to verify:

1+1/(2+1/(3+1/(4+1/(5+7/43))))

Output :

9976/6961

Input :

convert(9976/6961,confrac,’l’)

Output (if in the cas configuration epsilon=1e-9) :

[1,2,3,4,5,6,7]

and [1,2,3,4,5,6,7] is stored in l
Input :

dfc(pi,5)

Output :

[3,7,15,1,292,(-113*pi+355)/(33102*pi-103993)]

Input :

dfc(evalf(pi),5)

Output (if floats are hardware floats, e.g. for Digits=12) :

[3,7,15,1,292,1.57581843574]

Input :

dfc(evalf(pi),1e-9)

or :

dfc(pi,1e-9)

or (if in the cas configuration epsilon=1e-9) :

convert(pi,confrac,’ll’)

Output :

[3,7,15,1,292]

5.8. RATIONALS 129

5.8.8 Transform a continued fraction representation into a real : dfc2f

dfc2f takes as argument a list representing a continued fraction, namely

• a list of integers for a rational number

• a list whose last element is a list for an ultimately periodic representation,
i.e. a quadratic number, that is a root of a second order equation with integer
coefficients.

• or a list with a remainder r as last element (a = a0 + 1/....+ 1/an+ 1/r).

dfc2f returns the rational number or the quadratic number with the argument as
continued fraction representation.
Input :

dfc2f([1,2,[2]])

Output :

1/(1/(1+sqrt(2))+2)+1

After simplification with normal :

sqrt(2)

Input :

dfc2f([1,2,3])

Output :

10/7

Input :

normal(dfc2f([3,3,6,[3,6]]))

Output :

sqrt(11)

Input :

dfc2f([1,2,3,4,5,6,7])

Output :

9976/6961

Input to verify :

1+1/(2+1/(3+1/(4+1/(5+1/(6+1/7)))))

Output :

9976/6961

Input :

130 CHAPTER 5. THE CAS FUNCTIONS

dfc2f([1,2,3,4,5,43/7])

Output :

9976/6961

Input to verify :

1+1/(2+1/(3+1/(4+1/(5+7/43))))

Output :

9976/6961

5.8.9 The n-th Bernoulli number : bernoulli

bernoulli takes as argument an integer n.
bernoulli returns the n-th Bernoulli number B(n).
The Bernoulli numbers are defined by :

t

et − 1
=

+∞∑
n=0

B(n)

n!
tn

Bernoulli polynomials Bk are defined by :

B0 = 1, Bk
′(x) = kBk−1(x),

∫ 1

0
Bk(x)dx = 0

and the relation B(n) = Bn(0) holds.
Input :

bernoulli(6)

Output :

1/42

5.8.10 Access to PARI/GP commands: pari

• pari with a string as first argument (the PARI command name) execute the
corresponding PARI command with the remaining arguments. For exam-
ple pari("weber",1+i) executes the PARI command weber with the
argument 1+i.

• pari without argument exports all PARI/GP functions

– with the same command name if they are not already defined inside
Xcas

– with their original command name with the prefix pari_

For example, after calling pari(), pari_weber(1+i) or weber(1+i)
will execute the PARI command weber with the argument 1+i.

The documentation of PARI/GP is available with the menu Help->Manuals.

5.9. REAL NUMBERS 131

5.9 Real numbers

5.9.1 Eval a real at a given precision : evalf and Digits, DIGITS

• A real number is an exact number and its numeric evaluation at a given pre-
cision is a floating number represented in base 2.
The precision of a floating number is the number of bits of its mantissa,
which is at least 53 (hardware float numbers, also known as double). Float-
ing numbers are displayed in base 10 with a number of digits controlled by
the user either by assigning the Digits variable or by modifying the Cas
configuration. By default Digits is equal to 12. The number of digits dis-
played controls the number of bits of the mantissa, if Digits is less than 15,
53 bits are used, if Digits is strictly greater than 15, the number of bits is a
roundoff of Digits times the log of 10 in base 2.

• An expression is coerced into a floating number with the evalf command.
evalf may have an optional second argument which will be used to evalu-
ate with a given precision.

• Note that if an expression contains a floating number, evaluation will try
to convert other arguments to floating point numbers in order to coerce the
whole expression to a single floating number.

Input :

1+1/2

Output :

3/2

Input :

1.0+1/2

Output :

1.5

Input:

exp(pi*sqrt(20))

Output :

exp(pi*2*sqrt(5))

With evalf, input :

evalf(exp(pi*2*sqrt(5)))

Output :

1263794.75367

Input :

132 CHAPTER 5. THE CAS FUNCTIONS

1.1^20

Output :

6.72749994933

Input :

sqrt(2)^21

Output :

sqrt(2)*2^10

Input for a result with 30 digits :

Digits:=30

Input for the numeric value of eπ
√
163:

evalf(exp(pi*sqrt(163)))

Output :

0.262537412640768743999999999985e18

Note that Digits is now set to 30. If you don’t want to change the value of
Digits you may input

evalf(exp(pi*sqrt(163)),30)

5.9.2 Usual infixed functions on reals : +,-,*,/,ˆ

+,-,*,/,ˆ are the usual operators to do additions, subtractions, multiplica-
tions, divisions and for raising to a power.
Input :

3+2

Output :

5

Input :

3-2

Output :

1

Input :

3*2

Output :

6

5.9. REAL NUMBERS 133

Input :

3/2

Output :

3/2

Input :

3.2/2.1

Output :

1.52380952381

Input :

3^2

Output :

9

Input :

3.2^2.1

Output :

11.5031015682

Remark
You may use the square key or the cube key if your keyboard has one, for example
: 32 returns 9.

Remark on non integral powers

• If x is not an integer, then ax = exp(x ln(a)), hence ax is well-defined only
for a > 0 if x is not rational. If x is rational and a < 0, the principal
determination of the logarithm is used, leading to a complex number.

• Hence be aware of the difference between n
√
a and a

1
n when n is an odd

integer.
For example, to draw the graph of y = 3

√
x3 − x2, input :

plotfunc(ifte(x>0,(x^3-x^2)^(1/3),
-(x^2-x^3)^(1/3)),x,xstep=0.01)

You might also input :

plotimplicit(y^3=x^3-x^2)

but this is much slower and much less accurate.

134 CHAPTER 5. THE CAS FUNCTIONS

5.9.3 Usual prefixed functions on reals : rdiv

rdiv is the prefixed form of the division function.
Input :

rdiv(3,2)

Output :

3/2

Input :

rdiv(3.2,2.1)

Output :

1.52380952381

5.9.4 n-th root : root

root takes two arguments : an integer n and a number a.
root returns the n-th root of a (i.e. a1/n). If a < 0, the n-th root is a complex
number of argument 2π/n.
Input :

root(3,2)

Output :

2^(1/3)

Input :

root(3,2.0)

Output :

1.259921049892

Input :

root(3,sqrt(2))

Output :

2^(1/6)

5.9. REAL NUMBERS 135

5.9.5 The exponential integral function: Ei

The Ei command takes as argument a complex number.
Ei returns the value of the exponential integral at the argument.

For non-zero real numbers x,

Ei(x) =

∫ x

t=−∞

exp(t)

t
dt.

For x > 0, this integral is improper but the principal value exists. This function
satisfies Ei(0) = −∞, Ei(−∞) = 0.

Since
exp(x)

x
=

1

x
+ 1 +

x

2!
+
x2

3!
+ . . . ,

the Ei function can be extended to C− {0} (with a branch cut on the positive real
axis) by

Ei(z) = ln(z) + γ + x+
x2

2 · 2!
+

x3

3 · 3!
+ . . .

where γ = 0.57721566490 . . . is Euler’s constant.
Input:

Ei(1.0)

Output:

1.89511781636

Input:

Ei(-1.0)

Output:

-0.219383934396

Input:

Ei(1.)-Ei(-1.)

Output:

2.11450175075

Input:

int((exp(x)-1)/x,x=-1..1.)

Output:

2.11450175075

The input
Input:

evalf(Ei(-1)-sum((-1)ˆn/n/n!,n=1..100))

136 CHAPTER 5. THE CAS FUNCTIONS

approximates Euler’s constant
Output:

0.577215664902

The Ei command can also take two arguments, where the second argument is a
positive integer indicating other types of exponential integrals; Ei(x, n) = En(x).
Specifically:
Ei(a,1) = -Ei(-a)
Ei(a,2) = exp(-a) + a*Ei(-a) = exp(-a) - a*Ei (a, 1) and
for n ≥ 2, Ei(a,n)=(exp(-a) - a*Ei(a,n-1))/(n-1)

5.9.6 The logarithmic integral function:Li

The Li command takes as argument a complex number.
Li returns the value of the logarithmic integral function Li at the point, where

Li(x) = Ei(ln(x)) =

∫ exp(x)

t=0

1

ln(t)
dt

Input:

Li(2.0)

Output:

1.04516378012

5.9.7 The cosine integral function:Ci

The Ci command takes as argument a complex number.
Ci returns the value of the cosine integral function Ci at the point, where

Ci(x) =

∫ x

+∞

cos(t)

t
dt = ln(t) + γ +

∫ x

t=0

cos(t)− 1

t
dt

This satisfies Ci(0) = −∞, Ci(−∞) = iπ and Ci(+∞) = 0.
Input:

Ci(1.0)

Output:

0.337403922901

Input:

Ci(-1.0)

Output:

0.337403922901+3.14159265359*i

Input:

Ci(1.0) - Ci(-1.0)

Output:

-3.14159265359*i

5.9. REAL NUMBERS 137

5.9.8 The sine integral function:Si

The Si command takes as argument a complex number.
Si returns the value of the sine integral function Si at the point, where

Si(x) =

∫ x

0

sin(t)

t
dt

This satisfies Si(0) = 0, Si(−∞) = −π/2 and Si(+∞) = π/2. Also note that
Si is an odd function.
Input:

Si(1.0)

Output:

0.946083070367

Input:

Si(-1.0)

Output:

-0.946083070367

5.9.9 The Heaviside function: Heaviside

The Heaviside command takes as argument a real number.
Heaviside returns the value of the Heaviside function; namely 0 if the input is
negative, 1 otherwise.
Input:

Heaviside(2)

Output:

1

Input:

Heaviside(-4)

Output:

0

138 CHAPTER 5. THE CAS FUNCTIONS

5.9.10 The Dirac distribution: Dirac

The Dirac command takes as input a number.
Dirac returns infinity if the number is 0, it returns 0 otherwise.

Dirac represents the distribution which is the derivative of the Heaviside
function. This means that ∫ ∞

−∞
Dirac(x)dx = 1

and, in fact,
∫ b
a Dirac(x)dx is 1 if [a, b] contains 0 and the integral is 0 otherwise.

The defining property of the Dirac distribution is that∫ ∞
−∞

Dirac(x)f(x)dx = f(0)

and consequently ∫ b

a
Dirac(x− c)f(x)dx = f(c)

as long as c is in [a, b].
Input:

int(Dirac(x)*sin(x),x,-1,2)

Output:

sin(0)

Input:

int(Dirac(x-1)*sin(x),x,-1,2)

Output:

sin(1)

5.9.11 Error function : erf

erf takes as argument a number a.
erf returns the floating point value of the error function at x = a, where the error
function is defined by :

erf(x) =
2√
π

∫ x

0
e−t

2
dt

The normalization is chosen so that:

erf(+∞) = 1, erf(−∞) = −1

since : ∫ +∞

0
e−t

2
dt =

√
π

2

Input :

erf(1)

5.9. REAL NUMBERS 139

Output :

0.84270079295

Input :

erf(1/(sqrt(2)))*1/2+0.5

Output :

0.841344746069

Remark
The relation between erf and normal_cdf is :

normal_cdf(x) =
1

2
+

1

2
erf(

x√
2

)

Indeed, making the change of variable t = u ∗
√

2 in

normal_cdf(x) =
1

2
+

1√
2π

∫ x

0
e−t

2/2dt

gives :

normal_cdf(x) =
1

2
+

1√
π

∫ x√
2

0
e−u

2
du =

1

2
+

1

2
erf(

x√
2

)

Check :
normal_cdf(1)=0.841344746069

5.9.12 Complementary error function: erfc

erfc takes as argument a number a.
erfc returns the value of the complementary error function at x = a, this function
is defined by :

erfc(x) =
2√
π

∫ +∞

x
e−t

2
dt = 1− erf(x)

Hence erfc(0) = 1, since : ∫ +∞

0
e−t

2
dt =

√
π

2

Input :

erfc(1)

Output :

0.15729920705

Input :

1- erfc(1/(sqrt(2)))*1/2

Output :

140 CHAPTER 5. THE CAS FUNCTIONS

0.841344746069

Remark
The relation between erfc and normal_cdf is :

normal_cdf(x) = 1− 1

2
erfc(

x√
2

)

Check :
normal_cdf(1)=0.841344746069

5.9.13 The Γ function : Gamma

Gamma takes as argument a number a.
Gamma returns the value of the Γ function in a, defined by :

Γ(x) =

∫ +∞

0
e−ttx−1dt, if x > 0

If x is a positive integer, Γ is computed by applying the recurrence :

Γ(x+ 1) = x ∗ Γ(x), Γ(1) = 1

Hence :
Γ(n+ 1) = n!

Input :

Gamma(5)

Output :

24

Input :

Gamma(0.7)

Output :

1.29805533265

Input :

Gamma(-0.3)

Output :

-4.32685110883

Indeed : Gamma(0.7)=-0.3*Gamma(-0.3)
Input :

Gamma(-1.3)

Output :

3.32834700679

Indeed Gamma(0.7)=-0.3*Gamma(-0.3)=(-0.3)*(-1.3)*Gamma(-1.3)

5.9. REAL NUMBERS 141

5.9.14 The upper incomplete γ function: ugamma

The ugamma command takes two arguments, a number a and a number b≥ 0.
ugamma returns the value of the upper incomplete γ function,

Γ(a, b) =

∫ +∞

b
e−tta−1dt.

Input:

ugamma(3.0,2.0)

Output:

1.35335283237

Input:

ugamma(-1.3,2)

Output:

0.0142127568837

5.9.15 The lower incomplete γ function: igamma

The igamma command takes two mandatory arguments and an optional third argu-
ment. The mandatory arguments are a number a and a number b≥ 0. An optional
third argument of 1 will return a normalized version of the function.
igamma returns the value of the incomplete γ function,

γ(a, b) =

∫ b

0
e−tta−1dt.

With a third argument of 1, the value returned will be normalized; namely divided
by Γ(a).
Input:

igamma(2.0,3.0)

Output:

0.800851726529

Input:

igamma(4.0,3.0)

Output:

2.11660866731

Input:

igamma(4.0,3.0,1)

Output:

0.352768111218

since Γ(4) = 6 and 2.11660866731/6 = 0.352768111218.

142 CHAPTER 5. THE CAS FUNCTIONS

5.9.16 The β function : Beta

Beta takes as argument two reals a, b.
Beta returns the value of the β function at a, b ∈ R, defined by :

β(x, y) =

∫ 1

0
tx−1(1− t)y−1 =

Γ(x) ∗ Γ(y)

Γ(x+ y)

Remarkable values :

β(1, 1) = 1, β(n, 1) =
1

n
, β(n, 2) =

1

n(n+ 1)

Beta(x,y) is defined for x and y positive reals (to ensure the convergence of the
integral) and by prolongation for x and y if they are not negative integers.
Input :

Beta(5,2)

Output :

1/30

Input :

Beta(x,y)

Output :

Gamma(x)*Gamma(y)/Gamma(x+y)

Input :

Beta(5.1,2.2)

Output :

0.0242053671402

5.9.17 Derivatives of the DiGamma function : Psi

Psi takes as arguments a real a and an integer n (by default n = 0).
Psi returns the value of the n-th derivative of the DiGamma function at x = a,
where the DiGamma function is the first derivative of ln(Γ(x)). This function is
used to evaluated sums of rational functions having poles at integers.
Input :

Psi(3,1)

Output :

pi^2/6-5/4

If n=0, you may use Psi(a) instead of Psi(a,0) to compute the value of
the DiGamma function at x = a.
Input :

5.9. REAL NUMBERS 143

Psi(3)

Output :

Psi(1)+3/2

Input :

evalf(Psi(3))

Output :

.922784335098

5.9.18 The ζ function : Zeta

Zeta takes as argument a real x.
Zeta returns for x > 1 :

ζ(x) =
+∞∑
n=1

1

nx

and for x < 1 its meromorphic continuation.
Input :

Zeta(2)

Output :

pi^2/6

Input :

Zeta(4)

Output :

pi^4/90

5.9.19 Airy functions : Airy_Ai and Airy_Bi

Airy_Ai and Airy_Bi take as arguments a real x.
Airy_Ai and Airy_Bi are two independent solutions of the equation

y′′ − x ∗ y = 0

They are defined by :

Airy_Ai(x) = (1/π)

∫ ∞
0

cos(t3/3 + x ∗ t)dt

Airy_Bi(x) = (1/π)

∫ ∞
0

(e−t
3/3 + sin(t3/3 + x ∗ t))dt

Properties :

Airy_Ai(x) = Airy_Ai(0) ∗ f(x) + Airy_Ai′(0) ∗ g(x)

Airy_Bi(x) =
√

3(Airy_Ai(0) ∗ f(x)− Airy_Ai′(0) ∗ g(x))

144 CHAPTER 5. THE CAS FUNCTIONS

where f and g are two entire series solutions of

w′′ − x ∗ w = 0

more precisely :

f(x) =
∞∑
k=0

3k

(
Γ(k + 1

3)

Γ(13)

)
x3k

(3k)!

g(x) =
∞∑
k=0

3k

(
Γ(k + 2

3)

Γ(23)

)
x3k+1

(3k + 1)!

Input :

Airy_Ai(1)

Output :

0.135292416313

Input :

Airy_Bi(1)

Output :

1.20742359495

Input :

Airy_Ai(0)

Output :

0.355028053888

Input :

Airy_Bi(0)

Output :

0.614926627446

5.10 Permutations

A permutation p of size n is a bijection from [0..n− 1] on [0..n− 1] and is repre-
sented by the list : [p(0), p(1), p(2)...p(n− 1)].
For example, the permutation p represented by [1, 3, 2, 0] is the application from
[0, 1, 2, 3] on [0, 1, 2, 3] defined by :

p(0) = 1, p(1) = 3, p(2) = 2, p(3) = 0

A cycle c of size p is represented by the list [a0, ..., ap−1] (0 ≤ ak ≤ n − 1) it is
the permutation such that

c(ai) = ai+1 for (i = 0..p− 2), c(ap−1) = a0, c(k) = k otherwise

A cycle c is represented by a list and a cycle decomposition is represented by a list
of lists.
For example, the cycle c represented by the list [3, 2, 1] is the permutation c defined
by c(3) = 2, c(2) = 1, c(1) = 3, c(0) = 0 (i.e. the permutation represented by
the list [0, 3, 1, 2]).

5.10. PERMUTATIONS 145

5.10.1 Random permutation : randperm, shuffle

randperm (or shuffle) takes as argument an integer n.
randperm returns a random permutation of [0..n− 1].
Input :

randperm(3)

Output :

[2,0,1]

5.10.2 Previous permutation: prevperm

The prevperm takes as argument a permutation.
prevperm returns the previous permutation in lexicographic order, or undef if
there is no previous permutation.
Input:

prevperm([0,3,1,2])

Output:

[0,2,3,1]

5.10.3 Next permutation: nextperm

The nextperm takes as argument a permutation.
nextperm returns the next permutation in lexicographic order, or undef if there
is no next permutation.
Input:

prevperm([0,2,3,1])

Output:

[0,2,1,3]

5.10.4 Decomposition as a product of disjoint cycles : permu2cycles

permu2cycles takes as argument a permutation.
permu2cycles returns its decomposition as a product of disjoint cycles.
Input :

permu2cycles([1,3,4,5,2,0])

Output :

[[0,1,3,5],[2,4]]

In the answer the cycles of size 1 are omitted, except if n− 1 is a fixed point of the
permutation (this is required to find the value of n from the cycle decomposition).
Input :

permu2cycles([0,1,2,4,3,5])

146 CHAPTER 5. THE CAS FUNCTIONS

Output :

[[5],[3,4]]

Input :

permu2cycles([0,1,2,3,5,4])

Output :

[[4,5]]

5.10.5 Product of disjoint cycles to permutation: cycles2permu

cycles2permu takes as argument a list of cycles.
cycles2permu returns the permutation (of size n chosen as small as possible)
that is the product of the given cycles (it is the inverse of permu2cycles).
Input :

cycles2permu([[1,3,5],[2,4]])

Output :

[0,3,4,5,2,1]

Input :

cycles2permu([[2,4]])

Output :

[0,1,4,3,2]

Input :

cycles2permu([[5],[2,4]])

Output :

[0,1,4,3,2,5]

5.10.6 Transform a cycle into permutation : cycle2perm

cycle2perm takes on cycle as argument.
cycle2perm returns the permutation of size n corresponding to the cycle given
as argument, where n is chosen as small as possible (see also permu2cycles
and cycles2permu).
Input :

cycle2perm([1,3,5])

Output :

[0,3,2,5,4,1]

5.10. PERMUTATIONS 147

5.10.7 Transform a permutation into a matrix : permu2mat

permu2mat takes as argument a permutation p of size n.
permu2mat returns the matrix of the permutation, that is the matrix obtained by
permuting the rows of the identity matrix of size n with the permutation p.
Input :

permu2mat([2,0,1])

Output :

[[0,0,1],[1,0,0],[0,1,0]]

5.10.8 Checking for a permutation : is_permu

is_permu is a boolean function.
is_permu takes as argument a list.
is_permu returns 1 if the argument is a permutation and returns 0 if the argument
is not a permutation.
Input :

is_permu([2,1,3])

Output :

0

Input :

is_permu([2,1,3,0])

Output :

1

5.10.9 Checking for a cycle : is_cycle

is_cycle is a boolean function.
is_cycle takes a list as argument.
is_cycle returns 1 if the argument is a cycle and returns 0 if the argument is not
a cycle.
Input :

is_cycle([2,1,3])

Output :

1

Input :

is_cycle([2,1,3,2])

Output :

0

148 CHAPTER 5. THE CAS FUNCTIONS

5.10.10 Product of two permutations : p1op2

p1op2 takes as arguments two permutations.
p1op2 returns the permutation obtained by composition :

1starg ◦ 2ndarg

Input :

p1op2([3,4,5,2,0,1],[2,0,1,4,3,5])

Output :

[5,3,4,0,2,1]

Warning
Composition is done using the standard mathematical notation, that is the permu-
tation given as the second argument is performed first.

5.10.11 Composition of a cycle and a permutation : c1op2

c1op2 takes as arguments a cycle and a permutation.
c1op2 returns the permutation obtained by composition :

1starg ◦ 2ndarg

Input :

c1op2([3,4,5],[2,0,1,4,3,5])

Output :

[2,0,1,5,4,3]

Warning
Composition is done using the standard mathematical notation, that is the permu-
tation given as the second argument is performed first.

5.10.12 Composition of a permutation and a cycle : p1oc2

p1oc2 takes as arguments a permutation and a cycle.
p1oc2 returns the permutation obtained by composition :

1starg ◦ 2ndarg

Input :

p1oc2([3,4,5,2,0,1],[2,0,1])

Output :

[4,5,3,2,0,1]

Warning
Composition is done using the standard mathematical notation, that is the cycle
given as second argument is performed first.

5.10. PERMUTATIONS 149

5.10.13 Product of two cycles : c1oc2

c1oc2 takes as arguments two cycles.
c1oc2 returns the permutation obtained by composition :

1starg ◦ 2ndarg

Input :

c1oc2([3,4,5],[2,0,1])

Output :

[1,2,0,4,5,3]

Warning
Composition is done using the standard mathematical notation, that is the cycle
given as second argument is performed first.

5.10.14 Signature of a permutation : signature

signature takes as argument a permutation.
signature returns the signature of the permutation given as argument.
The signature of a permutation is equal to :

• 1 if the permutation is equal to an even product of transpositions,

• -1 if the permutation is equal to an odd product of transpositions.

The signature of a cycle of size k is : (−1)k+1.
Input :

signature([3,4,5,2,0,1])

Output :

-1

Indeed permu2cycles([3,4,5,2,0,1])=[[0,3,2,5,1,4]].

5.10.15 Inverse of a permutation : perminv

perminv takes as argument a permutation.
perminv returns the permutation that is the inverse of the permutation given as
argument.
Input :

perminv([1,2,0])

Output

[2,0,1]

150 CHAPTER 5. THE CAS FUNCTIONS

5.10.16 Inverse of a cycle : cycleinv

cycleinv takes as argument a cycle.
cycleinv returns the cycle that is the inverse of the cycle given as argument.
Input :

cycleinv([2,0,1])

Output

[1,0,2]

5.10.17 Order of a permutation : permuorder

permuorder takes as argument a permutation.
permuorder returns the order k of the permutation p given as argument, that is
the smallest integer m such that pm is the identity.
Input :

permuorder([0,2,1])

Output

2

Input :

permuorder([3,2,1,4,0])

Output

6

5.10.18 Group generated by two permutations : groupermu

groupermu takes as argument two permutations a and b.
groupermu returns the group of the permutations generated by a and b.
Input :

groupermu([0,2,1,3],[3,1,2,0])

Output

[[0,2,1,3],[3,1,2,0],[0,1,2,3],[3,2,1,0]]

5.11 Complex numbers

Note that complex numbers are also used to represent a point in the plane or a 1-d
function graph.

5.11. COMPLEX NUMBERS 151

5.11.1 Usual complex functions : +,-,*,/,ˆ

+,-,*,/,ˆ are the usual operators to perform additions, subtractions, multipli-
cations, divisions and for raising to an integer or a fractional power.
Input :

(1+2*i)^2

Output :

-3+4*i

5.11.2 Real part of a complex number : re real

re (or real) takes as argument a complex number (resp. a point A).
re (or real) returns the real part of this complex number (resp. the projection on
the x axis of A).
Input :

re(3+4*i)

Output :

3

5.11.3 Imaginary part of a complex number : im imag

im (or imag) takes as argument a complex number (resp. a point A).
im (or imag) returns imaginary part of this complex number (resp. the projection
on the y axis of A).
Input :

im(3+4*i)

Output :

4

5.11.4 Write a complex as re(z)+i*im(z) : evalc

evalc takes as argument a complex number z.
evalc returns this complex number, written as re(z)+i*im(z).
Input :

evalc(sqrt(2)*exp(i*pi/4))

Output :

1+i

152 CHAPTER 5. THE CAS FUNCTIONS

5.11.5 Modulus of a complex number : abs

abs takes as argument a complex number.
abs returns the modulus of this complex number.
Input :

abs(3+4*i)

Output :

5

5.11.6 Argument of a complex number : arg

arg takes as argument a complex number.
arg returns the argument of this complex number.
Input :

arg(3+4*i)

Output :

atan(4/3)

5.11.7 The normalized complex number : normalize unitV

normalize or unitV takes as argument a complex number.
normalize or unitV returns the complex number divided by the modulus of
this complex number.
Input :

normalize(3+4*i)

Output :

(3+4*i)/5

5.11.8 Conjugate of a complex number : conj

conj takes as argument a complex number.
conj returns the complex conjugate of this complex number.
Input :

conj(3+4*i)

Output :

3-4*i

5.11. COMPLEX NUMBERS 153

5.11.9 Multiplication by the complex conjugate : mult_c_conjugate

mult_c_conjugate takes as argument an complex expression.
If this expression has a complex denominator, mult_c_conjugate multiplies
the numerator and the denominator of this expression by the complex conjugate of
the denominator.
If this expression does not have a complex denominator, mult_c_conjugate
multiplies the numerator and the denominator of this expression by the complex
conjugate of the numerator.
Input :

mult_c_conjugate((2+i)/(2+3*i))

Output :

(2+i)*(2+3*(-i))/((2+3*(i))*(2+3*(-i)))

Input :

mult_c_conjugate((2+i)/2)

Output :

(2+i)*(2+-i)/(2*(2+-i))

5.11.10 Barycenter of complex numbers : barycenter

barycenter takes as argument two lists of the same size (resp. a matrix with
two columns):

• the elements of the first list (resp. column) are pointsAj or complex numbers
aj (the affixes of the points),

• the elements of the second list (resp. column) are real coefficients αj such
that

∑
αj 6= 0.

barycenter returns the barycenter point of the points Aj weighted by the real
coefficients αj . If

∑
αj = 0, barycenter returns an error.

Warning To have a complex number in the output, the input must be :
affix(barycenter(...,...)) because barycenter(...,...) re-
turns a point, not a complex number.
Input :

affix(barycenter([1+i,1-i],[1,1]))

or :

affix(barycenter([[1+i,1],[1-i,1]]))

Output :

i

154 CHAPTER 5. THE CAS FUNCTIONS

5.12 Algebraic numbers

5.12.1 Definition

A real algebraic number is a real root of a polynomial with integer coefficients.
A complex algebraic number is a root of a polynomial with coefficients which

are Gaussian integers.

5.12.2 Minimum polynomial of an algebraic number:pmin

The pmin command takes as argument an algebraic number, and an optional sec-
ond argument of a variable name.
pmin returns the the monic polynomial of smallest degree with integer coefficents
which has the algebraic number as a root. If there is a second argument, the poly-
nomial will use that as a variable.
Input:

pmin(sqrt(2) + sqrt(3))

Output:

poly1[1,0,-10,0,1]

Input:

pmin(sqrt(2) + sqrt(3),x)

Output:

xˆ4-10*xˆ2+1

Note that (
√

2 +
√

3)2 = 5 + 2
√

6 and so ((
√

2 +
√

3)2 − 5)2 = 24, which can be
rewritten as (

√
2 +
√

3)4 − 10(
√

2 +
√

3)2 + 1 = 0.
Input:

pmin(sqrt(2) + i*sqrt(3))

Output:

poly1[1,0,2,0,25]

Input:

pmin(sqrt(2) + i*sqrt(3),z)

Output:

zˆ4+2*zˆ2+25

Input:

pmin(sqrt(2) + 2*i)

Output:

poly1[1,0,4,0,36]

Input:

pmin(sqrt(2) + 2*i,z)

Output:

zˆ4+4*zˆ2+36

5.13. ALGEBRAIC EXPRESSIONS 155

5.13 Algebraic expressions

5.13.1 Evaluate an expression : eval

eval is used to evaluate an expression. Since Xcas always evaluate expressions
entered in the command line, eval is mainly used to evaluate a sub-expression in
the equation writer.
Input :

a:=2

Output :

2

Input :

eval(2+3*a)

or

2+3*a

Output :

8

5.13.2 Change the evaluation level: eval_level

The evaluation level is the maximum number of recursions when evaluating ex-
pressions, which is 25 by default. It can be set with the eval box in the CAS
configuration screen (see section 3.5.7).

The eval_level command takes either zero or one argument. The single
argument is a non-negative integer.
With no argument, eval_level returns the current evaluation level. With argu-
ment n, eval_level sets the evaluation level to n.
Input:

purge(a,b,c); a:=b+1; b:=c+1; c:=3;

Input:

eval_level(0)

Input:

a,b,c

Output:

a,b,c

Input:

eval_level(1)

156 CHAPTER 5. THE CAS FUNCTIONS

Input:

a,b,c

Output:

b+1,c+1,3

Input:

eval_level(2)

Input:

c+2,4,3

Input:

eval_level(3)

Output:

a,b,c

Input:

a,b,c

Output:

a,b,c

Input:

a,b,c

Output:

a,b,c

5.13.3 Evaluate algebraic expressions : evala

In Maple, evala is used to evaluate an expression with algebraic extensions. In
Xcas, evala is not necessary, it behaves like eval.

5.13.4 Prevent evaluation : quote hold ’

A quoted subexpression (either with ’ or with the quote or hold) command will
not be evaluated.
Remark a:=quote(a) (or a:=hold(a)) is equivalent to purge(a) (for the
sake of Maple compatibility). It returns the value of this variable (or the hypothesis
done on this variable).
Input :

a:=2;quote(2+3*a)

or

a:=2;’2+3*a’

Output :

(2,2+3*a)

5.13. ALGEBRAIC EXPRESSIONS 157

5.13.5 Force evaluation : unquote

unquote is used to evaluate inside a quoted expression.
For example in an affectation, the variable is automatically quoted (not evaluated)
so that the user does not have to quote it explicitly each time he want to modify its
value. In some circumstances, you might however want to evaluate it.
Input:

purge(b);a:=b;unquote(a):=3

Output :

b contains 3, hence a evals to 3

5.13.6 Distribution : expand fdistrib

expand or fdistrib takes as argument an expression.
expand or fdistrib returns the expression where multiplication is distributed
with respect to the addition.
Input :

expand((x+1)*(x-2))

or :

fdistrib((x+1)*(x-2))

Output :

x^2-2*x+x-2

5.13.7 Canonical form : canonical_form

canonical_form takes as argument a trinomial of second degree.
canonical_form returns the canonical form of the argument.
Example :
Find the canonical form of :

x2 − 6x+ 1

Input :

canonical_form(x^2-6*x+1)

Output :

(x-3)^2-8

158 CHAPTER 5. THE CAS FUNCTIONS

5.13.8 Multiplication by the conjugate quantity : mult_conjugate

mult_conjugate takes as argument an expression with a denominator or a nu-
merator supposed to contain a square root :

• if the denominator contains a square root,
mult_conjugate multiplies the numerator and the denominator of the
expression by the conjugate quantity of the denominator.

• otherwise, if the numerator contains a square root,
mult_conjugate multiplies the numerator and the denominator of this
expression by the conjugate quantity of the numerator.

Input :

mult_conjugate((2+sqrt(2))/(2+sqrt(3)))

Output :

(2+sqrt(2))*(2-sqrt(3))/((2+sqrt(3))*(2-sqrt(3)))

Input :

mult_conjugate((2+sqrt(2))/(sqrt(2)+sqrt(3)))

Output :

(2+sqrt(2))*(-sqrt(2)+sqrt(3))/

((sqrt(2)+sqrt(3))*(-sqrt(2)+sqrt(3)))

Input :

mult_conjugate((2+sqrt(2))/2)

Output :

(2+sqrt(2))*(2-sqrt(2))/(2*(2-sqrt(2)))

5.13.9 Separation of variables : split

split takes two arguments : an expression depending on two variables and the
list of these two variables.
If the expression may be factorized into two factors where each factor depends only
on one variable, split returns the list of this two factors, otherwise it returns the
list [0].
Input :

split((x+1)*(y-2),[x,y])

or :

split(x*y-2*x+y-2,[x,y])

Output :

[x+1,y-2]

Input :

split((x^2*y^2-1,[x,y])

Output :

[0]

5.13. ALGEBRAIC EXPRESSIONS 159

5.13.10 Factorization : factor

factor takes as argument an expression.
factor factorizes this expression on the field of its coefficients, with the addition
of i in complex mode. If sqrt is enabled in the Cas configuration, polynomials
of order 2 are factorized in complex mode or in real mode if the discriminant is
positive.
Examples

1. Factorize x4 − 1 over Q.
Input :

factor(x^4-1)

Output :

(x^2+1)*(x+1)*(x-1)

The coefficients are rationals, hence the factors are polynomials with ratio-
nals coefficients.

2. Factorize x4 − 1 over Q[i]
To have a complex factorization, check complex in the cas configuration
(red button displaying the status line).
Input :

factor(x^4-1)

Output :

-i*(-x+-i)*(i*x+1)*(-x+1)*(x+1)

3. Factorize x4 + 1 over Q
Input :

factor(x^4+1)

Output :

x^4+1

Indeed x4 + 1 has no factor with rational coefficients.

4. Factorize x4 + 1 over Q[i]
Check complex in the cas configuration (red button rouge displaying the
status line).
Input :

160 CHAPTER 5. THE CAS FUNCTIONS

factor(x^4-1)

Output :

(x^2+i)*(x^2+-i)

5. Factorize x4 + 1 over R.
You have to provide the square root required for extending the rationals. In
order to do that with the help of Xcas, first check complex in the cas
configuration and input :

solve(x^4+1,x)

Output :

[sqrt(2)/2+(i)*sqrt(2)/2,sqrt(2)/2+(i)*(-(sqrt(2)/2)),
-sqrt(2)/2+(i)*sqrt(2)/2,-sqrt(2)/2+(i)*(-(sqrt(2)/2))]

The roots depends on
√

2. Uncheck complex mode in the Cas configuration
and input :

factor(x^4+1,sqrt(2))

Output :

(x^2+sqrt(2)*x+1)*(x^2+(-(sqrt(2)))*x+1)

To factorize over C, check complex in the cas configuration or input
cFactor(x^4+1,sqrt(2)) (cf cFactor).

5.13.11 Complex factorization : cFactor

cFactor takes as argument an expression.
cFactor factorizes this expression on the field Q[i] ⊂ C (or over the complexi-
fied field of the coefficients of the argument) even if you are in real mode.
Examples

1. Factorize x4 − 1 over Z[i].
Input :

cFactor(x^4-1)

Output :

-((x+-i)*((-i)*x+1)*((-i)*x+i)*(x+1))

2. Factorize x4 + 1 over Z[i].
Input :

5.13. ALGEBRAIC EXPRESSIONS 161

cFactor(x^4+1)

Output :

(x^2+i)*(x^2+-i)

3. For a complete factorization of x4 + 1, check the sqrt box in the Cas config-
uration or input :

cFactor(x^4+1,sqrt(2))

Output :

sqrt(2)*1/2*(sqrt(2)*x+1-i)*(sqrt(2)*x-1+i)*sqrt(2)*
1/2*(sqrt(2)*x+1+i)*(sqrt(2)*x-1-i)

5.13.12 Zeros of an expression : zeros

zeros takes as argument an expression depending on x.
zeros returns a list of values of x where the expression vanishes. The list may
be incomplete in exact mode if the expression is not polynomial or if intermediate
factorizations have irreducible factors of order strictly greater than 2.
In real mode, (complex box unchecked in the Cas configuration or complex_mode:=0),
only reals zeros are returned. In (complex_mode:=1) reals and complex zeros
are returned. See also cZeros to get complex zeros in real mode.
Input in real mode :

zeros(x^2+4)

Output :

[]

Input in complex mode :

zeros(x^2+4)

Output :

[-2*i,2*i]

Input in real mode :

zeros(ln(x)^2-2)

Output :

[exp(sqrt(2)),exp(-(sqrt(2)))]

Input in real mode :

zeros(ln(y)^2-2,y)

162 CHAPTER 5. THE CAS FUNCTIONS

Output :

[exp(sqrt(2)),exp(-(sqrt(2)))]

Input in real mode :

zeros(x*(exp(x))^2-2*x-2*(exp(x))^2+4)

Output :

[[log(sqrt(2)),2]

5.13.13 Complex zeros of an expression : cZeros

cZeros takes as argument an expression depending on x.
cZeros returns a list of complex values of x where the expression vanishes. The
list may be incomplete in exact mode if the expression is not polynomial or if
intermediate factorizations have irreducible factors of order strictly greater than 2.
Input in real or complex mode :

cZeros(x^2+4)

Output :

[-2*i,2*i]

Input :

cZeros(ln(x)^2-2)

Output :

[exp(sqrt(2)),exp(-(sqrt(2)))]

Input :

cZeros(ln(y)^2-2,y)

Output :

[exp(sqrt(2)),exp(-(sqrt(2)))]

Input :

cZeros(x*(exp(x))^2-2*x-2*(exp(x))^2+4)

Output :

[log(sqrt(2)),log(-sqrt(2)),2]

5.13.14 Regrouping expressions: regroup

The regroup command takes as parameter an expression.
regroup returns the expression with obvious simplifications.
Input:

regroup(x + 3 * x + 5 * 4 / x)

Output:

4*x+20/x

5.13. ALGEBRAIC EXPRESSIONS 163

5.13.15 Normal form : normal

normal takes as argument an expression. The expression is considered as a ra-
tional fraction with respect to generalized identifiers (either true identifiers or tran-
scendental functions replaced by a temporary identifiers) with coefficients in Q or
Q[i] or in an algebraic extension (e.g. Q[

√
2]). normal returns the expanded irre-

ducible representation of this rational fraction. See also ratnormal for pure ra-
tional fractions or simplify if the transcendental functions are not algebraically
independent.
Input :

normal((x-1)*(x+1))

Output :

x^2-1

Remarks

• Unlike simplify, normal does not try to find algebraic relations between
transcendental functions like cos(x)2 + sin(x)2 = 1.

• It is sometimes necessary to run the normal command twice to get a fully
irreducible representation of an expression containing algebraic extensions.

5.13.16 Simplify : simplify

simplify simplifies an expression. It behaves like normal for rational frac-
tions and algebraic extensions. For expressions containing transcendental func-
tions, simplify tries first to rewrite them in terms of algebraically independent
transcendental functions. For trigonometric expressions, this requires radian mode
(check radian in the cas configuration or input angle_radian:=1).
Input :

simplify((x-1)*(x+1))

Output :

x^2-1

Input :

simplify(3-54*sqrt(1/162))

Output :

-3*sqrt(2)+3

Input :

simplify((sin(3*x)+sin(7*x))/sin(5*x))

Output :

4*(cos(x))^2-2

164 CHAPTER 5. THE CAS FUNCTIONS

5.13.17 Automatic simplification: autosimplify

The autosimplify command takes a single argument; a command that will be
used to rewrite the results in Xcas, such as simplify, factor, regroup,
or for no simplification, nop. When Xcas starts, the autosimplify command is
regroup.

To change the simplification mode during a session, the autosimplify
command should be on its own line.
Input:

autosimplify(nop)

then:

1 + xˆ2 - 2

Output:

1+xˆ2-2

Input:

autosimplify(simplify)

then:

1 + xˆ2 - 2

Output:

xˆ2 - 1

Input:

autosimplify(factor)

then:

1 + xˆ2 - 2

Output:

(x-1)*(x+1)

Input:

autosimplify(regroup)

then:

1 + xˆ2 - 2

Output:

xˆ2 - 1

5.13. ALGEBRAIC EXPRESSIONS 165

5.13.18 Normal form for rational fractions : ratnormal

ratnormal rewrites an expression using its irreducible representation. The ex-
pression is viewed as a multivariate rational fraction with coefficients in Q (or
Q[i]). The variables are generalized identifiers which are assumed to be alge-
braically independent. Unlike with normal, an algebraic extension is considered
as a generalized identifier. Therefore ratnormal is faster but might miss some
simplifications if the expression contains radicals or algebraically dependent tran-
scendental functions.
Input :

ratnormal((x^3-1)/(x^2-1))

Output :

(x^2+x+1)/(x+1)

Input :

ratnormal((-2x^3+3x^2+5x-6)/(x^2-2x+1))

Output :

(-2*x^2+x+6)/(x-1)

5.13.19 Substitute a variable by a value: |

The | operator is infixed. The left hand side is an expression depending on one or
more parameters, the right hand side is an equality or several equalities (parameter
= value, parameter = value, . . .).
The | operator returns the expression with the parameters replaced by the given
values.
Input:

aˆ2 + 1 | a = 2

Output (even if a has been assigned a value):

5

Input:

aˆ2 + b | a = 2, b = 3

Output (even if a or b had been assigned a value):

7

166 CHAPTER 5. THE CAS FUNCTIONS

5.13.20 Substitute a variable by a value : subst

subst takes two or three arguments :

• an expression depending on a variable, an equality (variable=value of sub-
stitution) or a list of equalities.

• an expression depending on a variable, a variable or a list of variables, a
value or a list of values for substitution.

subst returns the expression with the substitution done. Note that subst does
not quote its argument, hence in a normal evaluation process, the substitution vari-
able should be purged otherwise it will be replaced by its assigned value before
substitution is done.
Input :

subst(a^2+1,a=2)

or :

subst(a^2+1,a,2)

Output (if the variable a is purged else first input purge(a)) :

5

Input :

subst(a^2+b,[a,b],[2,1])

or :

subst(a^2+b,[a=2,b=1])

Output (if the variables a and b are purged else first input purge(a,b)) :

5

subst may also be used to make a change of variable in an integral. In this
case the integrate command should be quoted (otherwise, the integral would
be computed before substitution) or the inert form Int should be used. In both
cases, the name of the integration variable must be given as argument of Int or
integrate even you are integrating with respect to x.
Input :

subst(’integrate(sin(x^2)*x,x,0,pi/2)’,x=sqrt(t))

or :

subst(Int(sin(x^2)*x,x,0,pi/2),x=sqrt(t))

Output

integrate(sin(t)*sqrt(t)*1/2*1/t*sqrt(t),t,0,(pi/2)^2)

Input :

subst(’integrate(sin(x^2)*x,x)’,x=sqrt(t))

or :

subst(Int(sin(x^2)*x,x),x=sqrt(t))

Output

integrate(sin(t)*sqrt(t)*1/2*1/t*sqrt(t),t)

5.13. ALGEBRAIC EXPRESSIONS 167

5.13.21 Substitute a variable by a value: ()

Given an expression with variables, you can substitute a variable by a value with
the | operator or the subst command.
Input:

Expr := x + 2*y + 3*z

then:

subst(Expr,[x=1,y=2])

or:

Expr | x=1, y=2

Output:

5+3*z

One other way to do this is with something akin to functional notation; follow-
ing the expression with equalities of the form variable = value.
Input:

Expr(x=1,y=2)

Output:

5+3*z

Input:

(h*k*tˆ2+hˆ3*tˆ3)(t=2)

Output:

h*k*4+8*hˆ3

5.13.22 Substitute a variable by a value (Maple and Mupad compati-
bility) : subs

In Maple and in Mupad, one would use the subs command to substitute a vari-
able by a value in an expression. But the order of the arguments differ between
Maple and Mupad. Therefore, to achieve compatibility, Xcas subs command
arguments order depends on the mode

• In Maplemode, subs takes two arguments : an equality (variable=substitution
value) and the expression.
To substitute several variables in an expression, use a list of equality (vari-
able names = substitution value) as first argument.

• In Mupad or Xcas or TI, subs takes two or three arguments : an expres-
sion and an equality (variable=substitution value) or an expression, a variable
name and the substitution value.
To substitute several variables, subs takes two or three arguments :

168 CHAPTER 5. THE CAS FUNCTIONS

– an expression of variables and a list of (variable names = substitution
value),

– an expression of variables, a list of variables and a list of their substi-
tution values.

subs returns the expression with the substitution done. Note that subs does not
quote its argument, hence in a normal evaluation process, the substitution variable
should be purged otherwise it will be replaced by its assigned value before substi-
tution is done.
Input in Maple mode (if the variable a is purged else input purge(a)) :

subs(a=2,a^2+1)

Output

2^2+1

Input in Maplemode (if the variables a and b are purged else input purge(a,b)):

subs([a=2,b=1],a^2+b)

Output :

2^2+1

Input :

subs(a^2+1,a=2)

or :

subs(a^2+1,a,2)

Output (if the variable a is purged else input purge(a)) :

5

Input :

subs(a^2+b,[a=2,b=1])

or :

subs(a^2+b,[a,b],[2,1])

Output (if the variables a and b are purged else input purge(a,b)) :

2^2+1

5.13. ALGEBRAIC EXPRESSIONS 169

5.13.23 Substitute a subexpression by another expression: algsubs

The algsubs command takes two arguments, an equation expr1 = expr2
between two expressions and another expression.
algsubs returns the last expression with expr1 replaced by expr2.
Input:

algsubs (xˆ2 = u, 1 + xˆ2 + xˆ4)

Output:

uˆ2 + u + 1

Input:

algsubs (a*b/c = d, 2*a*bˆ2/c)

Output:

2*b*d

Input:

algsubs (2a = pˆ2-qˆ2, algsubs (2c = pˆ2 + qˆ2,
cˆ2-aˆ2))

Output:

pˆ2*qˆ2

5.13.24 Eliminate one or more variables from a list of equations: eliminate

The eliminate commands takes two arguments; a list of equations and the vari-
able (or list of variables) to eliminate.
eliminate returns the equations with the requested variables eliminated. (The
equations will be given as expressions, assumed to be equal to 0.)

Assuming the variables used haven’t been set to any values:
Input:

eliminate ([x = v0*t, y = y0-g*tˆ2], t)

Output :

[v0ˆ2*y0-xˆ2*g-v0ˆ2*y]

Input:

eliminate ([x = 2*t, y = 1 - 10*tˆ2, z = x + y - t],
t)

Output:

[10*yˆ2-20*y*z+10*zˆ2+y-1,x+2*y-2*z]

Input:

eliminate([x+y+z+t-2,x*y*t=1,xˆ2+tˆ2=zˆ2],[x,z])

170 CHAPTER 5. THE CAS FUNCTIONS

Output:

[2*tˆ2*yˆ2+t*yˆ3-4*tˆ2*y-4*t*yˆ2+4*t*y+2*t+2*y-4]

If the variable(s) can’t be eliminated, then eliminate returns [1] or [-1].
If eliminate returns [], that means the equations determine the values of the
variables to be eliminated.
Input:

x:=2;y:=-5
eliminate([x=2*t,y=1-10*tˆ2],t)

Output:

[1]

since t cannot be eliminated from both equations. Input:

x:=2;y:=-9 eliminate([x=2*t,y=1-10*tˆ2],t)

Output:

[]

since the first equation gives t= 1, which satisfies the second equation.
Input:

x := 2; y := -9
eliminate ([x = 2*t, y = 1-10*tˆ2, z = x + y - t], t)

Output:

[z+8]

since the first equation gives t= 1, which satisfies the second equation, and so that
leaves z = 2 - 9 - 1 = -8, or z + 8 = 0.

5.13.25 Evaluate a primitive at boundaries: preval

preval takes three arguments : an expression F depending on the variable x, and
two expressions a and b.
preval computes F|x=b − F|x=a.
preval is used to compute a definite integral when the primitive F of the inte-
grand f is known. Assume for example that F:=int(f,x), then preval(F,a,b)
is equivalent to int(f,x,a,b) but does not require to compute again F from f
if you change the values of a or b.
Input :

preval(x^2+x,2,3)

Output :

6

5.14. VALUES OF UN 171

5.13.26 Sub-expression of an expression : part

part takes two arguments : an expression and an integer n.
part evaluate the expression and then returns the n-th sub-expression of this ex-
pression.
Input :

part(x^2+x+1,2)

Output :

x

Input :

part(x^2+(x+1)*(y-2)+2,2)

Output :

(x+1)*(y-2)

Input :

part((x+1)*(y-2)/2,2)

Output :

y-2

5.14 Values of un
5.14.1 Array of values of a sequence : tablefunc

tablefunc is a command that should be used inside a spreadsheet (opened with
Alt+t), it returns a template to fill two columns, with the table of values of a
function. If the step value is 1, tablefunc(ex,n,n0,1), where ex is an
expression depending on n, will fill the spreadsheet with the values of the sequence
un = ex for n = n0, n0 + 1, n0 + 2,

Example : display the values of the sequence un = sin(n)
Select a cell of a spreadsheet (for example C0) and input in the command line :

tablefunc(sin(n),n,0,1)

Output :

two columns : n and sin(n)

• in the column C: the variable name n, the value of the step (this value should
be equal to 1 for a sequence), the value of n0 (here 0), then a recurrence
formula (C2+C$1, ...).

• in the column D: sin(n), "Tablefunc", then a recurrence formula.

• For each row, the values of the sequence un = sin(n) correspond to the val-
ues of n starting from n=n0 (here 0).

172 CHAPTER 5. THE CAS FUNCTIONS

5.14.2 Values of a recurrence relation or a system: seqsolve

See also section 5.14.3.
The seqsolve command takes three arguments; an expression or list of ex-

pressions that define a recurrence relation, the variables used, and the starting val-
ues. For example, if a recurrence relation is defined by un+1 = f(un, n) with
u0 = a, the arguments to seqsolve will be f(x,n), [x,n] and a. If the re-
currence relation is defined by un+2 = g(un, un+1, n) with u0 = a and u1 = b,
the arguments to seqsolve will be g(x,y,n), [x,y,n] and [a,b]. The re-
currence relation must have a homogeneous linear part, the nonhomogeneous part
must be a linear combination of a polynomials in n times geometric terms in n.
seqsolve returns the sequence, as a function of n.
Examples:

• To find un, given that un+1 = 2un + n and u0 = 3: Input:

seqsolve(2x+n,[x,n],3)

Output:

-n-1+4*2ˆn

• To find un, given that un+1 = 2un + n3n and u0 = 3: Input:

seqsolve(2x+n*3ˆn,[x,n],3)

Output:

(n-3)*3ˆn+6*2ˆn

• To find un, given that un+1 = un + un−1, u0 = 0 and u1 = 1: Input:

seqsolve(x+y,[x,y,n],[0,1])

Output:

(5+sqrt(5))/10*((sqrt(5)+1)/2)ˆ(n-1)+
(5-(sqrt(5)))/10*((-sqrt(5)+1)/2)ˆ(n-1)

• To find un and vn, given that un+1 = un + 2vn, vn+1 = un + n + 1 with
u0 = 1, v0 = 1:
Input:

seqsolve([x+2*y,n+1+x],[x,y,n],[0,1])

Output:

[(-2*n-(-1)ˆn+4*2ˆn-3)/2,((-1)ˆn+2*2ˆn-1)/2]

5.14. VALUES OF UN 173

5.14.3 Values of a recurrence relation or a system: rsolve

See also section 5.14.2
The rsolve command takes three arguments; an equation or list of equa-

tions that define a recurrence relation, the functions (with their variables) used, and
equations for the starting values. For example, if a recurrence relation is defined
by un+1 = f(un, n) with u0 = a, the arguments to rsolve will be u(n+1) =
f(u(n),n), u(n) and u(0)=a. The recurrence relation must either be a ho-
mogeneous linear part with a nonhomogeneous part being a linear combination of
polynomials in n times geometric terms in n (such as un+1 = 2un + n3n), or a
linear fractional transformation (such as un+1 = (un − 1)/(un − 2)).
rsolve returns a matrix whose rows are the values of the sequence as functions
of n.

Note that rsolve is more flexible than seqsolve since:

• the sequence doesn’t have to start with u0.

• the sequence can have several starting values, such as initial condition u20 =
1, which is why rsolve returns a list.

• the notation for the recurrence relation is similar to how it is written in math-
ematics.

Examples:

• To find un, given that un+1 = 2un + n and u0 = 3: Input:

rsolve(u(n+1) = 2*u(n) + n, u(n), u(0)=3)

Output:

[-n+4*2ˆn-1]

• To find un, given that un+1 = 2un + n and u21 = 1: Input:

rsolve(u(n+1) = 2*u(n) + n, u(n), u(1)ˆ2 = 1)

Output:

[-n+3/2*2ˆn-1,-n+1/2*2ˆn-1]

• To find un, given that un+1 = 2un + n3n and u0 = 3: Input:

rsolve(u(n+1) = 2*u(n) + n*3ˆn,u(n), u(0)=3)

Output:

[n*3ˆn+6*2ˆn-3*3ˆn]

• To find un, given that un+1 = (un − 1)/(un − 2) and u0 = 4:
Input:

174 CHAPTER 5. THE CAS FUNCTIONS

rsolve(u(n+1) = (u(n)-1)/(u(n)-2),u(n), u(0)=4)

Output:

[((10*sqrt(5)+30)*((sqrt(5)-3)/2)ˆn+30*sqrt(5)-70)/(20*((sqrt(5)-3)/2)ˆn+10*sqrt(5)-30)]

• To find un given that un+1 = un + un−1 with u0 = 0, u1 = 1:
Input:

rsolve(u(n+1) = u(n) + u(n-1), u(n), u(0) = 0,
u(1) = 1)

Output:

[(-sqrt(5)/5)*((-sqrt(5)+1)/2)ˆn+sqrt(5)/5*((sqrt(5)+1)/2)ˆn]

• To find un and vn, given that un+1 = un + vn, vn+1 = un − vn with
u0 = 0, v0 = 1:
Input:

rsolve([u(n+1) = u(n) + v(n), v(n+1) = u(n) -
v(n)], [u(n),v(n)], [u(0)=1, v(0)=1])

Output:

[[(-sqrt(2)+1)/2*(-sqrt(2))ˆ(n+1-1)+(sqrt(2)+1)/2*2ˆ(1/2*(n+1-1)),
1/2*(-sqrt(2))ˆ(n+1-1)+1/2*2ˆ(1/2*(n+1-1))]]

5.14.4 Table of values and graph of a recurrent sequence : tableseq
and plotseq

tableseq is a command that should be used inside a spreadsheet (opened with
Alt+t), it returns a template to fill one column with u0, un+1 = f(un) (one-term
recurrence) or more generally u0, ..., uk, un+k+1 = f(un, un+1, ..., un+k). The
template fills the column starting from the selected cell, or starting from 0 if the
whole column was selected.
See also plotseq (section 7.17) for a graphic representation of a one-term recur-
rence sequence.

Examples :

• display the values of the sequence u0 = 3.5, un = sin(un−1)
Select a cell of the spreadsheet (for example B0) and input in the command
line :

tableseq(sin(n),n,3.5)

Output :

5.15. OPERATORS OR INFIXED FUNCTIONS 175

a column with sin(n), n, 3.5 and the formula
evalf(subst(B$0,B$1,B2))

You get the values of the sequence u0 = 3.5, un = sin(un−1) in the column
B.

• display the values of the Fibonacci sequence u0 = 1, u1 = 1 un+2 = un +
un+1

Select a cell, say B0, and input in the command line

tableseq(x+y,[x,y],[1,1])

This fills the B column sheet with

row B
0 x+y
1 x
2 y
3 1
4 1
5 2
.. ..
7 5
.. ..

5.15 Operators or infixed functions

An operator is an infixed function.

5.15.1 Usual operators :+, -, *, /, ˆ

+, -, *, /, ˆ are the operators to do additions, subtractions, multiplica-
tions, divisions and for raising to a power.

5.15.2 Xcas operators

• $ is the infixed version of seq, for example :
(2^k)$(k=0..3)= seq(2^k,k=0..3)=(1,2,4,8) (do not forget
to put parenthesis around the arguments),

• mod or % to define a modular number,

• @ to compose functions for example : (f@g)(x)=f(g(x)),

• @@ to compose a function many times (like a power, replacing multiplica-
tion by composition), for example : (f@@3)(x)=f(f(f(x))),

• minus union intersect to get the difference, the union and the inter-
section of two sets,

• -> to define a function,

176 CHAPTER 5. THE CAS FUNCTIONS

• := => to store an expression in a variable (it is the infixed version of sto
and the argument order is permuted for :=), for example : a:=2 or 2=>a
or sto(2,a).

• =< to store an expression in a variable, but the storage is done by reference
if the target is a matrix element or a list element. This is faster if you modify
objects inside an existing list or matrix of large size, because no copy is
made, the change is done in place. Use with care, all objects pointing to this
matrix or list will be modified.

5.15.3 Define an operator: user_operator

user_operator takes as argument :

• a string : the name of the operator,

• a function of two variables with values in R or in true, false,

• an option Binary for the definition or Delete to delete this definition.

user_operator returns 1 if the definition is done and else returns 0.
Example 1

Let R be defined on R by x R y = x ∗ y + x+ y.
To define the law R, input :

user_operator("R",(x,y)->x*y+x+y,Binary)

Output :

1

Input :

5 R 7

Do not forget to put spaces around R.
Output :

47

Example 2
Let S be defined on N by :
for x and y integers, x S y <=> x and y are not coprime.
To define the law S, input :

user_operator("S",(x,y)->(gcd(x,y))!=1,Binary)

Output :

1

Input :

5 S 7

5.16. FUNCTIONS AND EXPRESSIONS WITH SYMBOLIC VARIABLES177

Do not forget to put spaces around S.
Output :

0

Input :

8 S 12

Do not forget to put spaces around S.
Output :

1

5.16 Functions and expressions with symbolic variables

5.16.1 The difference between a function and an expression

A function f is defined for example by :
f(x):=x^2-1 or by f:=x->x^2-1
that is to say, for all x, f(x) is equal to the expression x2 − 1. In that case, to have
the value of f for x = 2, input :f(2).
But if the input is g:=x^2-1, then g is a variable where the expression x2 − 1 is
stored. In that case, to have the value of g for x = 2, input : subst(g,x=2) (g
is an expression depending on x).

When a command expects a function as argument, this argument should be
either the definition of the function (e.g. x->x^2-1) or a variable name assigned
to a function (e.g. f previously defined by e.g. f(x):=x^2-1).
When a command expects an expression as argument, this argument should be
either the definition of the expression (for example x^2-1), or a variable name
assigned to an expression (e.g. g previously defined, for example, by g:=x^2-1),
or the evaluation of a function. e.g. f(x) if f is a previously defined function, for
example, by f(x):=x^2-1).

5.16.2 Transform an expression into a function : unapply

unapply is used to transform an expression into a function.
unapply takes two arguments an expression and the name of a variable.
unapply returns the function defined by this expression and this variable.

Warning when a function is defined, the right member of the assignment is
not evaluated, hence g:=sin(x+1); f(x):=g does not defined the function
f : x → sin(x + 1) but defines the function f : x → g. To defined the former
function, unapply should be used, like in the following example:
Input :

g:= sin(x+1); f:=unapply(g,x)

Output :

(sin(x+1), (x)->sin(x+1))

178 CHAPTER 5. THE CAS FUNCTIONS

hence, the variable g is assigned to a symbolic expression and the variable f is
assigned to a function.
Input :

unapply(exp(x+2),x)

Output :

(x)->exp(x+2)

Input :

f:=unapply(lagrange([1,2,3],[4,8,12]),x)

Output :

(x)->4+4*(x-1)

Input :

f:=unapply(integrate(log(t),t,1,x),x)

Output :

(x)->x*log(x)-x+1

Input :

f:=unapply(integrate(log(t),t,1,x),x)

f(x)

Output :

x*log(x)-x+1

Remark Suppose that f is a function of 2 variables f : (x,w) → f(x,w), and
that g is the function defined by g : w → hw where hw is the function defined by
hw(x) = f(x,w).
unapply is also used to define g with Xcas.
Input :

f(x,w):=2*x+w

g(w):=unapply(f(x,w),x)

g(3)

Output :

x->2·x+3

5.16. FUNCTIONS AND EXPRESSIONS WITH SYMBOLIC VARIABLES179

5.16.3 Top and leaves of an expression : sommet feuille op

An operator is an infixed function : for example ’+’ is an operator and ’sin’ is a
function.
An expression can be represented by a tree. The top of the tree is either an operator,
or a function and the leaves of the tree are the arguments of the operator or of the
function (see also 5.43.15).
The instruction sommet (resp. feuille (or op)) returns the top (resp. the list of
the leaves) of an expression.
Input :

sommet(sin(x+2))

Output :

’sin’

Input :

sommet(x+2*y)

Output :

’+’

Input :

feuille(sin(x+2))

or :

op(sin(x+2))

Output :

x+2

Input :

feuille(x+2*y)

or :

op(x+2*y)

Output :

(x,2*y)

Remark
Suppose that a function is defined by a program, for example let us define the pgcd
function :

pgcd(a,b):={local r; while (b!=0)
{r:=irem(a,b);a:=b;b:=r;} return a;}

Then input :

180 CHAPTER 5. THE CAS FUNCTIONS

sommet(pgcd)

Output :

’program’

Then input :

feuille(pgcd)[0]

Output :

(a,b)

Then input :

feuille(pgcd)[1]

Output :

(0,0) or (15,25) if the last input was pgcd(15,25)

Then input :

feuille(pgcd)[2]

Output :

The body of the program : {local r;....return(a);}

5.17 Functions

5.17.1 Context-dependent functions.

Operators + and -

+ (resp. -) is an infixed function and ’+’ (resp. ’-’) is a prefixed function. The
result depends on the nature of its arguments.
Examples with + (all examples except the last one work also with - instead of +) :

• input (1,2)+(3,4) or (1,2,3)+4 or 1+2+3+4 or ’+’(1,2,3,4), output 10,

• input 1+i+2+3*i or ’+’(1,i,2,3*i), output 3+4*i,

• input [1,2,3]+[4,1] or [1,2,3]+[4,1,0] or ’+’([1,2,3],[4,1]), output [5,3,3],

• input [1,2]+[3,4] or ’+’([1,2],[3,4]), output [4,6],

• input [[1,2],[3,4]]+ [[1,2],[3,4]], output [[2,4],[6,8]],

• input [1,2,3]+4 or ’+’([1,2,3],4), output poly1[1,2,7],

• input [1,2,3]+(4,1) or ’+’([1,2,3],4,1), output poly1[1,2,8],

• input "Hel"+"lo" or ’+’("Hel","lo"), output "Hello".

5.17. FUNCTIONS 181

Operator *

* is an infixed function and ’*’ is a prefixed function. The result depends on the
nature of its arguments.
Examples with * :

• input (1,2)*(3,4) or (1,2,3)*4 or 1*2*3*4 or ’*’(1,2,3,4), output 24,

• input 1*i*2*3*i or ’*’(1,i,2,3*i), output -6,

• input [10,2,3]*[4,1] or [10,2,3]*[4,1,0] or ’*’([10,2,3],[4,1]), output 42 (scalar
product),

• input [1,2]*[3,4] or ’*’([1,2],[3,4]), output 11 (scalar product),

• input [[1,2],[3,4]]* [[1,2],[3,4]], output [[7,10],[15,22]],

• input [1,2,3]*4 or ’*’([1,2,3],4), output [4,8,12],

• input [1,2,3]*(4,2) or ’*’([1,2,3],4,2) or [1,2,3]*8, output [8,16,24],

• input (1,2)+i*(2,3) or 1+2+i*2*3, output 3+6*i.

Operator /

/ is an infixed function and ’/’ is a prefixed function. The result depends of the
nature of its arguments.
Examples with / :

• input [10,2,3]/[4,1], output invalid dim

• input [1,2]/[3,4] or ’/’([1,2],[3,4]), output [1/3,1/2],

• input 1/[[1,2],[3,4]] or ’/’(1,[[1,2],[3,4]], output [[-2,1],[3/2,(-1)/2]],

• input [[1,2],[3,4]]*1/ [[1,2],[3,4]], output [[1,0],[0,1]],

• input [[1,2],[3,4]]/ [[1,2],[3,4]], output [[1,1],[1,1]] (division term by term),

5.17.2 Usual functions

• max takes as argument two real numbers and returns their maximum,

• min takes as argument two real numbers and returns their minimum,

• abs takes as argument a complex number and returns the modulus of the
complex parameter (the absolute value if the complex is real),

• sign takes as argument a real number and returns its sign (+1 if it is positive,
0 if it is null, and -1 if it is negative),

• floor (or iPart) takes as argument a real number r, and returns the
largest integer ≤ r,

• round takes as argument a real number and returns its nearest integer,

182 CHAPTER 5. THE CAS FUNCTIONS

• ceil or ceiling takes as argument a real number and returns the smallest
integer ≥ r

• frac (or fPart) takes as argument a real number and returns its fractional
part,

• trunc takes as argument a real number and returns the integer equal to the
real without its fractional part,

• id is the identity function,

• sq is the square function,

• sqrt is the squareroot function,

• surd takes two arguments, numbers x and n and returns the nth root of x.

• exp is the exponential function,

• log or ln is the natural logarithm function,

• log10 is the base-10 logarithm function,

• logb is the logarithm function where the second argument is the base of the
logarithm: logb(7,10)=log10(7)=log(7)/log(10),

• sin (resp. cos, tan) is the sinus function, cosinus function, tangent func-
tion,

• cot, sec, csc are the cotangent, secant, cosecant function

• asin (or arcsin), acos (or arccos), atan (or arctan), acot, asec,
acsc are the inverse trigonometric functions (see section 5.24.1 for more
info on trigonometric functions)

• sinh (resp. cosh, tanh) is the hyperbolic sinus function, cosinus func-
tion, tangent function,

• asinh or arcsinh (resp. acosh or arccosh, atanh or arctanh) is
the inverse function of sinh (resp. cosh, tanh)

5.17.3 Defining algebraic functions

Defining a function from Rp to R

For p = 1, e.g. for f : (x)→ x ∗ sin(x), input :

f(x):=x*sin(x)

or :

f:=x->x*sin(x)

Output :

(x)->x*sin(x)

5.17. FUNCTIONS 183

If p > 1, e.g. for f : (x, y)→ x ∗ sin(y), input :

f(x,y):=x*sin(y)

or :

f:=(x,y)->x*sin(y)

Output :

(x,y)->x*sin(y)

Warning !!! the expression after -> is not evaluated. You should use unapply
if you expect the second member to be evaluated before the function is defined.

Defining a function from Rp to Rq

For example:

• To define the function h : (x, y)→ (x ∗ cos(y), x ∗ sin(y)).
Input :

h(x,y):=(x*cos(y),x*sin(y))

Output :

(x,y)->{
x*cos(y),x*sin(y);

}"

• To define the function h : (x, y)→ [x ∗ cos(y), x ∗ sin(y)].
Input :

h(x,y):=[x*cos(y),x*sin(y)];

or :

h:=(x,y)->[x*cos(y),x*sin(y)];

or :

h(x,y):={[x*cos(y),x*sin(y)]};

or :

h:=(x,y)->return[x*cos(y),x*sin(y)];

or :

h(x,y):={return [x*cos(y),x*sin(y)];}

Output :

(x,y)->{return([x*cos(y),x*sin(y)]);}

Warning !!! The expression after -> is not evaluated.

184 CHAPTER 5. THE CAS FUNCTIONS

Defining families of function from Rp−1 to Rq using a function from Rp to Rq

Suppose that the function f : (x, y)→ f(x, y) is defined, and we want to define a
family of functions g(t) such that g(t)(y) := f(t, y) (i.e. t is viewed as a parame-
ter). Since the expression after -> (or :=) is not evaluated, we should not define
g(t) by g(t):=y->f(t,y), we have to use the unapply command.

For example, assuming that f : (x, y) → x sin(y) and g(t) : y → f(t, y),
input :

f(x,y):=x*sin(y);g(t):=unapply(f(t,y),y)

Output :

((x,y)->x*sin(y), (t)->unapply(f(t,y),y))

Input :

g(2)

Output :

y->2· sin(y)

Input :

g(2)(1)

Output :

2· sin(1)

Next example, suppose that the function h : (x, y)→ [x ∗ cos(y), x ∗ sin(y)] is
defined, and we want to define the family of functions k(t) having t as parameter
such that k(t)(y) := h(t, y). To define the function h(x, y), input :

h(x,y):=(x*cos(y),x*sin(y))

To define properly the function k(t), input :

k(t):=unapply(h(x,t),x)

Output :

(t)->unapply(h(x,t),x)

Input :

k(2)

Output :

(x)->(x*cos(2),x*sin(2))

Input :

k(2)(1)

Output :

(2*cos(1),2*sin(1))

5.17. FUNCTIONS 185

5.17.4 Composition of two functions: @

With Xcas, the composition of functions is done with the infixed operator @.
Input :

(sq@sin+id)(x)

Output :

(sin(x))^2+x

Input :

(sin@sin)(pi/2)

Output :

sin(1)

5.17.5 Repeated function composition: @@

With Xcas, the repeated composition of a function with itself n ∈ N times is done
with the infixed operator @@.
Input :

(sin@@3)(x)

Output :

sin(sin(sin(x)))

Input :

(sin@@2)(pi/2)

Output :

sin(1)

5.17.6 Define a function with the history : as_function_of

If an entry defines the variable a and if a later entry defines the variable b (supposed
to be dependent on a), then c:=as_function_of(b,a) will define a function
c such that c(a)=b.
Input :

a:=sin(x)

Output :

sin(x)

Input :

b:=sqrt(1+a^2)

Output :

186 CHAPTER 5. THE CAS FUNCTIONS

sqrt(1+sin(x)^2)

Input :

c:=as_function_of(b,a)

Output :

(a)->
{ local NULL;
return(sqrt(1+a^2));
}

Input :

c(x)

Output :

sqrt(1+x^2)

Input :

a:=2

Output :

2

Input :

b:=1+a^2

Output :

5

Input :

c:=as_function_of(b,a)

Output :

(a)->
{ local NULL;
return(sqrt(1+a^2));
}

Input :

c(x)

Output :

1+x^2

5.18. FUNCTIONS FROM R TO R 187

Warning !!
If the variable b has been assigned several times, the first assignment of b following
the last assignment of a will be used. Moreover, the order used is the order of
validation of the commandlines, which may not be reflected by the Xcas interface
if you reused previous commandlines.
Input for example :
a:=2 then
b:=2*a+1 then
b:=3*a+2 then
c:=as_function_of(b,a)
Output :

(a)-> {local NULL; return(2*a+1);}

i.e. c(x) is equal to 2*x+1.
But, input :
a:=2 then
b:=2*a+1 then
a:=2 then
b:=3*a+2 then
c:=as_function_of(b,a)
Output :

(a)-> {local NULL; return(3*a+2);}

i.e. c(x) is equal to 3*x+2.
Hence the line where a is defined must be reevaluated before the good definition
of b.

5.18 Functions from R to R

5.18.1 The domain of a function: domain

The domain command takes one or two arguments. The first argument is an
expression involving a single variable. If the variable is not x, the variable used
should be the second argument.
domain returns the domain of the function defined by the expression.
Input:

domain(ln(x+1))

Output:

x>-1

Input:

domain(asin(2*t),t)

Output:

((t>=(-1/2)) and (t<=(1/2)))

188 CHAPTER 5. THE CAS FUNCTIONS

5.18.2 Table of variations of a function: tabvar

The tabvar command takes one mandatory argument and one optional argument.
The mandatory argument is an expression of a single variable, and the second ar-
gument is the variable.
tabvar returns the table of variations of the function f(x) = expr and draws
the graph on the DispG screen, accessible with the menu CfgIShowIDispG.
Input:

tabvar(xˆ2 - x - 2,x)

Output:

• The first row, the x row, gives the endpoint of subintervals of the domain. In
this case, the subintervals go from −∞ to 1/2 and from 1/2 to∞.

• The second row, the y’ row, gives the values of the derivative at the values
in the first row (or limits, in the case of ±∞), and between them the sign (+
or −) of the derivative in the corresponding subinterval.

• The third row, the y row, gives the values of the function at the values in the
first row, and between them whether the function is increasing or decreasing
in the corresponding subinterval.

• The fourth row, the y” row, gives the values of the second derivative at the
values in the first row, and between them whether the graph is concave up or
concave down in the subinterval.

Input:

tabvar((2*t-1)/(t-1),t)

Output:

Note that in this case, the value 1 appears twice in the first row, so that both one-
sided limits of y can be displayed at the vertical asymptote t = 1. The values of 2
for y at −∞ and∞ indicate a horizontal asymptote of y = 2.

5.19. DERIVATION AND APPLICATIONS. 189

5.19 Derivation and applications.

5.19.1 Functional derivative : function_diff

function_diff takes a function as argument.
function_diff returns the derivative function of this function.
Input :

function_diff(sin)

Output :

(‘ x‘)->cos(‘ x‘)

Input :

function_diff(sin)(x)

Output :

cos(x)

Input :

f(x):=x^2+x*cos(x)

function_diff(f)

Output :

(‘ x‘)->2*‘ x‘+cos(‘ x‘)+‘ x‘*(-(sin(‘ x‘)))

Input :

function_diff(f)(x)

Output :

cos(x)+x*(-(sin(x)))+2*x

To define the function g as f ′, input :

g:=function_diff(f)

The function_diff instruction has the same effect as using the expression
derivative in conjunction with unapply :

g:=unapply(diff(f(x),x),x)

g(x)

Output :

cos(x)+x*(-(sin(x)))+2*x

Warning !!!
In Maple mode, for compatibility, D may be used in place of function_diff.
For this reason, it is impossible to assign a variable named D in Maple mode
(hence you can not name a geometric object D).

190 CHAPTER 5. THE CAS FUNCTIONS

5.19.2 Length of an arc : arcLen

arcLen takes four arguments : an expression ex (resp. a list of two expressions
[ex1, ex2]), the name of a parameter and two values a and b of this parameter.
arcLen computes the length of the curve define by the equation y = f(x) = ex
(resp. by x = ex1, y = ex2) when the parameter values varies from a to b, using
the formula arcLen(f(x),x,a,b)=
integrate(sqrt(diff(f(x),x)^2+1),x,a,b)
or
integrate(sqrt(diff(x(t),t)^2+diff(y(t),t)^2),t,a,b).

Examples

• Compute the length of the parabola y = x2 from x = 0 to x = 1.
Input :

arcLen(x^2,x,0,1)

or

arcLen([t,t^2],t,0,1)

Output :

-1/4*log(sqrt(5)-2)-(-(sqrt(5)))/2

• Compute the length of the curve y = cosh(x) from x = 0 to x = ln(2).
Input :

arcLen(cosh(x),x,0,log(2))

Output :

3/4

• Compute the length of the circle x = cos(t), y = sin(t) from t = 0 to
t = 2 ∗ π.
Input :

arcLen([cos(t),sin(t)],t,0,2*pi)

Output :

2*pi

Alternatively, the arcLen command can take a single argument of a geometric
curve defined in one of the graphics chapters (chapters 12 and 13).
Input:

arcLen(circle(0,1,0,pi/2))

5.19. DERIVATION AND APPLICATIONS. 191

Output:

1/2*pi

Input:

arcLen(arc(0,1,pi/2))

Output:

sqrt(2)/4*pi

5.19.3 Maximum and minimum of an expression: fMax fMin

fMax and fMin take one or two arguments : an expression of a variable and the
name of this variable (by default x).
fMax returns the abscissa of a maximum of the expression.
fMin returns the abscissa of a minimum of the expression.
Input :

fMax(sin(x),x)

Or :

fMax(sin(x))

Or :

fMax(sin(y),y)

Output :

pi/2

Input :

fMin(sin(x),x)

Or :

fMin(sin(x))

Or :

fMin(sin(y),y)

Output :

-pi/2

Input :

fMin(sin(x)^2,x)

Output :

0

192 CHAPTER 5. THE CAS FUNCTIONS

fMax and fMin can also compute the maximum resp. minimum of a nonlin-
ear multivariate expression subject to a set of nonlinear equality and/or inequality
constraints. Both functions in such cases take four to six arguments:

• objective function (an expression)

• list of constraints (equalities and inequalities)

• list of problem variables

• initial guess (must be a list of nonzero reals representing a feasible point)

• precision (optional), if not given the default epsilon value is used

• maximum number of iterations (optional)

The objective function does not need to be differentiable. Both fMin and fMax
return the optimal solution as a vector. Note that the actual optimal value of the
objective is not returned.

Although the initial point is required to be feasible, the algorithm will some-
times succeed even if it is infeasible. Note that the initial value of a variable must
not be zero.

For example, input :

fMin((x-5)^2+y^2-25,[y>=x^2],[x,y],[1,1])

Output :

[1.2347728624961,1.5246640219568]

Input :

fMax((x-2)^2+(y-1)^2,[-.25x^2-y^2+1>=0,x-2y+1=0],
[x,y],[.5,.75])

Output :

[-1.82287565553,-0.411437827766]

5.19.4 Table of values and graph : tablefunc and plotfunc

tablefunc is a special command that should be run from inside the spreadsheet.
It returns the evaluation of an expression ex depending on a variable x for x =
x0, x0 + h, :

tablefunc(ex,x,x_0,h) or tablefunc(ex,x)

In the latter case, the default value for x0 is the default minimum value of x from
the graphic configuration and the default value for the step h is 0.1 times the dif-
ference between the default maximum and minimum values of x (from the graphic
configuration).
Example: type Alt+t to open a spreadsheet if none are open. Then select a cell
of the spreadsheet (for example C0) and to get the table of "sinus", input in the
command line of the spreadsheet :

5.19. DERIVATION AND APPLICATIONS. 193

tablefunc(sin(x),x)

This will fill two columns with the numeric value of x and sin(x) :

• in the first column the variable x, the value of the step h (1.0), the minimum
value of x (-5.0), then a formula, for example =C2+C$1, and the remaining
rows of the column is filled by pasting this formula.

• in the next column the function sin(x), the word "Tablefunc", a formula,
for example =evalf(subst(D$0,C$0,C2)), and the remaining rows
of the column are filled by pasting this formula.

Hence the values of sin(x) are on the same rows as the values of x. Note that
the step and begin value and the expression may be easily changed by modifying
the correspondent cell.

The graphic representation may be plotted with the plotfunc command (see
7.4.1).

5.19.5 Derivative and partial derivative

diff or derive may have one or two arguments to compute a first order deriva-
tive (or first order partial derivative) of an expression or of a list of expressions, or
several arguments to compute the n-th partial derivative of an expression or list of
expressions.

Derivative and first order partial derivative : diff derive deriver

diff (or derive) takes two arguments : an expression and a variable (resp.
a vector of variable names) (see several variable functions in 5.59). If only one
argument is provided, the derivative is taken with respect to x
diff (or derive) returns the derivative (resp. a vector of derivatives) of the
expression with respect to the variable (resp. with respect to each variable) given
as second argument.
Examples :

• Compute :
∂(xy2z3 + xyz)

∂z
Input :

diff(x*y^2*z^3+x*y*z,z)

Output :

x*y^2*3*z^2+x*y

• Compute the 3 first order partial derivatives of x ∗ y2 ∗ z3 + x ∗ y ∗ z.
Input :

diff(x*y^2*z^3+x*y,[x,y,z])

Output :

[y^2*z^3+y*z, x*2*y*z^3+x*z, x*y^2*3*z^2+x*y]

194 CHAPTER 5. THE CAS FUNCTIONS

Derivative and n-th order partial derivative : diff derive deriver

derive (or diff) may take more than two arguments : an expression and the
names of the derivation variables (each variable may be followed by $n to indicate
the number n of derivations).
diff returns the partial derivative of the expression with respect to the variables
given after the first argument.

The notation $ is useful if you want to derive k times with respect to the same
variable, instead of entering k times the same variable name, one enters the variable
name followed by $k, for example x$3 instead of (x,x,x). Each variable may
be followed by a $, for example diff(exp(x*y),x$3,y$2,z) is the same as
diff(exp(x*y),x,x,x,y,y,z)
Examples

• Compute :
∂2(xy2z3 + xyz)

∂x∂z

Input :

diff(x*y^2*z^3+x*y*z,x,z)

Output :

y^2*3*z^2+y

• Compute :
∂3(xy2z3 + xyz)

∂x∂2z

Input :

diff(x*y^2*z^3+x*y*z,x,z,z)

or :

diff(x*y^2*z^3+x*y*z,x,z$2)

Output :

y^2*3*2*z

• Compute the third derivative of :

1

x2 + 2

Input :

normal(diff((1)/(x^2+2),x,x,x))

or :

5.19. DERIVATION AND APPLICATIONS. 195

normal(diff((1)/(x^2+2),x$3))

Output :

(-24*x^3+48*x)/(x^8+8*x^6+24*x^4+32*x^2+16)

Remark

• Note the difference between diff(f,x,y) and diff(f,[x,y]) :

diff(f, x, y) returns
∂2(f)

∂x∂y
and

diff(f, [x, y]) returns [
∂(f)

∂x
,
∂(f)

∂y
]

• Never define a derivative function with f1(x):=diff(f(x),x). Indeed,
x would mean two different things Xcas is unable to deal with: the variable
name to define the f1 function and the differentiation variable. The right way
to define a derivative is either with function_diff or:

f1:=unapply(diff(f(x),x),x)

5.19.6 Implicit differentiation : implicitdiff

implicitdiff is called with one of the following three sets of parameters :

1. expr, constr, depvars, diffvars

2. constr, [depvars], y, diffvars

3. expr, constr, vars, order_size=k, [pt]

Details on parameters :

• expr : differentiable expression f(x1, x2, . . . , xn, y1, y2, . . . , ym)

• constr : (list of) equality constraint(s) gi(x1, . . . , xn, y1, . . . , ym) = 0 or
vanishing expression(s) gi, where i = 1, 2, . . . ,m

• depvars : (list of) dependent variable(s) y1, y2, . . . , ym, each of which
may be entered as a symbol, e.g. yi, or a function of independent variable(s),
e.g. yi(x1,x2,..,xn)

• diffvars : sequence of variables xi1 , xi2 , . . . , xik with respect to which
is expr differentiated

• vars : independent and dependent variables entered as symbols in single
list such that dependent variables come last, e.g. [x1,..,xn,y1,..,ym]

• y : (list of) dependent variable(s) yj1 , yj2 , . . . , yjl that need to be differenti-
ated

196 CHAPTER 5. THE CAS FUNCTIONS

Dependent variables y1, y2, . . . , ym are implicitly defined with m constraints in
constr. By implicit function theorem, the Jacobian matrix of g = (g1, g2, . . . , gm)
has to be full rank.

When calling implicitdiff, first two sets of parameters are used when
specific partial derivative is needed. In the first case, expr is differentiated with
respect to diffvars.
Input :

implicitdiff(x*y,-2x^3+15x^2*y+11y^3-24y=0,y(x),x)

Output :

(2*x^3-5*x^2*y+11*y^3-8*y)/(5*x^2+11*y^2-8)

In the second case (elements of) y is differentiated. If y is a list of symbols, a list
containing their derivatives will be returned. The following examples compute d y

dx .
Input :

implicitdiff(x^2*y+y^2=1,y,x)

Output :

-2*x*y/(x^2+2*y)

Input :

implicitdiff([x^2+y=z,x+y*z=1],[y(x),z(x)],y,x)

Output :

(-2*x*y-1)/(y+z)

In the next example, d y
dx and d z

dx are computed.
Input :

implicitdiff([-2x*z+y^2=1,x^2-exp(x*z)=y],
[y(x),z(x)],[y,z],x)

Output :

[2*x/(y*exp(x*z)+1),
(2*x*y-y*z*exp(x*z)-z)/(x*y*exp(x*z)+x)]

For the third case of input syntax, all partial derivatives of order equal to
order_size, i.e. k, are computed. If k = 1 they are returned in a single list,
which represents the gradient of expr with respect to independent variables. For
k = 2 the corresponding hessian matrix is returned. When k > 2, a table with
keys in form [k1,k2,..,kn], where

∑n
i=1 ki = k, is returned. Such key cor-

responds to
∂kf

∂xk11 ∂xk22 · · · ∂x
kn
n

.

Input :

f:=x*y*z; g:=-2x^3+15x^2*y+11y^3-24y=0;
implicitdiff(f,g,[x,z,y],order_size=1)

5.20. INTEGRATION 197

Output :

[(2*x^3*z-5*x^2*y*z+11*y^3*z-8*y*z)/(5*x^2+11*y^2-8),
x*y]

Input :

implicitdiff(f,g,order_size=2,[1,-1,0])

Output :

[[64/9,-2/3],[-2/3,0]]

In the next example, the value of ∂
4f
∂x4

is computed at point (x = 0, y = 0, z).
Input :

pd:=implicitdiff(f,g,[x,z,y],order_size=4,[0,z,0]);
pd[4,0]

Output :

-2*z

5.20 Integration

5.20.1 Antiderivative and definite integral : integrate int Int

integrate (or int) computes a primitive or a definite integral. A difference
between the two commands is that if you input quest() just after the evaluation
of integrate, the answer is written with the

∫
symbol.

integrate (or int or Int) takes one, two or four arguments.

• with one or two arguments
an expression or an expression and the name of a variable (by default x),
integrate (or int) returns a primitive of the expression with respect to
the variable given as second argument.
Input :

integrate(x^2)

Output :

x^3/3

Input :

integrate(t^2,t)

Output :

t^3/3

198 CHAPTER 5. THE CAS FUNCTIONS

• with four arguments :
an expression, a name of a variable and the bounds of the definite integral,
integrate (or int) returns the exact value of the definite integral if the
computation was successful or an unevaluated integral otherwise.
Input :

integrate(x^2,x,1,2)

Output :

7/3

Input :

integrate(1/(sin(x)+2),x,0,2*pi)

Output after simplification (with the simplify command) :

2*pi*sqrt(3)/3

Int is the inert form of integrate, it prevents evaluation for example to
avoid a symbolic computation that might not be successful if you just want a nu-
meric evaluation.
Input :

evalf(Int(exp(x^2),x,0,1))

or :

evalf(int(exp(x^2),x,0,1))

Output :

1.46265174591

Exercise 1
Let

f(x) =
x

x2 − 1
+ ln(

x+ 1

x− 1
)

Find a primitive of f .
Input :

int(x/(x^2-1)+ln((x+1)/(x-1)))

Output :

x*log((x+1)/(x-1))+log(x^2-1)+1/2*log(2*x^2/2-1)

Or define the function f, input :

f(x):=x/(x^2-1)+ln((x+1)/(x-1))

then input :

5.20. INTEGRATION 199

int(f(x))

Output of course the same result.
Warning
For Xcas, log is the natural logarithm (like ln), as log10 is 10-basis logarithm

Exercise 2
Compute : ∫

2

x6 + 2 · x4 + x2
dx

Input :

int(2/(x^6+2*x^4+x^2))

Output :

2*((3*x^2+2)/(-(2*(x^3+x)))+-3/2*atan(x))

Exercise 3
Compute : ∫

1

sin(x) + sin(2 · x)
dx

Input :

integrate(1/(sin(x)+sin(2*x)))

Output :

(1/-3*log((tan(x/2))^2-3)+1/12*log((tan(x/2))^2))*2

5.20.2 Primitive and definite integral : risch

The risch command takes one mandatory argument and three optional argu-
ments. The first argument is an expression to be integrated. If the variable is
not x, then the second argument is the variable. The third and fourth arguments are
the limits of integration for when you want a definite integral.
risch returns a primitive (with one or two arguments) or a definite integral (with
four arguments).
Input:

risch(x^2)

Output:

x^3/3

Input:

risch(x^2,x,0,1)

Output:

1/3

Input:

200 CHAPTER 5. THE CAS FUNCTIONS

risch(t^2,t)

Output:

t^3/3

Input :

risch(exp(-x^2))

Output :

integrate(exp(x^2),x)

that is to say that exp(−x2) has no primitive expressed with usual functions.

5.20.3 Discrete summation: sum

sum takes two or four arguments :

• four arguments
an expression, the name of the variable (for example n), and the bounds (for
example a and b).
sum returns the discrete sum of this expression with respect to the variable
from a to b.
Input :

sum(1,k,-2,n)

Output :

n+1+2

Input :

normal(sum(2*k-1,k,1,n))

Output :

n^2

Input :

sum(1/(n^2),n,1,10)

Output :

1968329/1270080

Input :

sum(1/(n^2),n,1,+(infinity))

5.20. INTEGRATION 201

Output :

pi^2/6

Input :

sum(1/(n^3-n),n,2,10)

Output :

27/110

Input :

sum(1/(n^3-n),n,1,+(infinity))

Output :

1/4

This result comes from the decomposition of 1/(n^3− n).
Input :

partfrac(1/(n^3-n))

Output :

1/(2*(n+1))-1/n+1/(2*(n-1))

Hence :
N∑
n=2

− 1

n
= −

N−1∑
n=1

1

n+ 1
= −1

2
−
N−2∑
n=2

1

n+ 1
− 1

N

1

2
∗

N∑
n=2

1

n− 1
=

1

2
∗ (

N−2∑
n=0

1

n+ 1
) =

1

2
∗ (1 +

1

2
+

N−2∑
n=2

1

n+ 1
)

1

2
∗

N∑
n=2

1

n+ 1
=

1

2
∗ (

N−2∑
n=2

1

n+ 1
+

1

N
+

1

N + 1
)

After simplification by
∑N−2

n=2 , it remains :

−1

2
+

1

2
∗ (1 +

1

2
)− 1

N
+

1

2
∗ (

1

N
+

1

N + 1
) =

1

4
− 1

2N(N + 1)
Therefore :

– for N = 10 the sum is equal to : 1/4− 1/220 = 27/110

– for N = +∞ the sum is equal to : 1/4 because 1
2N(N+1) approaches

zero when N approaches infinity.

202 CHAPTER 5. THE CAS FUNCTIONS

• two arguments
an expression of one variable (for example f) and the name of this variable
(for example x).
sum returns the discrete antiderivative of this expression, i.e. an expression
G such that G|x=n+1 −G|x=n = f|x=n.
Input :

sum(1/(x*(x+1)),x)

Output :

-1/x

5.20.4 Riemann sum : sum_riemann

sum_riemann takes two arguments : an expression depending on two variables
and the list of the name of these two variables.
sum_riemann(expression(n,k),[n,k]) returns in the neighborhood of
n = +∞ an equivalent of

∑n
k=1 expression(n, k) (or of

∑n−1
k=0 expression(n, k)

or of
∑n−1

k=1 expression(n, k)) when the sum is looked on as a Riemann sum asso-
ciated to a continuous function defined on [0,1] or returns "it is probably
not a Riemann sum" when the no result is found.
Exercise 1

Suppose Sn =

n∑
k=1

k2

n3
.

Compute lim
n→+∞

Sn.

Input :

sum_riemann(k^2/n^3,[n,k])

Output :

1/3

Exercise 2

Suppose Sn =

n∑
k=1

k3

n4
.

Compute lim
n→+∞

Sn.

Input :

sum_riemann(k^3/n^4,[n,k])

Output :

1/4

Exercise 3
Compute lim

n→+∞
(

1

n+ 1
+

1

n+ 2
+ ...+

1

n+ n
).

Input :

sum_riemann(1/(n+k),[n,k])

5.20. INTEGRATION 203

Output :

log(2)

Exercise 4

Suppose Sn =
n∑
k=1

32n3

16n4 − k4
.

Compute lim
n→+∞

Sn.

Input :

sum_riemann(32*n^3/(16*n^4-k^4),[n,k])

Output :

2*atan(1/2)+log(3)

5.20.5 Integration by parts : ibpdv and ibpu

ibpdv

ibpdv is used to search the primitive of an expression written as u(x).v′(x).
ibpdv takes two arguments :

• an expression u(x)∗v′(x) and v(x) (or a list of two expressions [F (x), u(x)∗
v′(x)] and v(x)),

• or an expression g(x) and 0 (or a list of two expressions [F (x), g(x)] and 0).

ibpdv returns :

• if v(x) 6= 0, the list [u(x)v(x),−v(x)u′(x)] (or [F (x)+u(x)v(x),−v(x)u′(x)]),

• if the second argument is zero, a primitive of the first argument g(x) (or
F (x)+a primitive of g(x)) :
hence, ibpdv(g(x),0) returns a primitive G(x) of g(x) or
ibpdv([F(x),g(x)],0) returns F(x)+G(x)where diff(G(x))=g(x).

Hence, ibpdv returns the terms computed in an integration by parts, with the pos-
sibility of doing several ibpdvs successively.
When the answer of ibpdv(u(x)*v’(x),v(x)) is computed, to obtain a
primitive of u(x)v′(x), it remains to compute the integral of the second term of
this answer and then, to sum this integral with the first term of this answer : to do
this, just use ibpdv command with the answer as first argument and a new v(x)
(or 0 to terminate the integration) as second argument.
Input :

ibpdv(ln(x),x)

Output :

[x ln(x),-1]

then

ibpdv([x ln(x),-1],0)

204 CHAPTER 5. THE CAS FUNCTIONS

Output :

-x+x ln(x)

Remark
When the first argument of ibpdv is a list of two elements, ibpdv works only on
the last element of this list and adds the integrated term to the first element of this
list. (therefore it is possible to do several ibpdvs successively).
For example :
ibpdv((log(x))^2,x) = [x*(log(x))^2,-(2*log(x))]
it remains to integrate -(2*log(x)), the input :
ibpdv(ans(),x) or input :
ibpdv([x*(log(x))^2,-(2*log(x))],x)
Output :
[x*(log(x))^2+x*(-(2*log(x))),2]
and it remains to integrate 2, hence input ibpdv(ans(),0) or
ibpdv([x*(log(x))^2+x*(-(2*log(x))),2],0).
Output : x*(log(x))^2+x*(-(2*log(x)))+2*x

ibpu

ibpu is used to search the primitive of an expression written as u(x).v′(x) ibpu
takes two arguments :

• an expression u(x)∗v′(x) and u(x) (or a list of two expressions [F (x), u(x)∗
v′(x)] and u(x)),

• an expression g(x) and 0 (or a list of two expressions [F (x), g(x)] and 0).

ibpu returns :

• if u(x) 6= 0, the list [u(x) ∗ v(x),−v(x) ∗ u′(x)] (or returns the list [F (x) +
u(x) ∗ v(x),−v(x) ∗ u′(x)]),

• if the second argument is zero, a primitive of the first argument g(x) (or
F (x)+a primitive of g(x)):
ibpu(g(x),0) returns G(x) where diff(G(x))=g(x) or
ibpu([F(x),g(x)],0) returns F(x)+G(x)where diff(G(x))=g(x).

Hence, ibpu returns the terms computed in an integration by parts, with the pos-
sibility of doing several ibpus successively.
When the answer of ibpu(u(x)*v’(x),u(x)) is computed, to obtain a prim-
itive of u(x)v′(x), it remains to compute the integral of the second term of this
answer and then, to sum this integral with the first term of this answer : to do this,
just use ibpu command with the answer as first argument and a new u(x) (or 0 to
terminate the integration) as second argument.
Input :

ibpu(ln(x),ln(x))

Output :

[x*ln(x),-1]

5.21. CALCULUS OF VARIATIONS 205

then

ibpu([x*ln(x),-1],0)

Output :

-x+x*ln(x)

Remark
When the first argument of ibpu is a list of two elements, ibpu works only on
the last element of this list and adds the integrated term to the first element of this
list. (therefore it is possible to do several ibpus successively).
For example :
ibpu((log(x))^2,log(x)) = [x*(log(x))^2,-(2*log(x))]
it remains to integrate -(2*log(x)), hence input :
ibpu(ans(),log(x)) or input :
ibpu([x*(log(x))^2,-(2*log(x))],log(x))
Output :
[x*(log(x))^2+x*(-(2*log(x))),2]
it remains to integrate 2, hence input :
ibpu(ans(),0) or input :
ibpu([x*(log(x))^2+x*(-(2*log(x))),2],0).
Output : x*(log(x))^2+x*(-(2*log(x)))+2*x

5.20.6 Change of variables : subst

See the subst command in the section 5.13.20.

5.21 Calculus of variations

5.21.1 Determining whether a function is convex : convex

convex takes two mandatory arguments, an at least twice differentiable func-
tion(al) f : Rn → R and a variable or list of variables. Some variables may depend
on a common independent parameter, say t, when entered as e.g. x(t) instead of
x. The first derivatives of such variables, when encountered in f , are treated as
independent parameters of f .

The command returns a condition or list of conditions under which f is con-
vex. If f is convex on the entire domain, the return value is true. If it is nowhere
convex, the return value is false. Otherwise, the conditions are returned as in-
equalities which depend on the parameters of f . The returned inequalities are not
necessarily independent.

An optional third argument simplify=false or simplify=true may
be given. By default is simplify=true, which means that simplification is ap-
plied when generating convexity conditions. If simplify=false, only rational
normalization is performed (using the ratnormal command).

The command operates by computing the Hessian Hf of f and its principal
minors (in total 2n of them where n is the number of parameters) and checks their
signs. If all minors are nonnegative, then Hf is positive semidefinite and f is
therefore convex.

206 CHAPTER 5. THE CAS FUNCTIONS

The function f is said to be concave if the function g = −f is convex.
For example, input :

convex(3*exp(x)+5x^4-ln(x),x)

Output :

true

Input :

convex(x^2+y^2+3z^2-x*y+2x*z+y*z,[x,y,z])

Output :

true

Input :

convex(x1^3+2x1^2+2*x1*x2+x2^2/2-8x1-2x2-8,[x1,x2])

Output :

[(3*x1+2)>=0,x1>=0]

In the example below, the function f(x, y, z) = x2 +x z+a y z+ z2 is not convex
regardless of the value a ∈ R :

convex(x^2+x*z+a*y*z+z^2,[x,y,z])

Output :

false

In the next example we find all values a ∈ R for which the function

f(x, y, z) = x2 + 2 y2 + a z2 − 2x y + 2x z − 6 y z

is convex on R3. Input :

cond:=convex(x^2+2y^2+a*z^2-2x*y+2x*z-6y*z,[x,y,z])

Output :

[a>=0,(a-1)>=0,(2*a-9)>=0,(a-5)>=0]

The returned inequalities are simplified by solve :

solve(cond,a)

Output :

list[a>=5]

Therefore f is convex for a ≥ 5.
Let’s find the set S ⊂ R2 on which the function f : R2 → R defined by

f(x1, x2) = exp(x1) + exp(x2) + x1 x2

is convex. Input :

5.21. CALCULUS OF VARIATIONS 207

cond:=convex(exp(x1)+exp(x2)+x1*x2,[x1,x2]

Output :

(exp(x1)*exp(x2)-1)>=0

Input :

lin(cond)

Output :

(exp(x1+x2)-1)>=0

From here we conclude that f is convex when x1 + x2 ≥ 0. The sought set S is
therefore the half-space defined by this inequality.

The algorithm respects the assumptions that may be set upon variables. There-
fore, the convexity of a given function can be checked only on a particular domain.
For example, input :

assume(x1>0),assume(x2>0):;
convex(exp(x1)+exp(x2)+x1*x2,[x1,x2]

Output :

true

Input :

assume(x>=0 and x<=pi/4):;
convex(exp(y)*sec(x)^3-z,[x,y,z])

Output :

true

The Brachistochrone Problem. We want to minimize the objective functional

T (y) =

∫ x1

0
L(t, y(t), y′(t)) dt

where the Lagrangian L is defined by

L(t, y(t), y′(t)) =

√
1 + y′(t)2

2 g y(t)

for y : [0, x1] → R such that y(0) = y0 and y(x1) = 0 where x1 > 0 and
y0 > 0 are fixed (the constant g is the gravitational acceleration). This is called the
brachistochrone problem (the problem of shortest travel by own weight from the
point (0, y0) to (x1, 0)). By solving Euler-Lagrange equation one obtains a cycloid
y(t) as the only stationary function for L. The problem is to prove that it minimizes
T , which would be easy if the integrand L was convex. However, it’s not the case
here :

208 CHAPTER 5. THE CAS FUNCTIONS

assume(y>=0):; assume(g>0):;
convex(sqrt((1+y’^2)/(2*g*y)),y(t))

Output :

(-diff(y(t),t)^2+3)>=0

This is equivalent to |y′(t)| ≤
√

3, which is certainly not satisfied by the cycloid y
near the point x = 0.

Using the substitution y(t) = z(t)2/2 we obtain y′(t) = z′(t) z(t) and

L(t, y(t), y′(t)) = P (t, z(t), z′(t)) =

√
z(t)−2 + z′(t)2

g
.

The function P is convex :

assume(z>=0):; convex(sqrt((z^-2+z’^2)/g),z(t))

Output :

true

Hence the function z(t) =
√

2 y(t), stationary for P (which is verified directly),
minimizes the objective functional

U(z) =

∫ x1

0
P (t, z(t), z′(t)) dt.

From here and U(z) = T (y) it easily follows that y minimizes T and therefore
the brachistochrone. For details see John L. Troutman, Variational Calculus and
Optimal Control (second edition), page 257.

5.21.2 Euler-Lagrange equation(s) : euler_lagrange

euler_lagrange takes from one to three arguments :

• expression f(x, y, y′),

• independent variable (optional, by default x),

• dependent variable (optional, by default y).

If y ∈ Rn is required (by default n = 1), one can enter y = (y1, y2, . . . , yn) as a
vector [y1, y2, . . . , yn]. In that case, y′ := (y′1, y

′
2, . . . , y

′
n). Alternatively, one can

specify two arguments, f and either y(x) or [y1(x), y2(x), . . . , yn(x)].
The return value is a system of differential Euler-Lagrange equations, which

represent necessary conditions for extremum of the functional

F (y) =

∫ b

a
f(x, y, y′) dx, y ∈ C2[a, b]

with boundary conditions y(a) = A and y(b) = B where A,B ∈ R. If n = 1, a
single equation is returned :

∂f

∂y
=

d

dx

∂f

∂y′
. (5.1)

5.21. CALCULUS OF VARIATIONS 209

If n > 1, there are n Euler-Lagrange equations :

∂f

∂yk
=

d

dx

∂f

∂y′k
, k = 1, 2, . . . , n.

The degrees of these differential equations are kept as low as possible. If, for
example, ∂f∂y = 0, the equation ∂f

∂y′ = K is returned, where K ∈ R is an arbitrary
constant. Similarly, using the Hamiltonian

H(x, y, y′) = y′
∂

∂y′
f(x, y, y′)− f(x, y, y′)

the Euler-Lagrange equation is simplified in case n = 1 and ∂f
∂t = 0 to :

H(x, y, y′) = K, (5.2)

since it can be shown that d
dx H(y, y′, x) = 0. Therefore the Euler-Lagrange equa-

tions, which are generally of order two in y, are returned in simpler form of order
one in the aforementioned cases. If n = 1 and ∂f

∂t = 0 then both equations (5.1)
and (5.2) are returned, each of them being sufficient to determine y (one of the
returned equations is usually simpler than the other).

It can be proven that if f is convex (as a function of three independent vari-
ables), then a solution y to Euler-Lagrange equations minimizes the functional F .

For example, input :

euler_lagrange(sqrt(x’(t)^2+y’(t)^2),[x(t),y(t)])

We obtain a system of two differential equations of order one :
x′(t)√

x′(t)2+y′(t)2
= K0,

y′(t)√
x′(t)2+y′(t)2

= K1

where K0,K1 ∈ R are arbitrary (these constants are generated automatically).
In the following example we find the Euler-Lagrange equation for the brachis-

tochrone problem, in which the functional

F (y) =
1√
2 g

∫ x1

0

√
1 + y′(x)2

y(x)
dx

for some function y ≥ 0 such that y(0) = 0 and y(x1) = h > 0. It represents a
curve alongside which an object travels, forced by the force of gravity (its vector
pointing upwards), from the point (0, 0) to the point (x1, h) in shortest possible
time. To obtain the corresponding Euler-Lagrange equation, input :

assume(y>=0):; euler_lagrange(sqrt((1+y’^2)/y),t,y)

Output :

[-1/sqrt(y(t)*(1+diff(y(t),t)^2))=K_2,
diff(y(t),t,2)=(diff(y(t),t)^2+1)/(2*y(t))]

210 CHAPTER 5. THE CAS FUNCTIONS

It is easier to solve the first equation for y, since it is first-order and separable.
In the next example we minimize the functional F for 0 < a < b and

f(x, y, y′) = x2 y′(x)2 + y(x)2.

Input :

f:=x^2*diff(y(x),x)^2+y^2:; eq:=euler_lagrange(f)

We obtain the following Euler-Lagrange equation :

y′′ =
1

x2
(y − 2x y′).

It can be solved by assuming y(x) = xr for some r ∈ R. Input :

solve(subs(eq,y(x)=x^r),r)

Output :

[-(sqrt(5)+1)/2,(sqrt(5)-1)/2]

Note that a pair of independent solutions is also returned by kovacicsols com-
mand :

assume(x>=0):; kovacicsols(y’’=(y-2x*y’)/x^2,x,y)

Output :

[sqrt(x^(sqrt(5)-1)),sqrt(x^(-(sqrt(5))-1))]

Anyway, we conclude that y = C1 x
−
√
5+1
2 + C2 x

√
5+1
2 . The values of C1 and C2

are determined from the boundary conditions. Finally we prove that f is convex :

convex(f,y(x))

Output :

true

Therefore, y minimizes F on [a, b].
In the example below we find the function

y ∈

{
y ∈ C1

[
1

2
, 1

]
: y

(
1

2

)
= −
√

3

2
, y(1) = 0

}

which minimizes the functional

F (y) =

∫ 1

1/2

√
1 + y′(x)2

x
dx.

To obtain the corresponding Euler-Lagrange equation, input :

f:=sqrt(1+diff(y(x),x)^2)/x:; eq:=euler_lagrange(f)

Output :

5.21. CALCULUS OF VARIATIONS 211

diff(y(x),x)/(sqrt(diff(y(x),x)^2+1)*x)=K_3

Input :

sol:=dsolve(eq)

Output :

[c_0-(sqrt(-K_3^2*x^2+1))/K_3]

The sought solution is the function of the above form which satisfies the boundary
conditions. Input :

y0:=sol[0]:; c:=[K_3,c_0]:;
v:=solve([subs(y0,x=1/2)=-sqrt(3)/2,subs(y0,x=1)=0],c)

Output :

[[1,0]]

Input :

y0:=normal(subs(y0,c,v[0])

Output :

-sqrt(1-x^2)

To prove that y0(x) = −
√

1− x2 is indeed a minimizer for F , we show that the
integrand in F (y) is convex. Input :

convex(sqrt(1+y’^2)/x,y(x))

Output :

x>=0

Hence the integrand is convex for x ∈
[
1
2 , 1
]
.

Similarly, we find the minimizer for

F (y) =

∫ π

0

(
2 sin(x) y(x) + y′(x)2

)
dx

where y ∈ C1[0, π] and y(0) = y(π) = 0. Input :

f:=2*sin(x)*y(x)+diff(y(x),x)^2:;
eq:=euler_lagrange(f)

Output :

diff(y(x),x,2)=sin(x)

Input :

dsolve(eq and y(0)=0 and y(pi)=0,x,y)

Output :

212 CHAPTER 5. THE CAS FUNCTIONS

-sin(x)

The above function is the sought minimizer as the integrand f is convex :

convex(f,y(x))

Output :

true

In the next example we minimize the functionalF (y) =
∫ 1
0 (y′(x)4−4 y(x)) dx

on C1[0, 1] with boundary conditions y(0) = 1 and y(1) = 2. First we solve the
associated Euler-Lagrange equation :

eq:=euler_lagrange(y’^4-4y,x,y)

Output :

[(3*diff(y(x),x)^4+4*y(x))=K_4,
diff(y(x),x,2)=-1/(3*diff(y(x),x)^2)]

Input :

dsolve(eq[1] and y(0)=1 and y(1)=2,x,y)

Output :

[-3*(-x+1.52832425067)^(4/3)/4+2.32032831141]

We find that the integrand in F (y) is convex :

convex(y’^4-4y,[x,y])

Output :

true

Hence the minimizer is

y0(x) =
3

4
(1.52832425067− x)4/3 + 2.32032831141, 0 ≤ x ≤ 1.

5.21.3 Jacobi equation : jacobi_equation

jacobi_equation takes five or six arguments :

• expression f(y, y′, x),

• independent variable x,

• dependent variable y (this argument and the previous one can be combined
to a single argument y(x), in which case the call has five arguments),

• expression y0 ∈ C1[a, b] which is stationary for the functional F (y) =∫ b
a f(y, y′, x) dx,

• symbol h for the unknown function in Jacobi equation,

5.21. CALCULUS OF VARIATIONS 213

• point a ∈ R, which is the lower bound for x.

The return value contains the Jacobi equation

− d

dt

(
fy′ y′(y0, y

′
0, t)h

′)+

(
fy y(y0, y

′
0, t)−

d

dt
fy y′(y0, y

′
0, t)

)
h = 0. (5.3)

If the Jacobi equation has a solution such that h(a) = 0, h(c) = 0 for some
c ∈ (a, b] and h not identically zero on [a, c], then y0 does not minimize the
functional F . It is said that c is conjugate to a. The function y0 minimizes F
if fy′ y′(y0, y′0, t) > 0 for all t ∈ [a, b] and there are no points conjugate to a in
(a, b].

If the Jacobi equation can be solved by dsolve, a sequence containing the
equation (5.3) and its solution is returned. Otherwise, if (5.3) cannot be solved
immediately, only the Jacobi equation is returned.

For example, input :

jacobi_equation(-1/2*y’(t)^2+y(t)^2/2,t,y,sin(t),h,0)

Output :

(-diff(h(t),t,2)-h(t))=0, c_0*sin(t)

5.21.4 Finding conjugate points : conjugate_equation

conjugate_equation takes four arguments :

• expression y0 which depends on the independent variable and two parame-
ters,

• list [α, β] of parameters which y0 depends on,

• list [A,B] of the values of parameters α and β, respectively,

• independent variable x,

• real number a equal to the lower or to the upper bound for x.

The function y0(x) is assumed to be stationary for the problem of minimizing some
functional F (y) =

∫ b
a f(x, y, y′) dx. The return value is the expression

∂y0(t)

∂α

∂y0(a)

∂β
− ∂y0(a)

∂α

∂y0(t)

∂β
, (5.4)

at α = A and β = B, which is zero if and only if t is conjugate to a. To find any
conjugate points, set the returned expression to zero and solve.

For example, we find a minimum for the functional

F (y) =

∫ π
2

0

(
y′(x)2 − x y(x)− y(x)2

)
dx

on D = {y ∈ C1[0, π/2] : y(0) = y(π/2) = 0}. The corresponding Euler-
Lagrange equation is :

214 CHAPTER 5. THE CAS FUNCTIONS

eq:=euler_lagrange(y’(x)^2-x*y(x)-y(x)^2,y(x))

Output :

diff(y(x),x,2)=((-2*y(x)-x)/2)

The general solution is :

y0:=dsolve(eq,x,y)

Output :

c_0*cos(x)+c_1*sin(x)-x/2

The stationary function depends on two parameters c0 and c1 which are fixed by
the boundary conditions :

c:=solve([subs(y0,x,0)=0,subs(y0,x,pi/2)=0],[c_0,c_1])

Output :

[[0,pi/4]]

Input :

conjugate_equation(y0,[c_0,c_1],c[0],x,0)

Output :

sin(x)

The above expression obviously has no zeros in (0, π/2], hence there are no points
conjugate to 0. Since fy′ y′ = 2 > 0, where f(y, y′, x) is the integrand in F (y) (the
strong Legendre condition), y0 minimizes F on D. To obtain y0 explicitly, input :

subs(y0,[c_0,c_1],c[0])

Output :

pi*sin(x)/4-x/2

5.21.5 An example : finding the surface of revolution with minimal
area

In this section we find the function

y0 ∈ D = {y ∈ C1[0, 1] : y(0) = 1, y(1) = 2/3}

for which the area of the corresponding surface of revolution is minimal. The result
is not necessarily intuitive.

The area of the surface of revolution is measured by the functional

F (y) = 2π

∫ 1

0
y(x)

√
1 + y′(x)2 dx.

We set f(y, y′, x) = y(x)
√

1 + y′(x)2 and compute the associated Euler-Lagrange
equation :

5.21. CALCULUS OF VARIATIONS 215

dy:=diff(y(x),x):; f:=y*sqrt(1+dy^2):;
eq:=euler_lagrange(f)

Output :

[-(y(x))/(sqrt(diff(y(x),x)^2+1))=K_0,
diff(y(x),x,2)=((diff(y(x),x)^2+1)/(y(x)))]

We obtain the stationary function by finding the general solution of the first equa-
tion. Input :

sol:=collect(simplify(dsolve(eq[0],x,y)))

Output :

[-K_0,K_0*(-exp((x-c_1)/K_0)^2-1)/(2*exp((x-c_1)/K_0))]

Obviously the constant solution −K0 is not in D, so we set y0 to be the second
element of the above list. That function, which can be written as

y0(x) = −K0 cosh

(
x− c1
K0

)
,

is called a catenary. Input :

y0:=sol[1]:; p:=[K_0,c_1]:;

To find the values of K0 and c1 from the boundary conditions, we first plot the
curves y0(0) = 1 and y0(1) = 2

3 for K0 ∈ [−1, 1] and c1 ∈ [−1, 2] to see where
they intersect each other. Input :

eq1:=subs(y0,x=0)=1:; eq2:=subs(y0,x=1)=2/3:;
implicitplot([eq1,eq2],K_0=-1..1,c_1=-1..2)

Output :

We observe that there are exactly two catenaries satisfying the Euler-Lagrange nec-
essary conditions and the given boundary conditions : the first with K0 ≈ −0.5
and c1 ≈ 0.6 resp. the second with K0 ≈ −0.3 and c1 ≈ 0.5. We obtain the values
of these constants more precisely by using fsolve. Input :

p1:=fsolve([eq1,eq2],p,[-0.5,0.6]);
p2:=fsolve([eq1,eq2],p,[-0.3,0.5])

216 CHAPTER 5. THE CAS FUNCTIONS

Output :

[-0.56237423894,0.662588703113],
[-0.30613431407,0.567138261119]

We check, for each catenary, whether the strong Legendre condition

fy′ y′(x, yk, y
′
k) > 0

holds for k = 1, 2. Input :

y1:=subs(y0,p,p1):; y2:=subs(y0,p,p2):;
D2f:=diff(f,diff(y(x),x),2):;

solve([eval(subs(D2f,y=y1,y(x)=y1))<=0,x>=0,x<=1],x);
solve([eval(subs(D2f,y=y2,y(x)=y2))<=0,x>=0,x<=1],x)

Output :

[],[]

We conclude that the strong Legendre condition is satisfied in both cases, so we
proceed by attempting to find the points conjugate to 0 for each catenary. The
function y0 depends on two parameters, so we use conjugate_equation to
find these points easily. Input :

fsolve(conjugate_equation(y0,p,p1,x,0)=0,x=0..1)
fsolve(conjugate_equation(y0,p,p2,x,0)=0,x=0..1)

Output :

[0.0], [0.0,0.799514772606]

We conclude that there are no points conjugate to 0 in (0, 1] for the catenary y1, so
it minimizes the functional F . However, for the other catenary there is a conjugate
point in the relevant interval, therefore y2 is not a minimizer.

We can verify the above conclusions by computing the surface area for cate-
naries y1 and y2 and comparing them. Input :

int(y1*sqrt(1+diff(y1,x)^2),x=0..1);
int(y2*sqrt(1+diff(y2,x)^2),x=0..1)

Output :

0.81396915825,0.826468466845

We see that the surface formed by rotating the curve y1 is indeed smaller than the
area of the surface formed by rotating the curve y2. Finally, we visualize both
surfaces for convenience. Input :

plot3d([y1*cos(t),y1*sin(t),x],x=0..1,t=0..2*pi,
display=yellow+filled)

Output :

5.22. LIMITS 217

Input :

plot3d([y2*cos(t),y2*sin(t),x],x=0..1,t=0..2*pi,
display=yellow+filled)

Output :

5.22 Limits

5.22.1 Limits : limit

limit computes the limit of an expression at a finite or infinite point. It is also
possible with an optional argument to compute a one-sided limit (1 for the right
limit and -1 for the left limit).
limit takes three or four arguments :
an expression, the name of a variable (for example x), the limit point (for example
a) and an optional argument, by default 0, to indicate if the limit is unidirectional.
This argument is equal to -1 for a left limit (x<a) or is equal to 1 for a right limit
(x>a) or is equal to 0 for a limit.
limit returns the limit of the expression when the variable (for example x) ap-
proaches the limit point (for example a).
Remark
It is also possible to put x=a as argument instead of x,a, hence : limit takes also
as arguments an expression depending of a variable, an equality (variable =value
of the limit point) and perhaps 1 or -1 to indicate the direction.
Input :

limit(1/x,x,0,-1)

or :

218 CHAPTER 5. THE CAS FUNCTIONS

limit(1/x,x=0,-1)

Output :

-(infinity)

Input :

limit(1/x,x,0,1)

or :

limit(1/x,x=0,1)

Output :

+(infinity)

Input :

limit(1/x,x,0,0)

or :

limit(1/x,x,0)

or :

limit(1/x,x=0)

Output :

infinity

Hence, abs(1/x) approaches +∞ when x approaches 0.
Exercises :

• Find for n > 2, the limit when x approaches 0 of :

n tan(x)− tan(nx)

sin(nx)− n sin(x)

Input :

limit((n*tan(x)-tan(n*x))/(sin(n*x)-n*sin(x)),x=0)

Output :

2

• Find the limit when x approaches +∞ of :√
x+

√
x+
√
x−
√
x

Input :

5.22. LIMITS 219

limit(sqrt(x+sqrt(x+sqrt(x)))-sqrt(x),x=+infinity)

Output :

1/2

• Find the limit when x approaches 0 of :√
1 + x+ x2/2− exp(x/2)

(1− cos(x)) sin(x)

Input :

limit((sqrt(1+x+x^2/2)-exp(x/2))/((1-cos(x))*sin(x)),x,0)

Output :

-1/6

Remark
To compute limits, it is better sometimes to quote the first argument.
Input :

limit(’(2*x-1)*exp(1/(x-1))’,x=+infinity)

Note that the first argument is quoted, because it is better that this argument is not
simplified (i.e. not evaluated).
Output :

+(infinity)

5.22.2 Integral and limit

Just two examples :

• Find the limit, when a approaches +∞, of :∫ a

2

1

x2
dx

Input :

limit(integrate(1/(x^2),x,2,a),a,+(infinity))

Output (if a is assigned then input purge(a)) :

1/2

220 CHAPTER 5. THE CAS FUNCTIONS

• Find the limit, when a approaches +∞, of :∫ a

2
(

x

x2 − 1
+ ln(

x+ 1

x− 1
)) dx

Input :

limit(integrate(x/(x^2-1)+log((x+1)/(x-1)),x,2,a),

a,+(infinity))

Output (if a is assigned then input purge(a)) :

+(infinity)

5.23 Rewriting transcendental and trigonometric expres-
sions

5.23.1 Expand a transcendental and trigonometric expression : texpand
tExpand

texpand or tExpand takes as argument an expression containing transcenden-
tal or trigonometric functions.
texpand or tExpand expands these functions, like simultaneous calling expexpand,
lnexpand and trigexpand, for example, ln(xn) becomes n ln(x), exp(nx)
becomes exp(x)n, sin(2x) becomes 2 sin(x) cos(x)...
Examples :

• 1. Expand cos(x+ y).
Input :

texpand(cos(x+y))

Output :

cos(x)*cos(y)-sin(x)*sin(y)

2. Expand cos(3x).
Input :

texpand(cos(3*x))

Output :

4*(cos(x))^ 3-3*cos(x)

3. Expand
sin(3 ∗ x) + sin(7 ∗ x)

sin(5 ∗ x)
.

Input :

texpand((sin(3*x)+sin(7*x))/sin(5*x))

Output

5.23. REWRITING TRANSCENDENTAL AND TRIGONOMETRIC EXPRESSIONS221

(4*(cos(x))^2-1)*(sin(x)/(16*(cos(x))^4-
12*(cos(x))^2+1))/sin(x)+(64*(cos(x))^6-
80*(cos(x))^4+24*(cos(x))^2-1)*sin(x)/
(16*(cos(x))^4-12*(cos(x))^2+1)/sin(x)

Output, after a simplification with normal(ans()) :

4*(cos(x))^2-2

• 1. Expand exp(x+ y).
Input :

texpand(exp(x+y))

Output :

exp(x)*exp(y)

2. Expand ln(x× y).
Input :

texpand(log(x*y))

Output :

log(x)+log(y)

3. Expand ln(xn).
Input :

texpand(ln(x^n))

Output :

n*ln(x)

4. Expand ln((e2) + exp(2 ∗ ln(2)) + exp(ln(3) + ln(2))).
Input :

texpand(log(e^2)+exp(2*log(2))+exp(log(3)+log(2)))

Output :

6+3*2

Or input :

texpand(log(e^2)+exp(2*log(2)))+
lncollect(exp(log(3)+log(2)))

Output :

12

• Expand exp(x+ y) + cos(x+ y) + ln(3x2).
Input :

texpand(exp(x+y)+cos(x+y)+ln(3*x^2))

Output :

cos(x)*cos(y)-sin(x)*sin(y)+exp(x)*exp(y)+
ln(3)+2*ln(x)

222 CHAPTER 5. THE CAS FUNCTIONS

5.23.2 Combine terms of the same type : combine

combine takes two arguments : an expression and the name of a function or class
of functions exp,log,ln, sin,cos,trig.
Whenever possible, combine put together subexpressions corresponding to the
second argument:

• combine(expr,ln) or combine(expr,log) gives the same result
as lncollect(expr)

• combine(expr,trig) or combine(expr,sin) or combine(expr,cos)
gives the same result as tcollect(expr).

Input :

combine(exp(x)*exp(y)+sin(x)*cos(x)+ln(x)+ln(y),exp)

Output :

exp(x+y)+sin(x)*cos(x)+ln(x)+ln(y)

Input :

combine(exp(x)*exp(y)+sin(x)*cos(x)+ln(x)+ln(y),trig)

or

combine(exp(x)*exp(y)+sin(x)*cos(x)+ln(x)+ln(y),sin)

or

combine(exp(x)*exp(y)+sin(x)*cos(x)+ln(x)+ln(y),cos)

Output :

exp(y)*exp(x)+(sin(2*x))/2+ln(x)+ln(y)

Input :

combine(exp(x)*exp(y)+sin(x)*cos(x)+ln(x)+ln(y),ln)

or

combine(exp(x)*exp(y)+sin(x)*cos(x)+ln(x)+ln(y),log)

Output :

exp(x)*exp(y)+sin(x)*cos(x)+ln(x*y)

5.24. TRIGONOMETRY 223

5.24 Trigonometry

5.24.1 Trigonometric functions

• sin is the sine function,

• cos is the cosine function,

• tan is the tangent function (tan(x)= sin(x)/cos(x)),

• cot is the cotangent function (cot(x)= cos(x)/sin(x)),

• sec is the secant function (sec(x)= 1/cos(x)),

• csc is the cosecant function (csc(x) = 1/sin(x)),

• asin or arcsin, acos or arccos, atan or arctan, acot, asec,
acsc are the inverse trigonometric functions. The latter are defined by:

1. asec(x) = acos(1/x),

2. acsc(x) = asin(1/x),

3. acot(x) = atan(1/x).

5.24.2 Expand a trigonometric expression : trigexpand

trigexpand takes as argument an expression containing trigonometric func-
tions.
trigexpand expands sums, differences and products by an integer inside the
trigonometric functions
Input :

trigexpand(cos(x+y))

Output :

cos(x)*cos(y)-sin(x)*sin(y)

5.24.3 Linearize a trigonometric expression : tlin

tlin takes as argument an expression containing trigonometric functions.
tlin linearizes products and integer powers of the trigonometric functions (e.g.
in terms of sin(n ∗ x) and cos(n ∗ x))
Examples

• Linearize cos(x) ∗ cos(y).
Input :

tlin(cos(x)*cos(y))

Output :

1/2*cos(x-y)+1/2*cos(x+y)

224 CHAPTER 5. THE CAS FUNCTIONS

• Linearize cos(x)3.
Input :

tlin(cos(x)^3)

Output :

3/4*cos(x)+1/4*cos(3*x)

• Linearize 4 cos(x)2 − 2.
Input :

tlin(4*cos(x)^2-2)

Output :

2*cos(2*x)

5.24.4 Increase the phase by π/2 in a trigonometric expression: shift_phase

The shift_phase command takes as argument a trigonometric expression.
shift_phase returns the expression with phase increased by π/2 (after the au-
tomatic simplification).
Input:

shift_phase(x + sin(x))

Output:

x-cos((pi+2*x)/2)

Input:

shift_phase(x + cos(x))

Output:

x+sin((pi+2*x)/2)

Input:

shift_phase(x + tan(x))

Output:

x-1/tan((pi+2*x)/2)

Quoting the argument will prevent the automatic simplification.
Input:

shift_phase(’sin(x + pi/2)’)

Output:

-cos((pi+2*x+2*pi/2)/2)

5.24. TRIGONOMETRY 225

With an unquoted sine, we get:
Input

shift_phase(sin(x + pi/2))

Output:

sin((pi+2*x)/2)

since sin(x+pi/2) is evaluated (in this case simplified) before shift_phase
is called, and shift_phase(cos(x)) returns sin((pi+2*x)/2)

5.24.5 Put together sine and cosine of the same angle : tcollect
tCollect

tcollect or tCollect takes as argument an expression containing trigono-
metric functions.
tcollect first linearizes this expression (e.g. in terms of sin(n ∗ x) and cos(n ∗
x)), then, puts together sine and cosine of the same angle.
Input :

tcollect(sin(x)+cos(x))

Output :

sqrt(2)*cos(x-pi/4)

Input :

tcollect(2*sin(x)*cos(x)+cos(2*x))

Output :

sqrt(2)*cos(2*x-pi/4)

5.24.6 Simplify : simplify

simplify simplifies the expression.
As with all automatic simplifications, do not expect miracles, you will have to use
specific rewriting rules if it does not work.
Input :

simplify((sin(3*x)+sin(7*x))/sin(5*x))

Output :

4*(cos(x))^2-2

Warning simplify is more efficient in radian mode (check radian in the
cas configuration or input angle_radian:=1).

226 CHAPTER 5. THE CAS FUNCTIONS

5.24.7 Simplify trigonometric expressions : trigsimplify

trigsimplify simplifies trigonometric expressions by combining simplify,
texpand, tlin, tcollect, trigsin, trigcos and trigtan commands
in a certain order.
Input :

trigsimplify((sin(x+y)-sin(x-y))/(cos(x+y)+cos(x-y)))

Output :

tan(y)

Input :

trigsimplify(1-1/4*sin(2a)^2-sin(b)^2-cos(a)^4)

Output :

sin(a)^2-sin(b)^2

5.24.8 Transform arccos into arcsin : acos2asin

acos2asin takes as argument an expression containing inverse trigonometric
functions.
acos2asin replaces arccos(x) by

π

2
− arcsin(x) in this expression.

Input :

acos2asin(acos(x)+asin(x))

Output after simplification :

pi/2

5.24.9 Transform arccos into arctan : acos2atan

acos2atan takes as argument an expression containing inverse trigonometric
functions.
acos2atan replaces arccos(x) by

π

2
− arctan(

x√
1− x2

) in this expression.

Input :

acos2atan(acos(x))

Output :

pi/2-atan(x/sqrt(1-x^2))

5.24.10 Transform arcsin into arccos : asin2acos

asin2acos takes as argument an expression containing inverse trigonometric
functions.
asin2acos replaces arcsin(x) by

π

2
− arccos(x) in this expression.

Input :

asin2acos(acos(x)+asin(x))

Output after simplification :

pi/2

5.24. TRIGONOMETRY 227

5.24.11 Transform arcsin into arctan : asin2atan

asin2atan takes as argument an expression containing inverse trigonometric
functions.
asin2atan replaces arcsin(x) by arctan(

x√
1− x2

) in this expression.

Input :

asin2atan(asin(x))

Output :

atan(x/sqrt(1-x^2))

5.24.12 Transform arctan into arcsin : atan2asin

atan2asin takes as argument an expression containing inverse trigonometric
functions. atan2asin replaces arctan(x) by arcsin(

x√
1 + x2

) in this expres-

sion.
Input :

atan2asin(atan(x))

Output :

asin(x/sqrt(1+x^2))

5.24.13 Transform arctan into arccos : atan2acos

atan2acos takes as argument an expression containing inverse trigonometric
functions.
atan2acos replaces arctan(x) by

π

2
− arccos(

x√
1 + x2

) in this expression.

Input :

atan2acos(atan(x))

Output :

pi/2-acos(x/sqrt(1+x^2))

5.24.14 Transform complex exponentials into sin and cos : sincos
exp2trig

sincos or exp2trig takes as argument an expression containing complex ex-
ponentials.
sincos or exp2trig rewrites this expression in terms of sin and cos.
Input :

sincos(exp(i*x))

Output :

cos(x)+(i)*sin(x)

228 CHAPTER 5. THE CAS FUNCTIONS

Input :

exp2trig(exp(-i*x))

Output :

cos(x)+(i)*(-(sin(x)))

Input :

simplify(sincos(((i)*(exp((i)*x))^2-i)/(2*exp((i)*x))))

or :

simplify(exp2trig(((i)*(exp((i)*x))^2-i)/(2*exp((i)*x))))

Output :

-sin(x)

5.24.15 Transform tan(x) into sin(x)/cos(x) : tan2sincos

tan2sincos takes as argument an expression containing trigonometric func-
tions.

tan2sincos replaces tan(x) by
sin(x)

cos(x)
in this expression.

Input :

tan2sincos(tan(2*x))

Output :

sin(2*x)/cos(2*x)

5.24.16 Transform sin(x) into cos(x)*tan(x): sin2costan

The sin2costan command takes as argument a trigonometric expression.
sin2costan returns the expression with sin(x) replaced by cos(x) tan(x).
Input:

sin2costan(sin(2*x))

Output:

tan(2*x)*cos(2*x)

5.24.17 Transform cos(x) into sin(x)/tan(x): cos2sintan

The cos2sintan command takes as argument a trigonometric expression.
cos2sintan returns the expression with cos(x) replaced by sin(x)/ tan(x).
Input:

cos2sintan(cos(2*x))

Output:

sin(2*x)/tan(2*x)

5.24. TRIGONOMETRY 229

5.24.18 Rewrite tan(x) with sin(2x) and cos(2x) : tan2sincos2

tan2sincos2 takes as argument an expression containing trigonometric func-
tions.

tan2sincos2 replaces tan(x) by
sin(2x)

1 + cos(2x)
in this expression.

Input :

tan2sincos2(tan(x))

Output :

sin(2*x)/(1+cos(2*x))

5.24.19 Rewrite tan(x) with cos(2x) and sin(2x) : tan2cossin2

tan2cossin2 takes as argument an expression containing trigonometric func-
tions.

tan2cossin2 replaces tan(x) by
1− cos(2x)

sin(2x)
, in this expression.

Input :

tan2cossin2(tan(x))

Output :

(1-cos(2*x))/sin(2*x)

5.24.20 Rewrite sin, cos, tan in terms of tan(x/2) : halftan

halftan takes as argument an expression containing trigonometric functions.
halftan rewrites sin(x), cos(x) and tan(x) in terms of tan(x2).
Input :

halftan(sin(2*x)/(1+cos(2*x)))

Output :

2*tan(2*x/2)/((tan(2*x/2))^2+1)/

(1+(1-(tan(2*x/2))^2)/((tan(2*x/2))^2+1))

Output, after simplification with normal(ans()) :

tan(x)

Input :

halftan(sin(x)^2+cos(x)^2)

Output :

(2*tan(x/2)/((tan(x/2))^2+1))^2+

((1-(tan(x/2))^2)/((tan(x/2))^2+1))^2

Output, after simplification with normal(ans()) :

1

230 CHAPTER 5. THE CAS FUNCTIONS

5.24.21 Rewrite trigonometric functions as function of tan(x/2) and
hyperbolic functions as function of exp(x): halftan_hyp2exp

halftan_hyp2exp takes as argument a trigonometric and hyperbolic expres-
sion.
halftan_hyp2exp rewrites sin(x), cos(x), tan(x) in terms of tan(x2) and sinh(x), cosh(x), tanh(x)
in terms of exp(x).
Input :

halftan_hyp2exp(tan(x)+tanh(x))

Output :

(2*tan(x/2))/((1-(tan(x/2))^2))+(((exp(x))^2-1))/
(((exp(x))^2+1))

Input :

halftan_hyp2exp(sin(x)^2+cos(x)^2-sinh(x)^2+cosh(x)^2)

Output, after simplification with normal(ans()) :

2

5.24.22 Transform inverse trigonometric functions into logarithms :
atrig2ln

atrig2ln takes as argument an expression containing inverse trigonometric func-
tions.
atrig2ln rewrites these functions with complex logarithms.
Input :

atrig2ln(asin(x))

Output :

i*log(x+sqrt(x^2-1))+pi/2

5.24.23 Transform trigonometric functions into complex exponentials
: trig2exp

trig2exp takes as argument an expression containing trigonometric functions.
trig2exp rewrites the trigonometric functions with complex exponentials (WITH-
OUT linearization).
Input :

trig2exp(tan(x))

Output :

((exp((i)*x))^2-1)/((i)*((exp((i)*x))^2+1))

Input :

trig2exp(sin(x))

Output :

(exp((i)*x)-1/(exp((i)*x)))/(2*i)

5.24. TRIGONOMETRY 231

5.24.24 Simplify and express preferentially with sine : trigsin

trigsin takes as argument an expression containing trigonometric functions.
trigsin simplify this expression with the formula :

sin(x)2 + cos(x)2 = 1, tan(x) =
sin(x)

cos(x)
and tries to rewrite the expression only

with sine.
Input :

trigsin(sin(x)^4+cos(x)^2+1)

Output :

sin(x)^4-sin(x)^2+2

5.24.25 Simplify and express preferentially with cosine : trigcos

trigcos takes as argument an expression containing trigonometric functions.
trigcos simplifies this expression with the formula :

sin(x)2 + cos(x)2 = 1, tan(x) =
sin(x)

cos(x)
and tries to rewrite the expression only

with cosine.
Input :

trigcos(sin(x)^4+cos(x)^2+1)

Output :

cos(x)^4-cos(x)^2+2

5.24.26 Simplify and express preferentially with tangents : trigtan

trigtan takes as argument an expression containing trigonometric functions.
trigtan simplifies this expression with the formula :

sin(x)2 + cos(x)2 = 1, tan(x) =
sin(x)

cos(x)
and tries to rewrite the expression only

with tangents.
Input :

trigtan(sin(x)^4+cos(x)^2+1)

Output :

((tan(x))^2/(1+(tan(x))^2))^2+1/(1+(tan(x)^2)+1

Output, after simplification with normal :

(2*tan(x)^4+3*tan(x)^2+2)/(tan(x)^4+2*tan(x))^2+1)

232 CHAPTER 5. THE CAS FUNCTIONS

5.24.27 Rewrite an expression with different options : convert convertir
=>

convert takes two arguments, an expression and an option. => is the infixed
version of convert.
convert rewrites this expression applying rules depending on the option. Valid
options are :

• sin converts an expression like trigsin.

• cos converts an expression like trigcos.

• sincos converts an expression like sincos.

• trig converts an expression like sincos.

• tan converts an expression like halftan.

• exp converts an expression like trig2exp.

• ln converts an expression like trig2exp.

• expln converts an expression like trig2exp.

• string converts an expression into a string.

• matrix converts a list of lists into a matrix.

• polynom converts a Taylor series into a polynomial by removing the re-
mainder (cf 5.29.25).

• parfrac or partfrac or fullparfrac converts a rational fraction
into its partial fraction decomposition (5.33.9).

convert can also :

• convert units, for example convert(1000_g,_kg)=1.0_kg (cf 10.1.4).

• write a real as a continued fraction : convert(a,confrac,’fc’)writes
a as a continued fraction stored in fc. Do not forget to quote the last argu-
ment if it was assigned.
For example, convert(1.2,confrac,’fc’)=[1,5] and fc contains
the continued fraction equal to 1.2 (cf 5.8.7).

• transform an integer into the list of its digits in a base, beginning with the
units digit (and reciprocally)

– convert(n,base,b) transforms the integer n into the list of its
digits in base b beginning with the units digit.
For example, convert(123,base,10)=[3,2,1] and recipro-
cally

– convert(l,base,b) transforms the list l into the integer n which
has l as list of its digits in base b beginning with the units digit.
For example, convert([3,2,1],base,10)=123 (cf 5.5).

5.25. FOURIER TRANSFORMATION 233

5.25 Fourier transformation

5.25.1 Fourier coefficients : fourier_an and fourier_bn or fourier_cn

Let f be a T -periodic continuous functions on R except maybe at a finite number
of points. One can prove that if f is continuous at x, then;

f(x) =
a0
2

+

+∞∑
n=1

an cos(
2πnx

T
) + bn sin(

2πnx

T
)

=

+∞∑
n=−∞

cne
2iπnx
T

where the coefficients an, bn, n ∈ N , (or cn, n ∈ Z) are the Fourier coefficients of
f . The commandsfourier_an and fourier_bn or fourier_cn compute
these coefficients.

fourier_an

fourier_an takes four or five arguments : an expression expr depending on a
variable, the name of this variable (for example x), the period T , an integer n and
a real a (by default a = 0).
fourier_an(expr,x,T,n,a) returns the Fourier coefficient an of a function
f of variable x defined on [a, a + T) by f(x) = expr and such that f is periodic
of period T :

an =
2

T

∫ a+T

a
f(x) cos(

2πnx

T
)dx

To simplify the computations, one should input assume(n,integer) before
calling fourier_an to specify that n is an integer.
Example Let the function f , of period T = 2, defined on [−1, 1) by f(x) = x2.
Input, to have the coefficient a0 :

fourier_an(x^2,x,2,0,-1)

Output :

1/3

Input, to have the coefficient an (n 6= 0) :

assume(n,integer);fourier_an(x^2,x,2,n,-1)

Output :

4*(-1)^n/(pi^2*n^2)

fourier_bn

fourier_bn takes four or five arguments : an expression expr depending on a
variable, the name of this variable (for example x), the period T , an integer n and
a real a (by default a = 0).

234 CHAPTER 5. THE CAS FUNCTIONS

fourier_bn(expr,x,T,n,a) returns the Fourier coefficient bn of a function
f of variable x defined on [a, a+ T) by f(x) = expr and periodic of period T :

bn =
2

T

∫ a+T

a
f(x) sin(

2πnx

T
)dx

To simplify the computations, one should input assume(n,integer) before
calling fourier_bn to specify that n is an integer.
Examples

• Let the function f , of period T = 2, defined on [−1, 1) by f(x) = x2.
Input, to have the coefficient bn (n 6= 0) :

assume(n,integer);fourier_bn(x^2,x,2,n,-1)

Output :

0

• Let the function f , of period T = 2, defined on [−1, 1) by f(x) = x3.
Input, to have the coefficient b1 :

fourier_bn(x^3,x,2,1,-1)

Output :

(2*pi^2-12)/pi^3

fourier_cn

fourier_cn takes four or five arguments : an expression expr depending of a
variable, the name of this variable (for example x), the period T , an integer n and
a real a (by default a = 0).
fourier_cn(expr,x,T,n,a) returns the Fourier coefficient cn of a functionf
of variable x defined on [a, a+ T) by f(x) = expr and periodic of period T :

cn =
1

T

∫ a+T

a
f(x)e

−2iπnx
T dx

To simplify the computations, one should input assume(n,integer) before
calling fourier_cn to specify that n is an integer.
Examples

• Find the Fourier coefficients cn of the periodic function f of period 2 and
defined on [−1, 1) by f(x) = x2.
Input, to have c0 :

fourier_cn(x^2,x,2,0,-1)

Output:

5.25. FOURIER TRANSFORMATION 235

1/3

Input, to have cn :

assume(n,integer)

fourier_cn(x^2,x,2,n,-1)

Output:

2*(-1)^n/(pi^2*n^2)

• Find the Fourier coefficients cn of the periodic function f , of period 2, and
defined on [0, 2) by f(x) = x2.
Input, to have c0 :

fourier_cn(x^2,x,2,0)

Output:

4/3

Input, to have cn :

assume(n,integer)

fourier_cn(x^2,x,2,n)

Output:

((2*i)*pi*n+2)/(pi^2*n^2)

• Find the Fourier coefficients cn of the periodic function f of period 2π and
defined on [0, 2π) by f(x) = x2.
Input :

assume(n,integer)

fourier_cn(x^2,x,2*pi,n)

Output :

((2*i)*pi*n+2)/n^2

If you don’t specify assume(n,integer), the output will not be simpli-
fied :

236 CHAPTER 5. THE CAS FUNCTIONS

((2*i)*pi^2*n^2*exp((-i)*n*2*pi)+2*pi*n*exp((-i)*n*2*pi)+

(-i)*exp((-i)*n*2*pi)+i)/(pi*n^3)

You might simplify this expression by replacing exp((-i)*n*2*pi) by
1, input :

subst(ans(),exp((-i)*n*2*pi)=1)

Output :

((2*i)*pi^2*n^2+2*pi*n+-i+i)/pi/n^3

This expression is then simplified with normal, the final output is :

((2*i)*pi*n+2)/n^2

Hence for n 6= 0, cn =
2inπ + 2

n2
. As shown in this example, it is better to

input assume(n,integer) before calling fourier_cn.
We must also compute cn for n = 0, input :

fourier_cn(x^2,x,2*pi,0)

Output :

4*pi^2/3

Hence for n = 0, c0 =
4π2

3
.

Remarks :

• Input purge(n) to remove the hypothesis done on n.

• Input about(n) or assume(n), to know the hypothesis done on the vari-
able n.

5.25.2 Discrete Fourier Transform

LetN be an integer. The Discrete Fourier Transform (DFT) is a transformation FN
defined on the set of periodic sequences of period N , it depends on a choice of a
primitive N -th root of unity ωN . If the DFT is defined on sequences with complex
coefficients, we take:

ωN = e
2iπ
N

If x is a periodic sequence of periodN , defined by the vector x = [x0, x1, ...xN−1]
then FN (x) = y is a periodic sequence of period N , defined by:

(FN,ωN (x))k = yk =

N−1∑
j=0

xjω
−k·j
N , k = 0..N − 1

where ωN is a primitive N -th root of unity. The discrete Fourier transform may
be computed faster than by computing each yk individually, by the Fast Fourier
Transform (FFT). Xcas implements the FFT algorithm to compute the discrete
Fourier transform only if N is a power of 2.

5.25. FOURIER TRANSFORMATION 237

The properties of the Discrete Fourier Transform

The Discrete Fourier Transform FN is a bijective transformation on periodic se-
quences such that

F−1N,ωN
=

1

N
FN,ω−1

N

=
1

N
FN on C

i.e. :

(F−1N (x))k =
1

N

N−1∑
j=0

xjω
k·j
N

Inside Xcas the discrete Fourier transform and its inverse are denote by fft and
ifft:

fft(x)=FN (x), ifft(x)=F−1N (x)

Definitions
Let x and y be two periodic sequences of period N .

• The Hadamard product (notation ·) is defined by:

(x · y)k = xkyk

• the convolution product (notation ∗) is defined by:

(x ∗ y)k =
N−1∑
j=0

xjyk−j

Properties :

N ∗ FN (x · y) = FN (x) ∗ FN (y)

FN (x ∗ y) = FN (x) · FN (y)

Applications

1. Value of a polynomial
Define a polynomial P (x) =

∑N−1
j=0 cjx

j by the vector of its coefficients
c := [c0, c1, ..cN−1], where zeroes may be added so that N is a power of 2.

• Compute the values of P (x) at

x = ak = ω−kN = exp(
−2ikπ

N
), k = 0..N − 1

This is just the discrete Fourier transform of c since

P (ak) =

N−1∑
j=0

cj(ω
−k
N)j = FN (c)k

Input, for example :

238 CHAPTER 5. THE CAS FUNCTIONS

P(x):=x+x^2; w:=i

Here the coefficients of P are [0,1,1,0],N = 4 and ω = exp(2iπ/4) =
i.
Input :
fft([0,1,1,0])
Output :
[2,-1-i,0,-1+i]
hence

– P(1)=2,
– P(-i)=P(w^-1)=-1-i,
– P(-1)=P(w^-2)=0,
– P(i)=P(w^-3)=-1+i.

• Compute the values of P (x) at

x = bk = ωkN = exp(
2ikπ

N
), k = 0..N − 1

This is N times the inverse fourier transform of c since

P (ak) =
N−1∑
j=0

cj(ω
k
N)j = NF−1N (c)k

Input, for example :
P(x):=x+x^2 and w:=i
Hence, the coefficients ofP are [0,1,1,0],N = 4 and ω = exp(2iπ/4) =
i.
Input :
4*ifft([0,1,1,0])
Output :
[2,-1+i,0,-1-i]
hence :

– P(1)=2,
– P(i)=P(w^1)=-1+i,
– P(-1)=P(w^2)=0,
– P(-i)=P(w^3)=-1-i.

We find of course the same values as above...

2. Trigonometric interpolation
Let f be periodic function of period 2π, assume that f(2kπ/N) = fk for
k = 0..(N − 1). Find a trigonometric polynomial p that interpolates f at
xk = 2kπ/N , that is find pj , j = 0..N − 1 such that

p(x) =
N−1∑
j=0

pj exp(ijx), p(xk) = fk

Replacing xk by its value in p(x) we get:

N−1∑
j=0

pj exp(i
j2kπ

N
) = fk

5.25. FOURIER TRANSFORMATION 239

In other words, (fk) is the inverse DFT of (pk), hence

(pk) =
1

N
FN ((fk))

If the function f is real, p−k = pk, hence depending whether N is even or
odd:

p(x) = p0 + 2<(

N
2
−1∑

k=0

pk exp(ikx)) + <(pN
2

exp(i
Nx

2
))

p(x) = p0 + 2<(

N−1
2∑

k=0

pk exp(ikx))

3. Fourier series
Let f be a periodic function of period 2π, such that

f(xk) = yk, xk =
2kπ

N
, k = 0..N − 1

Suppose that the Fourier series of f converges to f (this will be the case if
for example f is continuous). If N is large, a good approximation of f will
be given by: ∑

−N
2
≤n<N

2

cn exp(inx)

Hence we want a numeric approximation of

cn =
1

2π

∫ 2π

0
f(t) exp(−int)dt

The numeric value of the integral
∫ 2π
0 f(t) exp(−int)dt may be computed

by the trapezoidal rule (note that the Romberg algorithm would not work
here, because the Euler Mac Laurin development has its coefficients equal to
zero, since the integrated function is periodic, hence all its derivatives have
the same value at 0 and at 2π). If c̃n is the numeric value of cn obtained by
the trapezoidal rule, then

c̃n =
1

2π

2π

N

N−1∑
k=0

yk exp(−2i
nkπ

N
), −N

2
≤ n < N

2

Indeed, since xk = 2kπ/N and f(xk) = yk:

f(xk) exp(−inxk) = yk exp(−2i
nkπ

N
),

f(0) exp(0) = f(2π) exp(−2i
nNπ

N
) = y0 = yN

Hence :

[c̃0, ..c̃N
2
−1, c̃N

2
+1, ..cN−1] =

1

N
FN ([y0, y1...y(N−1)])

since

240 CHAPTER 5. THE CAS FUNCTIONS

• if n ≥ 0, c̃n = yn

• if n < 0 c̃n = yn+N

• ωN = exp(2iπN), then ωnN = ωn+NN

Properties

• The coefficients of the trigonometric polynomial that interpolates f at
x = 2kπ/N are

pn = c̃n, −N
2
≤ n < N

2

• If f is a trigonometric polynomial P of degree m ≤ N
2 , then

f(t) = P (t) =

m−1∑
k=−m

ck exp(2ikπt)

the trigonometric polynomial that interpolate f = P is P , the numeric
approximation of the coefficients are in fact exact (c̃n = cn).
• More generally, we can compute c̃n − cn.

Suppose that f is equal to its Fourier series, i.e. that :

f(t) =

+∞∑
m=−∞

cm exp(2iπmt),

+∞∑
m=−∞

|cm| <∞

Then :

f(xk) = f(
2kπ

N
) = yk =

+∞∑
m=−∞

cmω
km
N , c̃n =

1

N

N−1∑
k=0

ykω
−kn
N

Replace yk by its value in c̃n:

c̃n =
1

N

N−1∑
k=0

+∞∑
m=−∞

cmω
km
N ω−knN

If m 6= n (mod N), ωm−nN is an N -th root of unity different from 1,
hence:

ω
(m−n)N
N = 1,

N−1∑
k=0

ω
(m−n)k
N = 0

Therefore, ifm−n is a multiple ofN (m = n+l·N) then
∑N−1

k=0 ω
k(m−n)
N =

N , otherwise
∑N−1

k=0 ω
k(m−n)
N = 0. By reversing the two sums, we get

c̃n =
1

N

+∞∑
m=−∞

cm

N−1∑
k=0

ω
k(m−n)
N

=
+∞∑
l=−∞

c(n+l·N)

= ...cn−2·N + cn−N + cn + cn+N + cn+2·N +

Conclusion: if |n| < N/2, c̃n − cn is a sum of cj of large indexes (at
least N/2 in absolute value), hence is small (depending on the rate of
convergence of the Fourier series).

5.25. FOURIER TRANSFORMATION 241

Example Input :

f(t):=cos(t)+cos(2*t)
x:=f(2*k*pi/8)$(k=0..7)

Then :

x={2,sqrt(2)/2,-1,(-sqrt(2)/2,0,(-sqrt(2))/2,-1,sqrt(2)/2}
fft(x)=[0.0,4.0,4.0,0.0,0.0,0.0,4.0,4.0]

After a division by N = 8, we get

c0 = 0, c1 = 4.0/8, c2 = 4.0/8, c3 = 0.0,
c−4 = 0.0, c−3 = 0.0, c−2 = 4.0/8,= c−1 = 4.0/8

Hence bk = 0 and ak = c−k + ck is equal to 1 if k = 1, 2 and 0 otherwise.

4. Convolution Product
If P (x) =

∑n−1
j=0 ajx

j and Q(x) =
∑m−1

j=0 bjx
j are given by the vector

of their coefficients a = [a0, a1, ..an−1] and b = [b0, b1, ..bm−1], we may
compute the product of these two polynomials using the DFT. The product
of polynomials is the convolution product of the periodic sequence of their
coefficients if the period is greater or equal to (n + m). Therefore we com-
plete a (resp. b) with m + p (resp. n + p) zeros, where p is chosen such
that N = n + m + p is a power of 2. If a = [a0, a1, ..an−1, 0..0] and
b = [b0, b1, ..bm−1, 0..0], then:

P (x)Q(x) =
n+m−1∑
j=0

(a ∗ b)jxj

We compute FN (a), FN (b), then ab = F−1N (FN (a) ·FN (b)) using the prop-
erties

NFN (x · y) = FN (x) ∗ FN (y), FN (x ∗ y) = FN (x) · FN (y)

5.25.3 Fast Fourier Transform : fft

fft takes as argument a list (or a sequence) [a0, ..aN−1] where N is a power of two.
fft returns the list [b0, ..bN−1] such that, for k=0..N-1

fft([a0, ..aN−1])[k] = bk =
N−1∑
j=0

xjω
−k·j
N

where ωN is a primitive N -th root of the unity.
Input :

fft(0,1,1,0)

Output :

[2.0, -1-i, 0.0, -1+i]

242 CHAPTER 5. THE CAS FUNCTIONS

5.25.4 Inverse Fast Fourier Transform : ifft

ifft takes as argument a list [b0, ..bN−1] where N is a power of two.
ifft returns the list [a0, ..aN−1] such that

fft([a0, ..aN−1]) = [b0, ..bN−1]

Input :

ifft([2,-1-i,0,-1+i])

Output :

[0.0, 1.0, 1.0, 0.0]

5.25.5 An exercise with fft

Here are the temperatures T , in Celsius degree, at time t :

t 0 3 6 9 12 15 19 21
T 11 10 17 24 32 26 23 19

What was the temperature at 13h45 ?
Here N = 8 = 2 ∗m. The interpolation polynomial is

p(t) =
1

2
p−m(exp(−2i

πmt

24
) + exp(2i

πmt

24
)) +

m−1∑
k=−m+1

pk exp(2i
πkt

24
)

and

pk =
1

N

N−1∑
k=j

Tk exp(2i
πk

N
)

Input :
q:=1/8*fft([11,10,17,24,32,26,23,19])
Output :
q:=[20.25,-4.48115530061+1.72227182413*i,-0.375+0.875*i,
-0.768844699385+0.222271824132*i,0.5,
-0.768844699385-0.222271824132*i,
-0.375-0.875*i,-4.48115530061-1.72227182413*i]
hence:

• p0 = 20.25

• p1 = −4.48115530061 + 1.72227182413 ∗ i = p−1,

• p2 = 0.375 + 0.875 ∗ i = p−2,

• p3 = −0.768844699385 + 0.222271824132 ∗ i = p−3,

• p−4 = 0.5

5.25. FOURIER TRANSFORMATION 243

Indeed

q = [q0, ...qN−1] = [p0, ..pN
2
−1, p−N

2
, .., p−1] =

1

N
FN ([y0, ..yN−1]) =

1

N
fft(y)

Input :
pp:=[q[4],q[5],q[6],q[7],q[0],q[1],q[2],q[3]]
Here, pk = pp[k + 4] for k = −4...3. It remains to compute the value of the
interpolation polynomial at point t0 = 13.75 = 55/4.
Input:

t0(j):=exp(2*i*pi*(13+3/4)/24*j)
T0:=1/2*pp[0]*(t0(4)+t0(-4))+sum(pp[j+4]*t0(j),j,-3,3)

evalf(re(T0))

Output :

29.4863181684

The temperature is predicted to be equal to 29.49 Celsius degrees.
Input :

q1:=[q[4]/2,q[3],q[2],q[1],q[0]/2]
a:=t0(1) (or a:=-exp(i*pi*7/48))

g(x):=r2e(q1,x)
evalf(2*re(g(a)))

or :

2.0*re(q[0]/2+q[1]*t0(1)+q[2]*t0(2)+q[3]*t0(3)+q[4]/2*t0(4))

Output :

29.4863181684

Remark
Using the Lagrange interpolation polynomial (the polynomial is not periodic), in-
put :

l1:=[0,3,6,9,12,15,18,21]
l2:=[11,10,17,24,32,26,23,19]

subst(lagrange(l1,l2,13+3/4),x=13+3/4)

Output :

8632428959

286654464
' 30.1144061688

244 CHAPTER 5. THE CAS FUNCTIONS

5.26 Audio Tools

5.26.1 Creating audio clips : createwav

createwav takes the following arguments (all optional), in no particular order:

• size=n resp. duration=T, where n resp. T is the total number of sam-
ples resp. the length in seconds,

• bit_depth=b, where b is the number of bits reserved for each sample
value and may be 8 or 16 (by default 16),

• samplerate=r, where r is the number of samples per second (by default
44100),

• channels=c where c is the number of channels (by default 1),

• D or channel_data=D, where D is a list or a matrix,

• normalize=db, where db≤ 0 is a real number representing the amplitude
peak level in dB FS (decibel "full scale") units.

Additionally, passing the desired number of samples n as a single argument pro-
duces a single-channel clip on 16 bits/44100 Hz containing n samples initialized
to zero.

Data matrix should contain the k-th sample in the j-th channel at position
(j, k). The value of each sample must be a real number in range [−1.0, 1.0]. Any
value outside this interval is clamped to it (the resulting effect is called clipping).
If the data is provided as a single list, it is copied across channels. If the num-
ber of samples or seconds is provided alongside the data list/matrix, the rows are
truncated or padded with zeros to match the desired length.

If the option normalize is given, audio data is normalized to the specified
level prior to conversion. This can be used to avoid clipping.

For example, input :

s:=createwav(duration=3.5):; playsnd(s)

Output :

three and a half seconds of silence at rate 44100

Input :

wave:=sin(2*pi*440*soundsec(2)):;
s:=createwav(channel_data=wave,samplerate=48000):;

playsnd(s)

Output :

two seconds of the 440 Hz sine wave at rate 48000

Input :

t:=soundsec(3):;
L,R:=sin(2*pi*440*t),sin(2*pi*445*t):;

s:=createwav([L,R]):; playsnd(s)

Output :

3 secs of a vibrato effect on a sine wave (stereo)

5.26. AUDIO TOOLS 245

5.26.2 Reading WAV files from disk : readwav

readwav takes a string containing the name of a WAV file as its only argument
and loads the file. The return value is an audio clip object.

For example, assume that the file example.wav is stored in the directory
sounds. Input:

s:=readwav("/path/to/sounds/example.wav"):; playsnd(s)

5.26.3 Writing WAV files to disk : writewav

writewav takes two arguments, a string containing a file name and an audio clip
object, and writes the clip to disk as a WAV file with the specified name. It returns
1 on success and 0 on failure.

For example, input :

s:=createwav(sin(2*pi*440*soundsec(1))):;
writewav("sounds/sine.wav",s)

Output :

1

5.26.4 Audio playback : playsnd

playsnd takes an audio clip as its argument and plays it back.
For example, input :

playsnd(createwav(sin(2*pi*440*soundsec(3))))

5.26.5 Averaging channel data : stereo2mono

stereo2mono takes a multichannel audio clip as its argument and returns a clip
with input channels mixed down to a single channel. Every sample in the output is
the arithmetic mean of the samples at the same position in the input channels.

For example, input :

t:=soundsec(3):;
L,R:=sin(2*pi*440*t),sin(2*pi*445*t):;

s:=stereo2mono(createwav([L,R])):; playsnd(s)

5.26.6 Audio clip properties : channels, bit_depth, samplerate,
duration

Each of the above commands takes an audio clip as an argument. channels
returns the number of channels, bit_depth returns the number of bits reserved
for each sample value (8 or 16), samplerate returns the number of samples per
second and duration returns the duration of the clip in seconds.

246 CHAPTER 5. THE CAS FUNCTIONS

5.26.7 Extracting samples from audio clips : channel_data

channel_data takes an audio clip as the first argument and optionally the fol-
lowing arguments (in no particular order) :

• channel number (positive integer) or the option matrix,

• range=[m,n] or range=m..n or range=a..b, where m, n are non-
negative integers and a, b are floating point values.

By default, the data from all channels is extracted and returned as a sequence of
lists. If the option matrix is specified, the lists representing channel data are
returned as the rows of a matrix. If channel number is specified (or if there is only
one channel), the data is returned in a single list. If a range is specified, only the
samples from n-th to m-th (inclusive) are extracted. If a real interval a..b is
given, it is assumed that the bounds a and b are in seconds and must be given as
floating point values.

The returned sample values are all within the interval [−1.0, 1.0], i.e. the am-
plitude of the returned signal is relative. The maximum possible amplitude is rep-
resented by the value 1.0.

For example, assume that the directory sounds contains a WAV file example.wav
with 3 seconds of stereo sound. Input :

s:=readwav("/path/to/sounds/example.wav"):;
L,R:=channel_data(s,range=1.2..1.5)

The output is a list L resp. R containing the data between 1.2 and 1.5 seconds in
the left resp. right channel of the original file.

5.26.8 Changing the sampling rate : resample

resample takes an audio clip as its first argument. The target sample rate can
be passed as the second argument (by default 44100 Hz), optionally followed by
a quality level specification (an integer). The return value is the input audio clip
resampled to the desired rate. The quality level can range from 0 (poor) to 4 (best).
By default, it is set to 2.

Giac does resampling by using libsamplerate library written by Erik de
Castro Lopo. For more information see the library documentation.

For example, assume that the directory sounds contains a WAV file example.wav.
Input :

clip:=readwav("/path/to/sounds/example.wav"):;
samplerate(clip)

Output :

44100

Input :

res:=resample(clip,48000):; samplerate(res)

Output :

48000

http://www.mega-nerd.com/libsamplerate/

5.26. AUDIO TOOLS 247

5.26.9 Visualizing waveforms : plotwav

plotwav accepts an audio clip as its first argument and optionally a range in form
range=[m,n] or range=a..b as its second argument, wherem, n are integers
and a, b are real numbers. The command displays the waveform on the specified
range (by default in its entirety). It is assumed that the values m, n are in sample
units and a, b in seconds.

For example, assume that the directory sounds contains two files, example1.wav
(a man speaking, stereo) and example2.wav (guitar playing, mono). Input :

clip1:=readwav("/path/to/sounds/example1.wav"):;
plotwav(clip1)

Output :

Input :

clip2:=readwav("/path/to/sounds/example2.wav"):;
plotwav(clip2)

Output :

Input :

plotwav(clip2,range=0.5..0.52)

Output :

248 CHAPTER 5. THE CAS FUNCTIONS

5.26.10 Visualizing power spectra : plotspectrum

plotspectrum takes an audio clip as its first argument and optionally a range in
form range=[lf,uf] or range=lf..uf, where lf is the lower bound and
uf the upper bound of the desired frequency band, as its second argument. The
command displays the power spectrum of the audio data on the specified frequency
range (by default [0, s/2], where s is the sampling rate). If the audio clip has
more than one channel, the channels are mixed down to a single channel before
computing the spectrum.

For example, assume that a male voice is recorded in the file example1.wav.
Input :

clip:=readwav("/path/to/sounds/example1.wav"):;
plotspectrum(clip,range=[0,1500])

Output :

One can observe that the dominant frequency is around 220 Hz, which is the middle
of tenor range. This is consistent with the fact that a man is speaking in the clip.

5.27 Signal Processing

5.27.1 Cross-correlation of two signals : cross_correlation

cross_correlation takes two arguments, a complex vector v of length n
and a complex vector w of length m. The returned value is the complex vector
z = v ?w of length N = n+m−1 which is the cross-correlation of the two input
vectors, i.e. such that the following holds :

zk =
N−1∑
i=k

v∗i−k w
∗
i , k = 0, 1, . . . , N − 1,

where

v∗ = [v0, v1, . . . , vn−1, 0, 0, . . . , 0︸ ︷︷ ︸
m−1

] and w∗ = [0, 0, . . . , 0︸ ︷︷ ︸
n−1

, w0, w1, . . . , wm−1].

Cross-correlation is typically used for measuring similarity between signals.
For example, input :

cross_correlation([1,2],[3,4,5])

5.27. SIGNAL PROCESSING 249

Output :

[6.0,11.0,14.0,5.0]

Input :

v:=[2,1,3,2]:; w:=[1,-1,1,2,2,1,3,2,1]:;
round(cross_correlation(v,w))

Output :

[2,1,0,8,9,12,15,18,13,11,5,2]

Observe that the cross-correlation of v and w is peaking at position 8 with the
value 18, indicating that the two signals are best correlated when the last sample in
v is aligned with the eighth sample in w. Indeed, there is an occurrence of v in w
precisely at that point.

5.27.2 Auto-correlation of a signal : auto_correlation

auto_correlation takes as argument a complex vector v of length n and
returns its cross-correlation with itself as the vector v ?v of length 2n− 1 (see the
cross_correlation command, section 5.27.1). For example, input :

auto_correlation([2,3,4,3,1,4,5,1,3,1])

Output :

[2.0,9.0,15.0,28.0,37.0,44.0,58.0,58.0,68.0,
91.0,68.0,58.0,58.0,44.0,37.0,28.0,15.0,9.0,2.0]

5.27.3 Convolution of two signals : convolution

convolution takes two arguments, a real vector v of length n and a real vector
w of length m, and returns their convolution z = v ∗ w which is the vector of
length N = n+m− 1 defined as :

zk =

k∑
i=0

viwk−i, k = 0, 1, . . . , N − 1,

such that vj = 0 for j ≥ n and wj = 0 for j ≥ m.
For example, input :

convolution([1,2,3],[1,-1,1,-1])

Output :

[1.0,1.0,2.0,-2.0,1.0,-3.0]

In the following example convolution is used for reverberation. Assume that
the directory sounds contains two files, a dry, mono recording of a guitar stored
in guitar.wav and a two-channel impulse response recorded in a French 18th
century salon and stored in salon-ir.wav. Files are loaded with the following
command lines :

250 CHAPTER 5. THE CAS FUNCTIONS

clip:=readwav("/path/to/sounds/guitar.wav"):;
ir:=readwav("/path/to/sounds/salon-ir.wav"):;

Input :

plotwav(clip)

Output :

Input :

plotwav(ir)

Output :

Convolving the data from clip with both channels in ir produces a reverberated
variant of the recording, in stereo. Input :

data:=channel_data(clip):;
L:=convolution(data,channel_data(ir,1)):;
R:=convolution(data,channel_data(ir,2)):;

The convolved signals L and R now become the left and right channel of a new
audio clip, respectively. The normalize option is used because convolution usu-
ally results in a huge increase of sample values (which is clear from the definition).
Input :

spatial:=createwav([L,R],normalize=-3):;
playsnd(spatial)

The result sounds as it was recorded in the same salon as the impulse response.
Furthermore, it is a true stereo sound. To visualize it, input :

plotwav(spatial)

5.27. SIGNAL PROCESSING 251

Output :

Note that the resulting audio is longer than the input (for the length of the impulse
response).

5.27.4 Low-pass filtering : lowpass

lowpass takes two or three arguments: an audio clip or a real vector v repre-
senting the sampled signal, a real number c specifying the cutoff frequency and
optionally a samplerate (which defaults to 44100). The command returns the input
data after applying a simple first-order lowpass RC filter.

For example, input :

f:=unapply(periodic(sign(x),x,-1/880,1/880),x);
s:=apply(f,soundsec(3)):;

playsnd(lowpass(createwav(s),1000))

5.27.5 High-pass filtering : highpass

highpass takes two or three arguments: an audio clip or a real vector v repre-
senting the sampled signal, a real number c specifying the cutoff frequency and
optionally a samplerate (which defaults to 44100). The command returns the input
data after applying a simple first-order highpass RC filter.

For example, input :

f:=unapply(periodic(sign(x),x,-1/880,1/880),x);
s:=apply(f,soundsec(3)):;

playsnd(highpass(createwav(s),5000))

5.27.6 Apply a moving average filter to a signal : moving_average

moving_average takes two arguments: an arrayA of numeric values represent-
ing the sampled signal and a positive integer n. It returns an array B obtained by
applying a moving average filter of length n to A. The elements of B are defined
by

B[i] =
1

n

n−1∑
j=0

A[i+ j]

for i = 0, 1, . . . , L− n, where L is the length of A.
Moving average filters are fast and useful for smoothing time-encoded signals.

For example, input :

252 CHAPTER 5. THE CAS FUNCTIONS

snd:=soundsec(2):;
noise:=randvector(length(snd),normald,0,0.05):;

data:=0.5*threshold(3*sin(2*pi*220*snd),[-1.0,1.0])+noise:;
plotwav(createwav(data),range=[1000,1500])

Output :

Input :

fdata:=moving_average(data,25):;
plotwav(createwav(fdata),range=[1000,1500])

Output :

5.27.7 Perform thresholding operations on an array : threshold

threshold changes the data in an array which does not meet some kind of min-
imality criterion. It takes the following parameters :

• vector v of real or complex numbers

• bound specification bnd

• comparison operator (optional)

• abs[=true,false] (optional)

Bound specification may be either a single real number b (or an equation b=value)
or a list of two real numbers l, u (or equations l=lvalue, u=uvalue). In the
latter case a vector w is returned, as defined by :

wk =


uvalue (defaults to u), vk > u,

lvalue (defaults to l), vk < l,

vk, otherwise

5.27. SIGNAL PROCESSING 253

for k = 0, 1, . . . , n − 1 where n =size(v) when the element vk is a real num-
ber. If vk is complex, then |vk| is compared with u resp. l and the value uvalue
resp. lvalue is multiplied by vk

|vk| .
In the first case where bnd is a number or an equation, the return vector w is

defined by :

wk =

{
value (defaults to b), vk < b,

vk, otherwise

if vk ∈ R (if vk is complex, then |vk| is compared with b and the value is multi-
plied by vk

|vk|), for k = 0, 1, . . . , n− 1. If comparison operator is specified (one of
>, <= or >=, must be quoted), it is used instead of < (which is the default) in the
above formula. If the fourth argument is specified, the data in v must be real and
the following formula is used for wk, k = 0, 1, . . . , n− 1 :

wk =


value, vk ≥ 0 and |vk| < b,

−value, vk < 0 and |vk| < b,

vk, otherwise.

As before, value defaults to b and the comparison operator used to test |vk|
against b (by default <) is specified by the third argument.

For example, input :

threshold([2,3,1,2,5,4,3,7],3)

Output :

[3,3,3,3,5,4,3,7]

Input :

threshold([2,3,1,2,5,4,3,7],3=a,’>=’)

Output :

[2,a,1,2,a,a,a,a]

Input :

threshold([-2,-3,1,2,5,-4,3,-1],3=0,abs=true)

Output :

[0,-3,0,0,5,-4,3,0]

Input :

threshold([-2,-3,1,2,5,-4,3,-1],3=0,’<=’,abs=true)

Output :

[0,0,0,0,5,-4,0,0]

Input :

threshold([-120,-11,-3,0,7,27,111,234],[-100,100])

254 CHAPTER 5. THE CAS FUNCTIONS

Output :

[-100,-11,-3,0,7,27,100,100]

Input :

threshold([-120,-11,-3,0,7,27,111,234],[-100=-inf,100=inf])

Output :

[-infinity,-11,-3,0,7,27,+infinity,+infinity]

In the following example, a square-like wave is created from a single sine wave
by clipping sample values. Input :

data:=threshold(3*sin(2*pi*440*soundsec(2)),[-1.0,1.0]):;
s:=createwav(data):; playsnd(s)

Output :

1

Input :

plotwav(s,range=[1000,2000])

Output :

5.27.8 Bartlett-Hann window function : bartlett_hann_window

bartlett_hann_window takes as arguments a real vector v of length n and
optionally an interval n1..n2 (with default values n1 = 0 and n2 = n − 1), and
returns the elementwise product of the vector [vn1 , . . . , vn2] and the vector w of
length N = n2 − n1 + 1 defined by

wk = a0 + a1

∣∣∣∣ k

N − 1
− 1

2

∣∣∣∣− a2 cos

(
2 k π

N − 1

)
for k = 0, 1, . . . , N−1, where a0 = 0.62, a1 = 0.48 and a2 = 0.38. For example,
input :

L:=bartlett_hann_window(randvector(1000,0..1)):;

followed by scatterplot(L).

5.27. SIGNAL PROCESSING 255

5.27.9 Blackman-Harris window function : blackman_harris_window

blackman_harris_window takes as arguments a real vector v of length n
and optionally an interval n1..n2 (with default values n1 = 0 and n2 = n − 1),
and returns the elementwise product of the vector [vn1 , . . . , vn2] and the vector w
of length N = n2 − n1 + 1 defined by

wk = a0 − a1 cos

(
2 k π

N − 1

)
+ a2 cos

(
4 k π

N − 1

)
− a3 cos

(
6 k π

N − 1

)
for k = 0, 1, . . . , N − 1, where a0 = 0.35875, a1 = 0.48829, a2 = 0.14128 and
a3 = 0.01168. For example, input :

L:=blackman_harris_window(randvector(1000,0..1)):;

followed by scatterplot(L).

5.27.10 Blackman window function : blackman_window

blackman_window takes as arguments a real vector v of length n and optionally
a real number α (by default α = 0.16) and/or an interval n1..n2 (with default
values n1 = 0 and n2 = n− 1), and returns the elementwise product of the vector
[vn1 , . . . , vn2] and the vector w of length N = n2 − n1 + 1 defined by

wk =
1− α

2
− 1

2
cos

(
2 k π

N − 1

)
+
α

2
cos

(
4 k π

N − 1

)
for k = 0, 1, . . . , N − 1. For example, input :

L:=blackman_window(randvector(1000,0..1)):;

followed by scatterplot(L).

5.27.11 Bohman window function : bohman_window

bohman_window takes as arguments a real vector v of length n and optionally
an interval n1..n2 (with default values n1 = 0 and n2 = n − 1), and returns
the elementwise product of the vector [vn1 , . . . , vn2] and the vector w of length
N = n2 − n1 + 1 defined by

wk = (1− xk) cos (π xk) +
1

π
sin (π xk) ,

where xk =
∣∣∣ 2 k
N−1 − 1

∣∣∣, for k = 0, 1, . . . , N − 1. For example, input :

L:=bohman_window(randvector(1000,0..1)):;

followed by scatterplot(L).

256 CHAPTER 5. THE CAS FUNCTIONS

5.27.12 Cosine window function : cosine_window

cosine_window takes as arguments a real vector v of length n and optionally a
positive real number α (by default α = 1) and/or an interval n1..n2 (with default
values n1 = 0 and n2 = n− 1), and returns the elementwise product of the vector
[vn1 , . . . , vn2] and the vector w of length N = n2 − n1 + 1 defined by

wk = sinα
(

k π

N − 1

)
for k = 0, 1, . . . , N − 1. For example, input :

L:=cosine_window(randvector(1000,0..1),1.5):;

followed by scatterplot(L).

5.27.13 Gaussian window function : gaussian_window

gaussian_window takes as arguments a real vector v of length n and optionally
a positive real number α ≤ 0.5 (by default α = 0.1) and/or an interval n1..n2
(with default values n1 = 0 and n2 = n− 1), and returns the elementwise product
of the vector [vn1 , . . . , vn2] and the vector w of length N = n2 − n1 + 1 defined
by

wk = exp

(
−1

2

(
k − (N − 1)/2

α (N − 1)/2

)2
)

for k = 0, 1, . . . , N − 1. For example, input :

L:=gaussian_window(randvector(1000,0..1),0.4):;

followed by scatterplot(L).

5.27.14 Hamming window function : hamming_window

hamming_window takes as arguments a real vector v of length n and optionally
an interval n1..n2 (with default values n1 = 0 and n2 = n − 1), and returns
the elementwise product of the vector [vn1 , . . . , vn2] and the vector w of length
N = n2 − n1 + 1 defined by

wk = α− β cos

(
2 k π

N − 1

)
for k = 0, 1, . . . , N − 1, where α = 0.54 and β = 1 − α = 0.46. For example,
input :

L:=hamming_window(randvector(1000,0..1)):;

followed by scatterplot(L).

5.27. SIGNAL PROCESSING 257

5.27.15 Hann-Poisson window function : hann_poisson_window

hann_poisson_window takes as arguments a real vector v of length n and
optionally a real number α (by default α = 1) and/or an interval n1..n2 (with
default values n1 = 0 and n2 = n− 1), and returns the elementwise product of the
vector [vn1 , . . . , vn2] and the vector w of length N = n2 − n1 + 1 defined by

wk =
1

2

(
1− cos

2 k π

N − 1

)
exp

(
−α |N − 1− 2 k|

N − 1

)
for k = 0, 1, . . . , N − 1. For example, input :

L:=hann_poisson_window(randvector(1000,0..1),2):;

followed by scatterplot(L).

5.27.16 Hann window function : hann_window

hann_window takes as arguments a real vector v of length n and optionally
an interval n1..n2 (with default values n1 = 0 and n2 = n − 1), and returns
the elementwise product of the vector [vn1 , . . . , vn2] and the vector w of length
N = n2 − n1 + 1 defined by

wk = sin2

(
k π

N − 1

)
for k = 0, 1, . . . , N − 1. For example, input :

L:=hann_window(randvector(1000,0..1)):;

followed by scatterplot(L).

5.27.17 Parzen window function : parzen_window

parzen_window takes as arguments a real vector v of length n and optionally
an interval n1..n2 (with default values n1 = 0 and n2 = n − 1), and returns
the elementwise product of the vector [vn1 , . . . , vn2] and the vector w of length
N = n2 − n1 + 1 defined by

wk =

{(
1− 6x2k (1− xk)

)
,
∣∣N−1

2 − k
∣∣ ≤ N−1

4 ,

2 (1− xk)3 , otherwise,

where xk =
∣∣∣1− 2 k

N−1

∣∣∣, for k = 0, 1, . . . , N − 1. For example, input :

L:=parzen_window(randvector(1000,0..1)):;

followed by scatterplot(L).

258 CHAPTER 5. THE CAS FUNCTIONS

5.27.18 Poisson window function : poisson_window

poisson_window takes as arguments a real vector v of length n and optionally
a real number α (by default α = 1) and/or an interval n1..n2 (with default values
n1 = 0 and n2 = n − 1), and returns the elementwise product of the vector
[vn1 , . . . , vn2] and the vector w of length N = n2 − n1 + 1 defined by

wk = exp

(
−α

∣∣∣∣ 2 k

N − 1
− 1

∣∣∣∣)
for k = 0, 1, . . . , N − 1. For example, input :

L:=poisson_window(randvector(1000,0..1),2):;

followed by scatterplot(L).

5.27.19 Riemann window function : riemann_window

riemann_window takes as arguments a real vector v of length n and optionally
an interval n1..n2 (with default values n1 = 0 and n2 = n − 1), and returns
the elementwise product of the vector [vn1 , . . . , vn2] and the vector w of length
N = n2 − n1 + 1 defined by

wk =

{
1, k = N−1

2 ,
sin(π xk)
π xk

, otherwise,

where xk = 2 k
N−1 − 1, for k = 0, 1, . . . , N − 1. For example, input :

L:=riemann_window(randvector(1000,0..1)):;

followed by scatterplot(L).

5.27.20 Triangular window function : triangle_window

triangle_window takes as arguments a real vector v of length n and optionally
an integer d ∈ {−1, 0, 1} (by default d = 0) and/or an interval n1..n2 (with
default values n1 = 0 and n2 = n− 1), and returns the elementwise product of the
vector [vn1 , . . . , vn2] and the vector w of length N = n2 − n1 + 1 defined by

wk = 1−

∣∣∣∣∣n− N−1
2

N+d
2

∣∣∣∣∣
for k = 0, 1, . . . , N − 1 (the case d = −1 is called the Bartlett window function).
For example, input :

L:=triangle_window(randvector(1000,0..1),1):;

followed by scatterplot(L).

5.27. SIGNAL PROCESSING 259

5.27.21 Tukey window function : tukey_window

tukey_window takes as arguments a real vector v of length n and optionally
a real number α ∈ [0, 1] (by default α = 0.5) and/or an interval n1..n2 (with
default values n1 = 0 and n2 = n− 1), and returns the elementwise product of the
vector [vn1 , . . . , vn2] and the vector w of length N = n2 − n1 + 1 defined by

wk =


1
2

(
1 + cos

(
π
(
k
β − 1

)))
, k < β,

1, β ≤ k ≤ (N − 1)
(
1− α

2

)
,

1
2

(
1 + cos

(
π
(
k
β −

2
α + 1

)))
, otherwise,

where β = α (N−1)
2 , for k = 0, 1, . . . , N −1. When α = 0 the rectangular window

function (on-off windowing) is obtained, and the case α = 1 corresponds to the
Hann window function. For example, input :

L:=tukey_window(randvector(1000,0..1),0.4):;

followed by scatterplot(L).

5.27.22 Welch window function : welch_window

welch_window takes as arguments a real vector v of length n and optionally
an interval n1..n2 (with default values n1 = 0 and n2 = n − 1), and returns
the elementwise product of the vector [vn1 , . . . , vn2] and the vector w of length
N = n2 − n1 + 1 defined by

wk = 1−

(
k − N−1

2
N−1
2

)2

for k = 0, 1, . . . , N − 1. For example, input :

L:=welch_window(randvector(1000,0..1)):;

followed by scatterplot(L).

5.27.23 An example : static noise removal by spectral subtraction

In this section we use Xcas to inplement a simple algorithm for static noise removal
based on the spectral subtraction method. For a theoretical overview see the paper
"Noise Reduction Based on Modified Spectral Subtraction Method" by Ekaterina
Verteletskaya and Boris Simak (2011), International Journal of Computer Science,
38:1 (PDF).

Efficiency of the spectral subtraction method is largely dependent on a good
noise spectrum estimate. Below is the code for a function noiseprof that takes
data and wlen as its arguments. These are, respectively, a signal chunk contain-
ing only noise and the window length for signal segmentation (the best values are
powers of two, such as 256, 512 or 1024). The function returns an estimate of the
noise power spectrum obtained by averaging the power spectra of a (not too large)
number of distinct chunks of data of length wlen. Hamming window function
is applied prior to FFT.

https://pdfs.semanticscholar.org/c212/84207dcf8e95b8b44d0ce703f9fe23b28f2a.pdf

260 CHAPTER 5. THE CAS FUNCTIONS

noiseprof(data,wlen):={
local N,h,dx,x,v,cnt;
N:=length(data);
h:=wlen/2;
dx:=min(h,max(1,(N-wlen)/100));
v:=[0$wlen];
cnt:=0;
for (x:=h;x<N-h;x+=dx) {

v+=abs(fft(hamming_window(
mid(data,floor(x)-h,wlen)))).^2;

cnt++;
};
return 1.0/cnt*v;

}:;

The main function is noisered, which takes three arguments: the input sig-
nal data, the noise power spectrum np and the "spectral floor" parameter beta
(β, the minimum power level). The function performs subtraction of the noise
spectrum in chunks of length wlen (the length of list np) using the overlap-and-
add approach with Hamming window function. For details see Section 3A of
the paper "Speech Enhancement using Spectral Subtraction-type Algorithms: A
Comparison and Simulation Study" by Navneet Upadhyay and Abhijit Karmakar
(2015), Procedia Computer Science, vol. 54, pp. 574–584 (PDF).

noisered(data,np,beta):={
local wlen,h,N,L,padded,out,j,k,s,ds,r,alpha;
wlen:=length(np);
N:=length(data);
h:=wlen/2;
L:=0;
repeat L+=wlen; until L>=N;
padded:=concat(data,[0$(L-N)]);
out:=[0$L];
for (k:=0;k<L-wlen;k+=h) {

s:=fft(hamming_window(mid(padded,k,wlen)));
alpha:=max(1,4-3*sum(abs(s).^2)/(20*sum(np)));
r:=ifft(zip(max,abs(s).^2-alpha*np,beta*np).^(1/2)

.*exp(i*arg(s)));
for (j:=0;j<wlen;j++) {

out[k+j]+=re(r[j]);
};

};
return mid(out,0,N);

}:;

To demonstrate the efficiency of the algorithm, we test it on a small speech
sample with an audible amount of static noise. Assume that the corresponding
WAV file noised.wav is stored in the directory sounds. Input :

clip:=readwav("/path/to/sounds/noised.wav"):;
plotwav(clip)

https://core.ac.uk/download/pdf/81218023.pdf

5.28. EXPONENTIALS AND LOGARITHMS 261

Output :

Speech starts after approximately 0.2 seconds of pure noise. We use that part of the
clip for obtaining an estimate of the noise power spectrum with wlen set to 256.
Input :

noise:=channel_data(clip,range=0.0..0.15):;
np:=noiseprof(noise,256):;

Now we call the noisered function with β = 0.03 :

c:=noisered(channel_data(clip),np,0.03):;
cleaned:=createwav(c):; plotwav(cleaned)

Output :

It is clearly visible that the noise level is significantly lower than in the original
clip. One can also use the playsnd command to compare the input with the
output by hearing, which reveals that the noise is still present but in a lesser degree
(the parameter β controls how much noise is "left in").

The algorithm implemented in this section is not particularly fast (removing the
noise from a two and a half seconds long recording took 20 seconds of computation
time), but serves as a proof of concept and demonstrates the efficiency of noise
removal.

5.28 Exponentials and Logarithms

5.28.1 Rewrite hyperbolic functions as exponentials : hyp2exp

hyp2exp takes as argument an hyperbolic expression.
hyp2exp rewrites each hyperbolic functions with exponentials (as a rational frac-
tion of one exponential, i.e. WITHOUT linearization).
Input :

262 CHAPTER 5. THE CAS FUNCTIONS

hyp2exp(sinh(x))

Output :

(exp(x)-1/(exp(x)))/2

5.28.2 Expand exponentials : expexpand

expexpand takes as argument an expression with exponentials.
expexpand expands this expression (rewrites exp of sums as product of exp).
Input :

expexpand(exp(3*x)+exp(2*x+2))

Output :

exp(x)^3+exp(x)^2*exp(2)

5.28.3 Expand logarithms : lnexpand

lnexpand takes as argument an expression with logarithms.
lnexpand expands this expression (rewrites ln of products as sum of ln).
Input :

lnexpand(ln(3*x^2)+ln(2*x+2))

Output :

ln(3)+2*ln(x)+ln(2)+ln(x+1)

5.28.4 Linearize exponentials : lin

lin takes as argument an expression with exponentials.
lin rewrites hyperbolic functions as exponentials if required, then linearizes this
expression (i.e. replace product of exponentials by exponential of sums).
Examples

• Input :

lin(sinh(x)^2)

Output :

1/4*exp(2*x)+1/-2+1/4*exp(-(2*x))

• Input :

lin((exp(x)+1)^3)

Output :

exp(3*x)+3*exp(2*x)+3*exp(x)+1

5.28. EXPONENTIALS AND LOGARITHMS 263

5.28.5 Collect logarithms : lncollect

lncollect takes as argument an expression with logarithms.
lncollect collects the logarithms (rewrites sum of ln as ln of products). It
may be a good idea to factor the expression with factor before collecting by
lncollect).
Input :

lncollect(ln(x+1)+ln(x-1))

Output :

log((x+1)*(x-1))

Input :

lncollect(exp(ln(x+1)+ln(x-1)))

Output :

(x+1)*(x-1)

Warning!!! For Xcas, log=ln (use log10 for 10-base logarithm).

5.28.6 Expand powers : powexpand

powexpand rewrites a power of a sum as a product of powers.
Input :

powexpand(a^(x+y))

Output :

a^x*a^y

5.28.7 Rewrite a power as an exponential : pow2exp

pow2exp rewrites a power as an exponential.
Input :

pow2exp(a^(x+y))

Output :

exp((x+y)*ln(a))

5.28.8 Rewrite exp(n*ln(x)) as a power : exp2pow

exp2pow rewrites expression of the form exp(n ∗ ln(x)) as a power of x.
Input :

exp2pow(exp(n*ln(x)))

Output :

x^n

264 CHAPTER 5. THE CAS FUNCTIONS

Note the difference with lncollect :
lncollect(exp(n*ln(x))) = exp(n*log(x))
lncollect(exp(2*ln(x))) = exp(2*log(x))
exp2pow(exp(2*ln(x))) = x^2
But :
lncollect(exp(ln(x)+ln(x))) = x^2
exp2pow(exp(ln(x)+ln(x))) = x^(1+1)

5.28.9 Simplify complex exponentials : tsimplify

tsimplify simplifies transcendental expressions by rewriting the expression
with complex exponentials.
It is a good idea to try other simplification instructions and call tsimplify if
they do not work.
Input :

tsimplify((sin(7*x)+sin(3*x))/sin(5*x))

Output :

((exp((i)*x))^4+1)/(exp((i)*x))^2

5.29 Polynomials

5.29.1 Polynomials of a single variable: poly1

A polynomial of one variable is represented either by a symbolic expression or by
the list of its coefficients in decreasing powers order (dense representation). In the
latter case, to avoid confusion with other kinds of list

• use poly1[...] as delimiters in inputs

• check for 8 8 in Xcas output.

Note that polynomials represented as lists of coefficients are always written in de-
creasing powers order even if increasing power is checked in cas configu-
ration.

5.29.2 Polynomials of several variables: %%%{ %%%}

A polynomial of several variables is represented

• by a symbolic expression

• or by a dense recursive 1-d representation like above

• or by a sum of monomials with non-zero coefficients (distributed sparse rep-
resentation).
A monomial with several variables is represented by a coefficient and a
list of integers (interpreted as powers of a variable list). The delimiters
for monomials are %%%{ and %%%}, for example 3x2y is represented by
%%%{3,[2,1]%%%} with respect to the variable list [x,y]).

5.29. POLYNOMIALS 265

5.29.3 Convert to a symbolic polynomial : r2e poly2symb

r2e or poly2symb takes as argument

• a list of coefficients of a polynomial (by decreasing order) and a symbolic
variable name (by default x)

• or a sum of monomials %%%{coeff,[n1,....nk] %%%} and a vector
of symbolic variables [x1,...,xk].

r2e or poly2symb transforms the argument into a symbolic polynomial.
Example with univariate polynomials, input :

r2e([1,0,-1],x)

or :

r2e([1,0,-1])

or :

poly2symb([1,0,-1],x)

Output :

x*x-1

Example with sparse multivariate polynomials, input:

poly2symb(%%%{1,[2]%%%}+%%%{-1,[0]%%%},[x])

or :

r2e(%%%{1,[2]%%%}+%%%{-1,[0]%%%},[x])

Output :

x^2-1

Input :

r2e(%%%{1,[2,0]%%%}+%%%{-1,[1,1]%%%}+%%%{2,[0,1]%%%},[x,y])

or :

poly2symb(%%%{1,[2,0]%%%}+%%%{-1,[1,1]%%%}+%%%{2,[0,1]%%%},[x,y])

Output :

x^2-x*y+2*y

266 CHAPTER 5. THE CAS FUNCTIONS

5.29.4 Convert from a symbolic polynomial : e2r symb2poly

e2r or symb2poly takes as argument a symbolic polynomial and either a sym-
bolic variable name (by default x) or a list of symbolic variable names.
e2r or symb2poly transforms the polynomial into a list (dense representation of
the univariate polynomial, coefficients written by decreasing order) or into a sum
of monomials (sparse representation of multivariate polynomials).
Input :

e2r(x^2-1)

or :

symb2poly(x^2-1)

or :

symb2poly(y^2-1,y)

or :

e2r(y^2-1,y)

Output :

81,0,-18

Input :

e2r(x^2-x*y+y, [x,y])

or :

symb2poly(x^2-x*y+2*y, [x,y])

Output :

%%%{1,[2,0]%%%}+%%%{-1,[1,1]%%%}+%%%{2,[0,1]%%%}

5.29.5 Transform a polynomial in internal format into a list, and con-
versely: convert

The convert command can take a polynomial in the internal format as a first
argument and the list option as the second argument. Here, the list option
can be omitted.
In this case, convert returns a list representing the polynomial.
Input:

p := symb2poly(xˆ2 - x*y + 2y, [x,y])

Output:

%%%{1,[2,0]%%%}+%%%{-1,[1,1]%%%}+%%%{2,[0,1]%%%}

Input:

l := convert(p,list)

5.29. POLYNOMIALS 267

or:

l := convert(p)

Output:

[[1,[2,0]],[-1,[1,1]],[2,[0,1]]]

which is a list of the coefficients followed by a list of the variable powers.
The convert command can also take a list as the first argument and the

polynom option as the second argument.
In this case, convert returns the corresponding polynomial in internal format.
Input (l from above):

l

Output:

[[1,[2,0]],[-1,[1,1]],[2,[0,1]]]

Input:

convert(l,polynom)

Output:

%%%{1,[2,0]%%%}+%%%{-1,[1,1]%%%}+%%%{2,[0,1]%%%}

5.29.6 Coefficients of a polynomial: coeff coeffs

coeff or coeffs takes three arguments : the polynomial, the name of the vari-
able (or the list of the names of variables) and the degree (or the list of the degrees
of the variables).
coeff or coeffs returns the coefficient of the polynomial of the degree given
as third argument. If no degree was specified, coeffs return the list of the coeffi-
cients of the polynomial, including 0 in the univariate dense case and excluding 0
in the multivariate sparse case.
Input :

coeff(-x^4+3*x*y^2+x,x,1)

Output :

3*y^2+1

Input :

coeff(-x^4+3x*y^2+x,y,2)

Output :

3*x

Input :

coeff(-x^4+3x*y^2+x,[x,y],[1,2])

Output :

3

268 CHAPTER 5. THE CAS FUNCTIONS

5.29.7 Polynomial degree : degree

degree takes as argument a polynomial given by its symbolic representation or
by the list of its coefficients.
degree returns the degree of this polynomial (highest degree of its non-zero
monomials).
Input :

degree(x^3+x)

Output :

3

Input :

degree([1,0,1,0])

Output :

3

5.29.8 Polynomial valuation : valuation ldegree

valuation or ldegree takes as argument a polynomial given by a symbolic
expression or by the list of its coefficients.
valuation or ldegree returns the valuation of this polynomial, that is the
lowest degree of its non-zero monomials.
Input :

valuation(x^3+x)

Output :

1

Input :

valuation([1,0,1,0])

Output :

1

5.29.9 Leading coefficient of a polynomial : lcoeff

lcoeff takes as argument a polynomial given by a symbolic expression or by the
list of its coefficients.
lcoeff returns the leading coefficient of this polynomial, that is the coefficient
of the monomial of highest degree.
Input :

lcoeff([2,1,-1,0])

Output :

5.29. POLYNOMIALS 269

2

Input :

lcoeff(3*x^2+5*x,x)

Output :

3

Input :

lcoeff(3*x^2+5*x*y^2,y)

Output :

5*x

5.29.10 Trailing coefficient degree of a polynomial : tcoeff

tcoeff takes as argument a polynomial given by a symbolic expression or by the
list of its coefficients.
tcoeff returns the coefficient of the monomial of lowest degree of this polyno-
mial (tcoeff=trailing coefficient).
Input :

tcoeff([2,1,-1,0])

Output :

-1

Input :

tcoeff(3*x^2+5*x,x)

Output :

5

Input :

tcoeff(3*x^2+5*x*y^2,y)

Output :

3*x^2

270 CHAPTER 5. THE CAS FUNCTIONS

5.29.11 Evaluation of a polynomial : peval polyEval

peval or polyEval takes as argument a polynomial p given by the list of its
coefficients and a real a .
peval or polyEval returns the exact or numeric value of p(a) using Horner’s
method.
Input :

peval([1,0,-1],sqrt(2))

Output :

sqrt(2)*sqrt(2)-1

Then :

normal(sqrt(2)*sqrt(2)-1)

Output :

1

Input :

peval([1,0,-1],1.4)

Output :

0.96

5.29.12 Factorize xn in a polynomial : factor_xn

factor_xn takes as argument a polynomial P.
factor_xn returns the polynomial P written as the product of its monomial of
largest degree xn (n=degree(P)) with a rational fraction having a non-zero fi-
nite limit at infinity.
Input :

factor_xn(-x^4+3)

Output :

x^4*(-1+3*x^-4)

5.29.13 GCD of the coefficients of a polynomial : content

content takes as argument a polynomial P given by a symbolic expression or by
the list of its coefficients.
content returns the content of P, that is the GCD (greatest common divisor) of
the coefficients of P.
Input :

content(6*x^2-3*x+9)

or:

content([6,-3,9],x))

Output :

3

5.29. POLYNOMIALS 271

5.29.14 Primitive part of a polynomial : primpart

primpart takes as argument a polynomial P given by a symbolic expression or
by the list of its coefficients.
primpart returns the primitive part of P, that is P divided by the GCD (greatest
common divisor) of its coefficients.
Input :

primpart(6x^2-3x+9)

or:

primpart([6,-3,9],x))

Output :

2*x^2-x+3

5.29.15 Factorization : collect

collect takes as argument a polynomial or a list of polynomials and optionally
an algebraic extension like sqrt(n) (for

√
n).

collect factorizes the polynomial (or the polynomials in the list) on the field of
its coefficient (for example Q) or on the smallest extension containing the optional
second argument (e.g. Q[

√
n]). In complex mode, the field is complexified.

Examples :

• Factorize x2 − 4 over the integers, input :

collect(x^2-4)

Output in real mode :

(x-2)*(x+2)

• Factorize x2 + 4 over the integers, input :

collect(x^2+4)

Output in real mode :

x^2+4

Output in complex mode :

(x+2*i)*(x-2*i)

• Factorize x2 − 2 over the integers, input :

collect(x^2-2)

Output in real mode :

272 CHAPTER 5. THE CAS FUNCTIONS

x^2-2

But if you input :

collect(sqrt(2)*(x^2-2))

Output :

sqrt(2)*(x-sqrt(2))*(x+sqrt(2))

• Factorize over the integers :

x3 − 2x2 + 1 and x2 − x

Input :

collect([x^3-2*x^2+1,x^2-x])

Output :

[(x-1)*(x^2-x-1),x*(x-1)]

But, input :

collect((x^3-2*x^2+1)*sqrt(5))

Output :

((19*sqrt(5)-10)*((sqrt(5)+15)*x+7*sqrt(5)-5)*
((sqrt(5)+25)*x-13*sqrt(5)-15)*(x-1))/6820

Or, input :

collect(x^3-2*x^2+1,sqrt(5))

Output :

((2*sqrt(5)-19)*((sqrt(5)+25)*x-
13*sqrt(5)-15)*(-x+1)*((sqrt(5)+15)*x+7*sqrt(5)-5))/6820

5.29.16 Factorization : factor factoriser

factor takes as argument a polynomial or a list of polynomials and optionally an
algebraic extension, e.g. sqrt(n).
factor factorizes the polynomial (or the polynomials in the list) on the field of
its coefficients (the field is complexified in complex mode) or on the smallest ex-
tension containing the optional second argument. Unlike collect, factor will
further factorize each factor of degree 2 if Sqrt is checked in the cas configura-
tion (see also 5.13.10). You can check the current configuration in the status button
under Xcas and change the configuration by hitting this status button.
Input :

5.29. POLYNOMIALS 273

factor(x^2+2*x+1)

Output :

(x+1)^2

Input :

factor(x^4-2*x^2+1)

Output :

(-x+1)^2*(x+1)^2

Input :

factor(x^3-2*x^2+1)

Output if Sqrt is not checked in the cas configuration :

(x-1)*(x^2-x-1)

Output if Sqrt is checked in the cas configuration :

(x-1)*(x+(sqrt(5)-1)/2)*(x+(-sqrt(5)-1)/2)

Input :

factor(x^3-2*x^2+1,sqrt(5))

Output :

((2*sqrt(5)-19)*((sqrt(5)+15)*x+
7*sqrt(5)-5)*(-x+1)*((sqrt(5)+25)*x-13*sqrt(5)-15))/6820

Input :

factor(x^2+1)

Output in real mode :

x^2+1

Output in complex mode :

((-i)*x+1)*((i)*x+1)

5.29.17 Square-free factorization : sqrfree

sqrfree takes as argument a polynomial.
sqrfree factorizes this polynomial as a product of powers of coprime factors,
where each factor has roots of multiplicity 1 (in other words, a factor and its deriva-
tive are coprime).
Input :

sqrfree((x^2-1)*(x-1)*(x+2))

Output :

(x^2+3*x+2)*(x-1)^2

Input :

sqrfree((x^2-1)^2*(x-1)*(x+2)^2)

Output :

(x^2+3*x+2)*(x-1)^3

274 CHAPTER 5. THE CAS FUNCTIONS

5.29.18 List of factors : factors

factors has either a polynomial or a list of polynomials as argument.
factors returns a list containing the factors of the polynomial and their expo-
nents.
Input :

factors(x^2+2*x+1)

Output :

[x+1,2]

Input :

factors(x^4-2*x^2+1)

Output :

[x+1,2,x-1,2]

Input :

factors([x^3-2*x^2+1,x^2-x])

Output :

[[x-1,1,x^2-x-1,1],[x,1,x-1,1]]

Input :

factors([x^2,x^2-1])

Output :

[[x,2],[x+1,1,x-1,1]]

5.29.19 Evaluate a polynomial : horner

horner takes two arguments : a polynomial P given by its symbolic expression
or by the list of its coefficients and a number a.
horner returns P(a) computed using Horner’s method.
Input :

horner(x^2-2*x+1,2)

or :

horner([1,-2,1],2)

Output :

1

5.29. POLYNOMIALS 275

5.29.20 Rewrite in terms of the powers of (x-a) : ptayl

ptayl is used to rewrite a polynomial P depending of x in terms of the powers of
(x-a) (ptayl means polynomial Taylor)
ptayl takes two arguments: a polynomial P given by a symbolic expression or
by the list of its coefficients and a number a.
ptayl returns the polynomial Q such that Q(x-a)=P(x)
Input :

ptayl(x^2+2*x+1,2)

Output, the polynomial Q:

x^2+6*x+9

Input :

ptayl([1,2,1],2)

Output :

[1,6,9]

Remark

P(x)=Q(x-a)

i.e. for the example :
x2 + 2x+ 1 = (x− 2)2 + 6(x− 2) + 9

5.29.21 Compute with the exact root of a polynomial : rootof

LetP andQ be two polynomials given by the list of their coefficients then rootof(P,Q)
gives the value P (α) where α is the root of Q with largest real part (and largest
imaginary part in case of equality).
In exact computations, Xcas will rewrite rational evaluations of rootof as a
unique rootof with degree(P) <degree(Q). If the resulting rootof is the solu-
tion of a second degree equation, it will be simplified.

Example
Let α be the root with largest imaginary part of Q(x) = x4 + 10x2 + 1 (all roots
of Q have real part equal to 0).

• Compute
1

α
. Input :

normal(1/rootof([1,0],[1,0,10,0,1]))

P (x) = x is represented by [1,0] andα by rootof([1,0],[1,0,10,0,1]).
Output :

rootof([[-1,0,-10,0],[1,0,10,0,1]])

i.e. :
1

α
= −α3 − 10α

276 CHAPTER 5. THE CAS FUNCTIONS

• Compute α2. Input :

normal(rootof([1,0],[1,0,10,0,1])^2)

or (since P (x) = x2 is represented by [1,0,0]) input

normal(rootof([1,0,0],[1,0,10,0,1]))

Output :

-5-2*sqrt(6)

5.29.22 Exact roots of a polynomial : roots

roots takes as arguments a symbolic polynomial expression and the name of its
variable.
roots returns a 2 columns matrix : each row is the list of a root of the polynomial
and its multiplicity.
Examples

• Find the roots of P (x) = x5 − 2x4 + x3.
Input :

roots(x^5-2*x^4+x^3)

Output :

[[8+3*sqrt(7),1],[8-3*sqrt(7),1],[0,3]]

• Find the roots of x10 − 15x8 + 90x6 − 270x4 + 405x2 − 243 = (x2 − 3)5.
Input :

roots(x^10-15*x^8+90*x^6-270*x^4+405*x^2-243)

Output :

[[sqrt(3),5],[-(sqrt(3)),5]]

• Find the roots of t3 − 1.
Input :

roots(t^3-1,t)

Output :

[[(-1+(i)*sqrt(3))/2,1],[(-1-(i)*sqrt(3))/2,1],[1,1]]

5.29. POLYNOMIALS 277

5.29.23 Coefficients of a polynomial defined by its roots : pcoeff
pcoef

pcoeff (or pcoef) takes as argument a list of the roots of a polynomial P .
pcoeff (or pcoef) returns a univariate polynomial having these roots, repre-
sented as the list of its coefficients by decreasing order.
Input :

pcoef([1,2,0,0,3])

Output :

[1,-6,11,-6,0,0]

i.e. (x− 1)(x− 2)(x2)(x− 3) = x5 − 6x4 + 11x3 − 6x2.

5.29.24 Truncate of order n : truncate

truncate takes as argument, a polynomial and an integer n.
truncate truncates this polynomial at order n (removing all terms of order
greater or equal to n+1).
truncate may be used to transform a series expansion into a polynomial or to
compute a series expansion step by step.
Input :

truncate((1+x+x^2/2)^3,4)

Output :

(9*x^4+16*x^3+18*x^2+12*x+4)/4

Input :

truncate(series(sin(x)),4)

Output :

(-x^3-(-6)*x)/6

Note that the returned polynomial is normalized.

5.29.25 Convert a series expansion into a polynomial : convert convertir

convert, with the option polynom, converts a Taylor series into a polynomial.
It should be used for operations like drawing the graph of the Taylor series of a
function near a point.
convert takes two arguments : an expression and the option polynom.
convert replaces the order_size functions by 0 inside the expression.
Input :

convert(taylor(sin(x)),polynom)

Output :

x+1/-6*x^3+1/120*x^5+x^6*0

278 CHAPTER 5. THE CAS FUNCTIONS

Input :

convert(series(sin(x),x=0,6),polynom)

Output :

x+1/-6*x^3+1/120*x^5+x^7*0

5.29.26 Random polynomial : randpoly randPoly

randpoly (or randPoly) takes two arguments: the name of a variable (by de-
fault x) and an integer n (the order of the arguments is not important).
randpoly returns a polynomial with respect to the variable given argument (or x
if none was provided), of degree the second argument, having as coefficients ran-
dom integers evenly distributed on -99..+99.
Input :

randpoly(t,4)

Output for example:

-8*t^4-87*t^3-52*t^2+94*t+80

Input :

randpoly(4)

Output for example:

70*x^4-46*x^3-7*x^2-24*x+52

Input :

randpoly(4,u)

Output for example:

2*u^4+33*u^3-6*u^2-92*u-12

5.29.27 Change the order of variables : reorder

reorder takes two arguments : an expression and a vector of variable names.
reorder expands the expression according to the order of variables given as sec-
ond argument.
Input :

reorder(x^2+2*x*a+a^2+z^2-x*z,[a,x,z])

Output :

a^2+2*a*x+x^2-x*z+z^2

Warning :
The variables must be symbolic (if not, purge them before calling reorder)

5.29. POLYNOMIALS 279

5.29.28 Random list : ranm

ranm takes as argument an integer n.
ranm returns a list of n random integers (between -99 and +99). This list can be
seen as the coefficients of an univariate polynomial of degree n-1 (see also 5.47.3).
Input :

ranm(3)

Output :

[68,-21,56]

5.29.29 Lagrange’s polynomial : lagrange interp

lagrange takes as argument two lists of size n (resp. a matrix with two rows and
n columns) and the name of a variable var (by default x).
The first list (resp. row) corresponds to the abscissa values xk (k = 1..n), and the
second list (resp. row) corresponds to ordinate values yk (k = 1..n).
lagrange returns a polynomial expression P with respect to var of degree n-1,
such that P (xi) = yi.
Input :

lagrange([[1,3],[0,1]])

or :

lagrange([1,3],[0,1])

Output :

(x-1)/2

since x−1
2 = 0 for x = 1, and x−1

2 = 1 for x = 3.
Input :

lagrange([1,3],[0,1],y)

Output :

(y-1)/2

Warning
f:=lagrange([1,2],[3,4],y) does not return a function but an expression
with respect to y. To define f as a function, input

f:=unapply(lagrange([1,2],[3,4],x),x)

Avoid f(x):=lagrange([1,2],[3,4],x) since the Lagrange polynomial
would be computed each time f is called (indeed in a function definition, the sec-
ond member of the assignment is not evaluated). Note also that
g(x):=lagrange([1,2],[3,4]) would not work since the default argu-
ment of lagrange would be global, hence not the same as the local variable used
for the definition of g.

280 CHAPTER 5. THE CAS FUNCTIONS

5.29.30 Trigonometric interpolation : triginterp

triginterp(y,x=a..b) or triginterp(y,a,b,x) returns the trigono-
metric polynomial that interpolates data given in the list y. It is assumed that the
list y contains ordinate components of the points with equidistant abscissa compo-
nents between a and b such that the first element from y corresponds to a and the
last element to b.

For example, y may be a list of experimental measurements of some quantity
taken in regular intervals, with the first observation in the moment t = a and the
last observation in the moment t = b. The resulting trigonometric polynomial has
the period

T =
n (b− a)

n− 1
,

where n is the number of observations (n=size(y)). For example, assume that
the following data is obtained by measuring the temperature every three hours:

hour of the day 0 3 6 9 12 15 18 21
temperature (deg C) 11 10 17 24 32 26 23 19

Furthermore, assume that an estimate of the temperature at 13:45 is required. To
obtain a trigonometric interpolation of the data, input :

tp:=triginterp([11,10,17,24,32,26,23,19],x=0..21)

Output :

81/4+(-21*sqrt(2)-42)/8*cos(pi/12*x)+
(-11*sqrt(2)-12)/8*sin(pi/12*x)+3/4*cos(pi/6*x)
-7/4*sin(pi/6*x)+(21*sqrt(2)-42)/8*cos(pi/4*x)
+(-11*sqrt(2)+12)/8*sin(pi/4*x)+1/2*cos(pi/3*x)

Now a temperature at 13:45 hrs can be approximated with the value of tp for
x = 13.75. Input :

tp | x=13.75

Output :

29.4863181684

If one of the input parameters is inexact, the result will be inexact too. For
example, input :

Digits:=3;
triginterp([11,10,17,24,32,26,23,19],x=0..21.0)

Output :

0.5*cos(1.05*x)-1.54*cos(0.785*x)+0.75*cos(0.524*x)
-8.96*cos(0.262*x)-0.445*sin(0.785*x)-1.75*sin(0.524*x)

-3.44*sin(0.262*x)+20.2

5.29. POLYNOMIALS 281

5.29.31 Natural splines: spline

Definition

Let σn be a subdivision of a real interval [a, b] :

a = x0, x1, ..., xn = b

s is a spline function of degree l, if s is a function from [a, b] to R such that :

• s has continuous derivatives up to the order l − 1,

• on each interval of the subdivision, s is a polynomial of degree less or equal
than l.

Theorem

The set of spline functions of degree l on σn is an R-vector subspace of dimension
n+ l.

Proof
On [a, x1], s is a polynomial A of degree less or equal to l, hence on [a, x1], s =
A(x) = a0 + a1x+ ...alx

l and A is a linear combination of 1, x, ...xl.
On [x1, x2], s is a polynomial B of degree less or equal to l, hence on [x1, x2],
s = B(x) = b0 + b1x+ ...blx

l.
s has continuous derivatives up to order l − 1, hence :

∀0 ≤ j ≤ l − 1, B(j)(x1)−A(j)(x1) = 0

therefore B(x)−A(x) = α1(x− x1)l or B(x) = A(x) + α1(x− x1)l.
Define the function :

q1(x) =
{

0 on [a, x1]
(x− x1)l on [x1, b]

Hence :
s|[a,x2] = a0 + a1x+ ...alx

l + α1q1(x)

On [x2, x3], s is a polynomial C of degree less or equal than l, hence on [x2, x3],
s = C(x) = c0 + c1x+ ...clx

l.
s has continuous derivatives until l − 1, hence :

∀0 ≤ j ≤ l − 1, C(j)(x2)−B(j)(x2) = 0

therefore C(x)−B(x) = α2(x− x2)l or C(x) = B(x) + α2(x− x2)l.
Define the function :

q2(x) =
{

0 on [a, x2]
(x− x2)l on [x2, b]

Hence : s|[a,x3] = a0 + a1x+ ...alx
l + α1q1(x) + α2q2(x)

And so on, the functions are defined by :

∀1 ≤ j ≤ n− 1, qj(x) =
{

0 on [a, xj]
(x− xj)l on [xj , b]

hence,

s|[a,b] = a0 + a1x+ ...alx
l + α1q1(x) ++ αn−1qn−1(x)

and s is a linear combination of n+ l independent functions 1, x, ..xl, q1, ..qn−1.

282 CHAPTER 5. THE CAS FUNCTIONS

Interpolation with spline functions

If we want to interpolate a function f on σn by a spline function s of degree l, then
s must verify s(xk) = yk = f(xk) for all 0 ≤ k ≤ n. Hence there are n + 1
conditions, and l − 1 degrees of liberty. We can therefore add l − 1 conditions,
these conditions are on the derivatives of s at a and b.

Hermite interpolation, natural interpolation and periodic interpolation are three
kinds of interpolation obtained by specifying three kinds of constraints. The unic-
ity of the solution of the interpolation problem can be proved for each kind of
constraints.

If l is odd (l = 2m− 1), there are 2m− 2 degrees of freedom. The constraints
are defined by :

• Hermite interpolation

∀1 ≤ j ≤ m− 1, s(j)(a) = f (j)(a), s(j)(b) = f (j)(b)

• Natural interpolation

∀m ≤ j ≤ 2m− 2, s(j)(a) = s(j)(b) = 0

• periodic interpolation

∀1 ≤ j ≤ 2m− 2, s(j)(a) = s(j)(b)

If l is even (l = 2m), there are 2m − 1 degrees of liberty. The constraints are
defined by :

• Hermite interpolation

∀1 ≤ j ≤ m− 1, s(j)(a) = f (j)(a), s(j)(b) = f (j)(b)

and
s(m)(a) = f (m)(a)

• Natural interpolation

∀m ≤ j ≤ 2m− 2, s(j)(a) = s(j)(b) = 0

and
s(2m−1)(a) = 0

• Periodic interpolation

∀1 ≤ j ≤ 2m− 1, s(j)(a) = s(j)(b)

A natural spline is a spline function which verifies the natural interpolation con-
straints.

spline takes as arguments a list of abscissa (by increasing order), a list of
ordinates, a variable name, and a degree.
spline returns the natural spline function (with the specified degree and crossing
points) as a list of polynomials, each polynomial being valid on an interval.

Examples:

5.29. POLYNOMIALS 283

1. a natural spline of degree 3, crossing through the points x0 = 0, y0 = 1,
x1 = 1, y1 = 3 and x2 = 2, y2 = 0, input :

spline([0,1,2],[1,3,0],x,3)

Output is a list of two polynomial expressions of x :

[−5∗x3/4+13∗x/4+1, 5∗(x−1)3/4−15∗(x−1)2/4+(x−1)/−2+3]

defined respectively on the intervals [0, 1] and [1, 2].

2. a natural spline of degree 4, crossing through the points x0 = 0, y0 = 1,
x1 = 1, y1 = 3, x2 = 2, y2 = 0 and x3 = 3, y3 = −1, input :

spline([0,1,2,3],[1,3,0,-1],x,4)

Output is a list of three polynomial functions of x :

[(−62 ∗ x4 + 304 ∗ x)/121 + 1,

(201 ∗ (x− 1)4− 248 ∗ (x− 1)3− 372 ∗ (x− 1)2 + 56 ∗ (x− 1))/121 + 3,

(−139 ∗ (x− 2)4 + 556 ∗ (x− 2)3 + 90 ∗ (x− 2)2 +−628 ∗ (x− 2))/121]

defined respectively on the intervals [0, 1], [1, 2] and [2, 3].

3. The natural spline interpolation of cos on [0, π/2, 3π/2], input :

spline([0,pi/2,3*pi/2],cos([0,pi/2,3*pi/2]),x,3)

Output :

[((3 ∗ π3 + (−7 ∗ π2) ∗ x+ 4 ∗ x3) ∗ 1/3)/(π3),

((15 ∗ π3 + (−46 ∗ π2) ∗ x+ 36 ∗ π ∗ x2 − 8 ∗ x3) ∗ 1/12)/(π3)]

5.29.32 Rational interpolation : thiele

thiele takes as the first argument a matrix data of type n × 2 where that i-th
row holds coordinates x and y of i-th point, respectively. The second argument
is v, which may be an identifier, number or any symbolic expression. Function
returns R(v) where R is the rational interpolant. Instead of a single matrix data,
two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) may be given (in this
case, v is given as the third argument).

This method computes Thiele interpolated continued fraction based on the con-
cept of reciprocal differences.

It is not guaranteed that R is continuous, i.e. it may have singularities in the
shortest segment which contains all components of x.

284 CHAPTER 5. THE CAS FUNCTIONS

Examples

Input :

thiele([[1,3],[2,4],[4,5],[5,8]],x)

Output :

(19*x^2-45*x-154)/(18*x-78)

Input :

thiele([1,2,a],[3,4,5],3)

Output :

(13*a-29)/(3*a-7)

In the following example, data is obtained by sampling the function f(x) =
(1− x4) e1−x

3
.

Input :

data_x:=[-1,-0.75,-0.5,-0.25,0,
0.25,0.5,0.75,1,1.25,1.5,1.75,2];

data_y:=[0.0,2.83341735599,2.88770329586,
2.75030303645,2.71828182846,2.66568510781,

2.24894558809,1.21863761951,0.0,-0.555711613283,
-0.377871362418,-0.107135851128,-0.0136782294833];

thiele(data_x,data_y,x)

Output :

(-1.55286115659*x^6+5.87298387514*x^5-5.4439152812*x^4
+1.68655817708*x^3-2.40784868317*x^2-7.55954205222*x

+9.40462512097)/(x^6-1.24295718965*x^5-1.33526268624*x^4
+4.03629272425*x^3-0.885419321*x^2-2.77913222418*x

+3.45976823393)

5.30 Arithmetic and polynomials

Polynomials are represented by expressions or by list of coefficients by decreas-
ing power order. In the first case, for instructions requiring a main variable (like
extended gcd computations), the variable used by default is x if not specified. For
modular coefficients in Z/nZ, use % n for each coefficient of the list or apply it
to the expression defining the polynomial.

5.30.1 The divisors of a polynomial : divis

divis takes as argument a polynomial (or a list of polynomials) and returns the
list of the divisors of the polynomial(s).
Input :

divis(x^4-1)

5.30. ARITHMETIC AND POLYNOMIALS 285

Output :

[1,x^2+1,x+1,(x^2+1)*(x+1),x-1,(x^2+1)*(x-1),

(x+1)*(x-1),(x^2+1)*(x+1)*(x-1)]

Input :

divis([x^2,x^2-1])

Output :

[[1,x,x^2],[1,x+1,x-1,(x+1)*(x-1)]]

5.30.2 Euclidean quotient : quo

quo returns the euclidean quotient q of the Euclidean division between two polyno-
mials (decreasing power order). If the polynomials are represented as expressions,
the variable may be specified as a third argument.
Input :

quo(x^2+2*x +1,x)

Output :

x+2

Input :

quo(y^2+2*y +1,y,y)

Output :

y+2

In list representation, the quotient of x2 + 2x+ 4 by x2 + x+ 2 one can also input
:

quo([1,2,4],[1,1,2])

Output :

[1]

that is to say the polynomial 1.

5.30.3 Euclidean quotient : Quo

Quo is the inert form of quo.
Quo returns the euclidean quotient between two polynomials (decreasing power
division) without evaluation. It is used when Xcas is in Maple mode to compute
the euclidean quotient of the division of two polynomials with coefficients in Z/pZ
using Maple-like syntax.
In Xcas mode, input :

Quo(x^2+2*x+1,x)

286 CHAPTER 5. THE CAS FUNCTIONS

Output :

quo(x^2+2*x+1,x)

In Maple mode, input :

Quo(x^3+3*x,2*x^2+6*x+5) mod 5

Output :

-(2)*x+1

The division was done using modular arithmetic, unlike with

quo(x^3+3*x,2*x^2+6*x+5) mod 5

where the division is done in Z[X] and reduced after to:

3*x-9

If Xcas is not in Maple mode, polynomial division in Z/pZ[X] is done e.g. by :

quo((x^3+3*x)% 5,(2x^2+6x+5)%5)

5.30.4 Euclidean remainder : rem

rem returns the euclidean remainder between two polynomials (decreasing power
division). If the polynomials are represented as expressions, the variable may be
specified as a third argument.
Input :

rem(x^3-1,x^2-1)

Output :

x-1

To have the remainder of x2 + 2x+ 4 by x2 + x+ 2 we can also input :

rem([1,2,4],[1,1,2])

Output :

[1,2]

i.e. the polynomial x+ 2.

5.30. ARITHMETIC AND POLYNOMIALS 287

5.30.5 Euclidean remainder: Rem

Rem is the inert form of rem.
Rem returns the euclidean remainder between two polynomials (decreasing power
division) without evaluation. It is used when Xcas is in Maple mode to compute
the euclidean remainder of the division of two polynomials with coefficients in
Z/pZ using Maple-like syntax.
In Xcas mode, input :

Rem(x^3-1,x^2-1)

Output :

rem(x^3-1,x^2-1)

In Maple mode, input :

Rem(x^3+3*x,2*x^2+6*x+5) mod 5

Output :

2*x

The division was done using modular arithmetic, unlike with

rem(x^3+3*x,2*x^2+6*x+5) mod 5

where the division is done in Z[X] and reduced after to:

12*x

If Xcas is not in Maple mode, polynomial division in Z/pZ[X] is done e.g. by :

rem((x^3+3*x)% 5,(2x^2+6x+5)%5)

5.30.6 Quotient and remainder : quorem divide

quorem (or divide) returns the list of the quotient and the remainder of the
euclidean division (by decreasing power) of two polynomials.
Input :

quorem([1,2,4],[1,1,2])

Output :

[poly1[1],poly1[1,2]]

Input :

quorem(x^3-1,x^2-1)

Output :

[x,x-1]

288 CHAPTER 5. THE CAS FUNCTIONS

5.30.7 GCD of two polynomials with the Euclidean algorithm: gcd

gcd denotes the gcd (greatest common divisor) of two polynomials (or of a list of
polynomials or of a sequence of polynomials) (see also 5.6.2 for GCD of integers).

Examples
Input :

gcd(x^2+2*x+1,x^2-1)

Output :

x+1

Input :

gcd(x^2-2*x+1,x^3-1,x^2-1,x^2+x-2)

or

gcd([x^2-2*x+1,x^3-1,x^2-1,x^2+x-2])

Output :

x-1

For polynomials with modular coefficients, input e.g. :

gcd((x^2+2*x+1) mod 5,(x^2-1) mod 5)

Output :

x % 5

Note that :

gcd(x^2+2*x+1,x^2-1) mod 5

will output :

1

since the mod operation is done after the GCD is computed in Z[X].

5.30.8 GCD of two polynomials with the Euclidean algorithm : Gcd

Gcd is the inert form of gcd. Gcd returns the gcd (greatest common divisor)
of two polynomials (or of a list of polynomials or of a sequence of polynomials)
without evaluation. It is used when Xcas is in Maple mode to compute the gcd of
polynomials with coefficients in Z/pZ using Maple-like syntax.
Input in Xcas mode :

Gcd(x^3-1,x^2-1)

Output :

gcd(x^3-1,x^2-1)

Input in Maple mode :

Gcd(x^2+2*x,x^2+6*x+5) mod 5

Output :

1

5.30. ARITHMETIC AND POLYNOMIALS 289

5.30.9 Choosing the GCD algorithm of two polynomials : ezgcd heugcd
modgcd psrgcd

ezgcd heugcd modgcd psrgcd denote the gcd (greatest common divisor)
of two univariate or multivariate polynomials with coefficients in Z or Z[i] using a
specific algorithm :

• ezgcd ezgcd algorithm,

• heugcd heuristic gcd algorithm,

• modgcd modular algorithm,

• psrgcd sub-resultant algorithm.

Input :

ezgcd(x^2-2*x*y+y^2-1,x-y)

or :

heugcd(x^2-2*x*y+y^2-1,x-y)

or :

modgcd(x^2-2*x*y+y^2-1,x-y)

or :

psrgcd(x^2-2*x*y+y^2-1,x-y)

Output :

1

Input :

ezgcd((x+y-1)*(x+y+1),(x+y+1)^2)

or :

heugcd((x+y-1)*(x+y+1),(x+y+1)^2)

or :

modgcd((x+y-1)*(x+y+1),(x+y+1)^2)

Output :

x+y+1

Input :

psrgcd((x+y-1)*(x+y+1),(x+y+1)^2)

Output :

-x-y-1

290 CHAPTER 5. THE CAS FUNCTIONS

Input :

ezgcd((x+1)^4-y^4,(x+1-y)^2)

Output :

"GCD not successful Error: Bad Argument Value"

But input :

heugcd((x+1)^4-y^4,(x+1-y)^2)

or :

modgcd((x+1)^4-y^4,(x+1-y)^2)

or :

psrgcd((x+1)^4-y^4,(x+1-y)^2)

Output :

x-y+1

5.30.10 LCM of two polynomials : lcm

lcm returns the LCM (Least Common Multiple) of two polynomials (or of a list
of polynomials or of a sequence of polynomials) (see 5.6.5 for LCM of integers).
Input :

lcm(x^2+2*x+1,x^2-1)

Output :

(x+1)*(x^2-1)

Input :

lcm(x,x^2+2*x+1,x^2-1)

or

lcm([x,x^2+2*x+1,x^2-1])

Output :

(x^2+x)*(x^2-1)

5.30. ARITHMETIC AND POLYNOMIALS 291

5.30.11 Bézout’s Identity : egcd gcdex

This function computes the polynomial coefficients of Bézout’s Identity (also known
as Extended Greatest Common Divisor). Given two polynomials A(x), B(x),
egcd computes 3 polynomials U(x), V (x) and D(x) such that :

U(x) ∗A(x) + V (x) ∗B(x) = D(x) = GCD(A(x), B(x))

egcd takes 2 or 3 arguments: the polynomials A and B as expressions in terms of
a variable, if the variable is not specified it will default to x. Alternatively, A and
B may be given as list-polynomials.
Input :

egcd(x^2+2*x+1,x^2-1)

Output :

[1,-1,2*x+2]

Input :

egcd([1,2,1],[1,0,-1])

Output :

[[1],[-1],[2,2]]

Input :

egcd(y^2-2*y+1,y^2-y+2,y)

Output :

[y-2,-y+3,4]

Input :

egcd([1,-2,1],[1,-1,2])

Output :

[[1,-2],[-1,3],[4]]

5.30.12 Solving au+bv=c over polynomials: abcuv

abcuv solves the polynomial equation

C(x) = U(x) ∗A(x) + V (x) ∗B(x)

where A,B,C are given polynomials and U and V are unknown polynomials. C
must be a multiple of the gcd of A and B for a solution to exist. abcuv takes 3
expressions as argument, and an optional variable specification (which defaults to
x) and returns a list of 2 expressions (U and V). Alternatively, the polynomials
A,B,C may be entered as list-polynomials.

Input :

292 CHAPTER 5. THE CAS FUNCTIONS

abcuv(x^2+2*x+1 ,x^2-1,x+1)

Output :

[1/2,1/-2]

Input :

abcuv(x^2+2*x+1 ,x^2-1,x^3+1)

Output :

[1/2*x^2+1/-2*x+1/2,-1/2*x^2-1/-2*x-1/2]

Input :

abcuv([1,2,1],[1,0,-1],[1,0,0,1])

Output :

[poly1[1/2,1/-2,1/2],poly1[1/-2,1/2,1/-2]]

5.30.13 Chinese remainders : chinrem

chinrem takes two lists as argument, each list being made of 2 polynomials (ei-
ther expressions or as a list of coefficients in decreasing order). If the polynomials
are expressions, an optional third argument may be provided to specify the main
variable, by default x is used. chinrem([A,R],[B,Q]) returns the list of two
polynomials P and S such that :

S = RQ, P = A (mod R), P = B (mod Q)

If R and Q are coprime, a solution P always exists and all the solutions are congru-
ent modulo S=R*Q. For example, assume we want to solve :{

P (x) = x mod (x2 + 1)
P (x) = x− 1 mod (x2 − 1)

Input :

chinrem([[1,0],[1,0,1]],[[1,-1],[1,0,-1]])

Output :

[[1/-2,1,1/-2],[1,0,0,0,-1]]

or :

chinrem([x,x^2+1],[x-1,x^2-1])

Output :

[1/-2*x^2+x+1/-2,x^4-1]

hence P (x) = −x
2 − 2.x+ 1

2
(mod x4 − 1)

Another example, input :

5.30. ARITHMETIC AND POLYNOMIALS 293

chinrem([[1,2],[1,0,1]],[[1,1],[1,1,1]])

Output :

[[-1,-1,0,1],[1,1,2,1,1]]

or :

chinrem([y+2,y^2+1],[y+1,y^2+y+1],y)

Output :

[-y^3-y^2+1,y^4+y^3+2*y^2+y+1]

5.30.14 Cyclotomic polynomial : cyclotomic

cyclotomic takes an integer n as argument and returns the list of the coefficients
of the cyclotomic polynomial of index n. This is the polynomial having the n-th
primitive roots of unity as zeros (an n-th root of unity is primitive if the set of its
powers is the set of all the n-th roots of unity).

For example, let n = 4, the fourth roots of unity are: {1, i,−1,−i} and the
primitive roots are: {i,−i}. Hence, the cyclotomic polynomial of index 4 is (x −
i).(x+ i) = x2 + 1. Verification:

cyclotomic(4)

Output :

[1,0,1]

Another example, input :

cyclotomic(5)

Output :

[1,1,1,1,1]

Hence, the cyclotomic polynomial of index 5 is x4 +x3 +x2 +x+1 which divides
x5 − 1 since (x− 1) ∗ (x4 + x3 + x2 + x+ 1) = x5 − 1.
Input :

cyclotomic(10)

Output :

[1,-1,1,-1,1]

Hence, the cyclotomic polynomial of index 10 is x4 − x3 + x2 − x+ 1 and

(x5 − 1) ∗ (x+ 1) ∗ (x4 − x3 + x2 − x+ 1) = x10 − 1

Input :

cyclotomic(20)

Output :

[1,0,-1,0,1,0,-1,0,1]

Hence, the cyclotomic polynomial of index 20 is x8 − x6 + x4 − x2 + 1 and

(x10 − 1) ∗ (x2 + 1) ∗ (x8 − x6 + x4 − x2 + 1) = x20 − 1

294 CHAPTER 5. THE CAS FUNCTIONS

5.30.15 Sturm sequences and number of sign changes of P on (a, b] :
sturm

sturm takes two or four arguments : P a polynomial expression or P/Q a rational
fraction and a variable name or P a polynomial expression, a variable name and
two real or complex numbers a and b.

If sturm takes two arguments, sturm returns the list of the Sturm sequences
and multiplicities of the square-free factors of P (or P/Q) (in this case sturm
behaves like sturmseq).

If sturm takes four arguments, it behaves like sturmab :

• if a and b are reals, sturm returns the number of sign changes of P on (a, b]

• if a or b are complex, sturm returns the number of complex roots of P in
the rectangle having a and b as opposite vertices.

Input :

sturm(2*x^3+2,x)

Output :

[2,[[1,0,0,1],[3,0,0],-9],1]

Input :

sturm((2*x^3+2)/(x+2),x)

Output :

[2,[[1,0,0,1],[3,0,0],-9],1,[[1,2],1]]

Input :

sturm(x^2*(x^3+2),x,-2,0)

Output :

1

5.30.16 Number of zeros in [a, b) : sturmab

sturmab takes four arguments: a polynomial expression P , a variable name and
two real or complex numbers a and b

• if a and b are reals, sturmab returns the number of sign changes of P
on (a, b]. In other words, it returns the number of zeros in [a, b) of the
polynomial P/G where G = gcd(P, diff(P)).

• if a or b are complex, sturmab returns the number of complex roots of P
in the rectangle having a and b as opposite vertices.

Input :

sturmab(x^2*(x^3+2),x,-2,0)

5.30. ARITHMETIC AND POLYNOMIALS 295

Output :

1

Input :

sturmab(x^3-1,x,-2-i,5+3i)

Output :

3

Input :

sturmab(x^3-1,x,-i,5+3i)

Output :

1

Warning !!!!
P is defined by its symbolic expression.
Input :
sturmab([1,0,0,2,0,0],x,-2,0),
Output :
Bad argument type.

5.30.17 Sturm sequences : sturmseq

sturmseq takes as argument, a polynomial expression P or a rational fraction
P/Q and returns the list of the Sturm sequences of the square-free factors of odd
multiplicity of P (or of P/Q). For F a square-free factor of odd multiplicity, the
Sturm sequence R1, R2, ... is made from F , F ′ by a recurrence relation :

• R1 is the opposite of the euclidean division remainder of F by F ′ then,

• R2 is the opposite of the euclidean division remainder of F ′ by R1,

• ...

• and so on until Rk = 0.

Input :

sturmseq(2*x^3+2)

or

sturmseq(2*y^3+2,y)

Output :

[2,[[1,0,0,1],[3,0,0],-9],1]

The first term gives the content of the numerator (here 2), then the Sturm sequence
(in list representation) [x3 + 1, 3x2,−9].
Input :

296 CHAPTER 5. THE CAS FUNCTIONS

sturmseq((2*x^3+2)/(3*x^2+2),x)

Output :

[2,[[1,0,0,1],[3,0,0],-9],1,[1,[[3,0,2],[6,0],-72]]

The first term gives the content of the numerator (here 2), then the Sturm sequence
of the numerator ([[1,0,0,1],[3,0,0],-9]), then the content of the denominator (here
1) and the Sturm sequence of the denominator ([[3,0,2],[6,0],-72]). As expressions,
[x3 + 1, 3x2,−9] is the Sturm sequence of the numerator and [3x2 + 2, 6x,−72] is
the Sturm sequence of the denominator.
Input :

sturmseq((x^3+1)^2,x)

Output :

[1,1]

Indeed F = 1.
Input :

sturmseq(3*(3*x^3+1)/(2*x+2),x)

Output :

[3,[[3,0,0,1],[9,0,0],-81],2,[[1,1],1]]

The first term gives the content of the numerator (here 3),
the second term gives the Sturm sequence of the numerator (here 3x^3+1, 9x^2,
-81),
the third term gives the content of the denominator (here 2),
the fourth term gives the Sturm sequence of the denominator (x+1,1).
Warning !!!!
P is defined by its symbolic expression.
Input :

sturmseq([1,0,0,1],x)

Output :

Bad argument type.

5.30.18 Sylvester matrix of two polynomials : sylvester

sylvester takes two polynomials as arguments.
sylvester returns the Sylvester matrix S of these polynomials.
If A(x) =

∑i=n
i=0 aix

i and B(x) =
∑i=m

i=0 bix
i are 2 polynomials, their Sylvester

matrix S is a square matrix of size m+nwhere m=degree(B(x)) and n=degree(A(x)).
The m first lines are made with the A(x) coefficients, so that :

s11 = an s12 = an−1 · · · s1(n+1) = a0 0 · · · 0

s21 = 0 s22 = an · · · s2(n+1) = a1 s2(n+2) = a0 · · · 0
...

...
...

. . .
...

. . .
...

sm1 = 0 sm2 = 0 · · · sm(n+1) = am−1 sm(n+2) = am−2 · · · a0



5.30. ARITHMETIC AND POLYNOMIALS 297

and the n further lines are made with the B(x) coefficients, so that : s(m+1)1 = bm s(m+1)2 = bm−1 · · · s(m+1)(m+1) = b0 0 · · · 0
...

...
...

. . .
...

. . .
...

s(m+n)1 = 0 s(m+n)2 = 0 · · · s(m+n)(m+1) = bn−1 bn−2 · · · b0


Input :

sylvester(x^3-p*x+q,3*x^2-p,x)

Output :

[[1,0,-p,q,0],[0,1,0,-p,q],[3,0,-p,0,0],
[0,3,0,-p,0],[0,0,3,0,-p]]

Input :

det([[1,0,-p,q,0],[0,1,0,-p,q],[3,0,-p,0,0],
[0,3,0,-p,0],[0,0,3,0,-p]])

Output :

-4*p^3-27*q^2

5.30.19 Resultant of two polynomials : resultant

resultant takes as argument two polynomials and returns the resultant of the
two polynomials.
The resultant of two polynomials is the determinant of their Sylvester matrix S.
The Sylvester matrix S of two polynomials A(x) =

∑i=n
i=0 aix

i and B(x) =∑i=m
i=0 bix

i is a square matrix with m + n rows and columns; its first m rows
are made from the coefficients of A(X):

s11 = an s12 = an−1 · · · s1(n+1) = a0 0 · · · 0

s21 = 0 s22 = an · · · s2(n+1) = a1 s2(n+2) = a0 · · · 0
...

...
...

. . .
...

. . .
...

sm1 = 0 sm2 = 0 · · · sm(n+1) = am−1 sm(n+2) = am−2 · · · a0


and the following n rows are made in the same way from the coefficients of B(x) : s(m+1)1 = bm s(m+1)2 = bm−1 · · · s(m+1)(m+1) = b0 0 · · · 0

...
...

...
. . .

...
. . .

...
s(m+n)1 = 0 s(m+n)2 = 0 · · · s(m+n)(m+1) = bn−1 bn−2 · · · b0


If A and B have integer coefficients with non-zero resultant r, then the poly-

nomials equation
AU +BV = r

has a unique solutionU, V such that degree(U) <degree(B) and degree(V) <degree(A),
and this solution has integer coefficients.

Input :

298 CHAPTER 5. THE CAS FUNCTIONS

resultant(x^3-p*x+q,3*x^2-p,x)

Output :

-4*p^3-27*q^2

Remark
discriminant(P)=resultant(P,P’).

An example using the resultant
Let, F1 and F2 be 2 fixed points in the plane and A, a variable point on the circle
of center F1 and radius 2a. Find the cartesian equation of the set of points M ,
intersection of the line F1A and of the perpendicular bisector of F2A.

Geometric answer :

MF1 +MF2 = MF1 +MA = F1A = 2a

hence M is on an ellipse with focus F1, F2 and major axis 2a.
Analytic answer : In the Cartesian coordinate system with center F1 and x-axis

having the same direction as the vector F1F2, the coordinates of A are :

A = (2a cos(θ), 2a sin(θ))

where θ is the (Ox,OA) angle. Now choose t = tan(θ/2) as parameter, so that
the coordinates of A are rational functions with respect to t. More precisely :

A = (ax, ay) = (2a
1− t2

1 + t2
, 2a

2t

1 + t2
)

If F1F2 = 2c and if I is the midpoint of AF2, since the coordinates of F2 are
F2 = (2c, 0), the coordinates of I

I = (c+ ax/2; ay/2) = (c+ a
1− t2

1 + t2
; a

2t

1 + t2
)

IM is orthogonal to AF2, hence M = (x; y) satisfies the equation eq1 = 0 where

eq1 := (x− ix) ∗ (ax− 2 ∗ c) + (y − iy) ∗ ay

But M = (x, y) is also on F1A, hence M satisfies the equation eq2 = 0

eq2 := y/x− ay/ax

The resultant of both equations with respect to t resultant(eq1,eq2,t) is
a polynomial eq3 depending on the variables x, y, independent of t which is the
cartesian equation of the set of points M when t varies.
Input :

ax:=2*a*(1-t^2)/(1+t^2);ay:=2*a*2*t/(1+t^2);
ix:=(ax+2*c)/2; iy:=(ay/2)

eq1:=(x-ix)*(ax-2*c)+(y-iy)*ay
eq2:=y/x-ay/ax

factor(resultant(eq1,eq2,t))

5.30. ARITHMETIC AND POLYNOMIALS 299

Output gives as resultant :

−(64 · (x2 + y2) · (x2 · a2 − x2 · c2 +−2 · x · a2 · c + 2 · x · c3 − a4 + 2 · a2 · c2+
a2 · y2 − c4))

The factor −64 · (x2 + y2) is always different from zero, hence the locus equation
of M :

x2a2 − x2c2 +−2xa2c + 2xc3 − a4 + 2a2c2 + a2y2 − c4 = 0

If the frame origin is O, the middle point of F1F2, we find the cartesian equation
of an ellipse. To make the change of origin

−−−→
F1M =

−−→
F1O +

−−→
OM , input :

normal(subst(x2 · a2 − x2 · c2 +−2 · x · a2 · c + 2 · x · c3 − a4 + 2 · a2 · c2+

a2 · y2 − c4, [x, y] = [c + X, Y]))

Output :
−c2 ∗ X2 + c2 ∗ a2 + X2 ∗ a2 − a4 + a2 ∗ Y2

or if b2 = a2 − c2, input :

normal(subst(−c2 ∗ X2 + c2 ∗ a2 + X2 ∗ a2 − a4 + a2 ∗ Y2, c2 = a2 − b2))

Output :
−a2 ∗ b2 + a2 ∗ Y2 + b2 ∗ X2

that is to say, after division by a2 ∗ b2, M verifies the equation :

X2

a2
+
Y 2

b2
= 1

Another example using the resultant
Let F1 and F2 be fixed points and A a variable point on the circle of center F1
and radius 2a. Find the cartesian equation of the hull of D, the segment bisector of
F2A.

The segment bisector of F2A is tangent to the ellipse of focus F1, F2 and
major axis 2a.

In the Cartesian coordinate system of center F1 and x-axis having the same
direction than the vector F1F2, the coordinates of A are :

A = (2a cos(θ); 2a sin(θ))

where θ is the (Ox,OA) angle. Choose t = tan(θ/2) as parameter such that the
coordinates of A are rational functions with respect to t. More precisely :

A = (ax; ay) = (2a
1− t2

1 + t2
; 2a

2t

1 + t2
)

If F1F2 = 2c and if I is the middle point of AF2:

F2 = (2c, 0), I = (c+ ax/2; ay/2) = (c+ a
1− t2

1 + t2
; a

2t

1 + t2
)

300 CHAPTER 5. THE CAS FUNCTIONS

Since D is orthogonal to AF2, the equation of D is eq1 = 0 where

eq1 := (x− ix) ∗ (ax− 2 ∗ c) + (y − iy) ∗ ay

So, the hull of D is the locus of M , the intersection point of D and D′ where D′

has equation eq2 := diff(eq1, t) = 0. Input :

ax:=2*a*(1-t^2)/(1+t^2);ay:=2*a*2*t/(1+t^2);
ix:=(ax+2*c)/2; iy:=(ay/2)

eq1:=normal((x-ix)*(ax-2*c)+(y-iy)*ay)
eq2:=normal(diff(eq1,t))

factor(resultant(eq1,eq2,t))

Output gives as resultant :

(−(64 · a^2)) · (x^2 + y^2) · (x^2 · a^2− x^2 · c^2 +−2 · x · a^2 · c+
2 · x · c^3− a^4 + 2 · a^2 · c^2 + a^2 · y^2− c^4)

The factor −64 · (x2 + y2) is always different from zero, therefore the locus equa-
tion is :

x2a2 − x2c2 +−2xa2c + 2xc3 − a4 + 2a2c2 + a2y2 − c4 = 0

If O, the middle point of F1F2, is chosen as origin, we find again the cartesian
equation of the ellipse :

X2

a2
+
Y 2

b2
= 1

5.31 Orthogonal polynomials

5.31.1 Legendre polynomials: legendre

legendre takes as argument an integer n and optionally a variable name (by de-
fault x).
legendre returns the Legendre polynomial of degree n : it is a polynomial
L(n, x), solution of the differential equation:

(x2 − 1)y′′ − 2xy′ − n(n+ 1)y = 0

The Legendre polynomials verify the following recurrence relation:

L(0, x) = 1, L(1, x) = x, L(n, x) =
2n− 1

n
xL(n−1, x)−n− 1

n
L(n−2, x)

These polynomials are orthogonal for the scalar product :

< f, g >=

∫ +1

−1
f(x)g(x) dx

Input :

legendre(4)

Output :

5.31. ORTHOGONAL POLYNOMIALS 301

(35*x^4+-30*x^2+3)/8

Input :

legendre(4,y)

Output :

(35*y^4+-30*y^2+3)/8

5.31.2 Hermite polynomial : hermite

hermite takes as argument an integer n and optionally a variable name (by de-
fault x).
hermite returns the Hermite polynomial of degree n.
If H(n, x) denotes the Hermite polynomial of degree n, the following recurrence
relation holds:

H(0, x) = 1, H(1, x) = 2x, H(n, x) = 2xH(n−1, x)−2(n−1)H(n−2, x)

These polynomials are orthogonal for the scalar product:

< f, g >=

∫ +∞

−∞
f(x)g(x)e−x

2
dx

Input :

hermite(6)

Output :

64*x^6+-480*x^4+720*x^2-120

Input :

hermite(6,y)

Output :

64*y^6+-480*y^4+720*y^2-120

5.31.3 Laguerre polynomials: laguerre

laguerre takes as argument an integer n and optionally a variable name (by
default x) and a parameter name (by default a).
laguerre returns the Laguerre polynomial of degree n and of parameter a.
If L(n, a, x) denotes the Laguerre polynomial of degree n and parameter a, the
following recurrence relation holds:

L(0, a, x) = 1, L(1, a, x) = 1+a−x, L(n, a, x) =
2n+ a− 1− x

n
L(n−1, a, x)−n+ a− 1

n
L(n−2, a, x)

These polynomials are orthogonal for the scalar product

< f, g >=

∫ +∞

0
f(x)g(x)xae−xdx

Input :

302 CHAPTER 5. THE CAS FUNCTIONS

laguerre(2)

Output :

(a^2+-2*a*x+3*a+x^2+-4*x+2)/2

Input :

laguerre(2,y)

Output :

(a^2+-2*a*y+3*a+y^2+-4*y+2)/2

Input :

laguerre(2,y,b)

Output :

(b^2+-2*b*y+3*b+y^2+-4*y+2)/2

5.31.4 Tchebychev polynomials of the first kind: tchebyshev1

tchebyshev1 takes as argument an integer n and optionally a variable name (by
default x).
tchebyshev1 returns the Tchebychev polynomial of first kind of degree n.
The Tchebychev polynomial of first kind T (n, x) is defined by

T (n, x) = cos(n arccos(x))

and satisfy the recurrence relation:

T (0, x) = 1, T (1, x) = x, T (n, x) = 2xT (n− 1, x)− T (n− 2, x)

The polynomials T (n, x) are orthogonal for the scalar product

< f, g >=

∫ +1

−1

f(x)g(x)√
1− x2

dx

Input :

tchebyshev1(4)

Output :

8*x^4+-8*x^2+1

Input :

tchebyshev1(4,y)

Output :

8*y^4+-8*y^2+1

Indeed

cos(4x) = Re((cos(x) + i sin(x))4)

= cos(x)4 − 6. cos(x)2(1− cos(x)2) + ((1− cos(x)2)2

= T (4, cos(x))

5.32. GRÖBNER BASIS AND GRÖBNER REDUCTION 303

5.31.5 Tchebychev polynomial of the second kind: tchebyshev2

tchebyshev2 takes as argument an integer n and optionally a variable name (by
default x).
tchebyshev2 returns the Tchebychev polynomial of second kind of degree n.
The Tchebychev polynomial of second kind U(n, x) is defined by:

U(n, x) =
sin((n+ 1). arccos(x))

sin(arccos(x))

or equivalently:
sin((n+ 1)x) = sin(x) ∗ U(n, cos(x))

Then U(n, x) satisfies the recurrence relation:

U(0, x) = 1, U(1, x) = 2x, U(n, x) = 2xU(n− 1, x)− U(n− 2, x)

The polynomials U(n, x) are orthogonal for the scalar product

< f, g >=

∫ +1

−1
f(x)g(x)

√
1− x2dx

Input :

tchebyshev2(3)

Output :

8*x^3+-4*x

Input :

tchebyshev2(3,y)

Output :

8*y^3+-4*y

Indeed:

sin(4x) = sin(x) ∗ (8 ∗ cos(x)3 − 4 cos(x)) = sin(x) ∗ U(3, cos(x))

5.32 Gröbner basis and Gröbner reduction

5.32.1 Gröbner basis : gbasis

gbasis takes at least two arguments

• a vector of multivariate polynomials

• a vector of variables names,

304 CHAPTER 5. THE CAS FUNCTIONS

Optional arguments may be used to specify the ordering and algorithms. By de-
fault, the ordering is lexicographic (with respect to the list of variable names or-
dering) and the polynomials are written in decreasing power orders with respect to
this order. For example, the output will be like ... + x2y4z3 + x2y3z4 + ... if the
second argument is [x, y, z] because (2, 4, 3) > (2, 3, 4) but the output would be
like ...+ x2y3z4 + x2y4z3 + ... if the second argument is [x, z, y].
gbasis returns a Gröbner basis of the polynomial ideal spanned by these polyno-
mials.

Property
If I is an ideal and if (Gk)k∈K is a Gröbner basis of this ideal I then, if F is a
non-zero polynomial in I , the greatest monomial of F is divisible by the greatest
monomial of one of the Gk. In other words, if you do an euclidean division of
F 6= 0 by the corresponding Gk, take the remainder of this division, do again the
same and so on, at some point you get a null remainder.

Input :

gbasis([2*x*y-y^2,x^2-2*x*y],[x,y])

Output :

[4*x^2+-4*y^2,2*x*y-y^2,-(3*y^3)]

As indicated above, gbasis may have more than 2 arguments :

• plex (lexicographic only), tdeg (total degree then lexicographic order),
revlex (total degree then inverse lexicographic order), to specify an order
on the monomials (plex is the order by default),

• with_cocoa=true or with_cocoa=false, if you want to use the
CoCoA library to compute the Gröbner basis (recommended, requires that
CoCoA support compiled in)

• with_f5=true or with_f5=false for using the F5 algorithm of the
CoCoA library . In this case the specified order is not used (the polynomials
are homogenized).

Input :

gbasis([x1+x2+x3,x1*x2+x1*x3+x2*x3,x1*x2*x3-1],
[x1,x2,x3],tdeg,with_cocoa=false)

Output

[x3^3-1,-x2^2-x2*x3-x3^2,x1+x2+x3]

5.32.2 Gröbner reduction : greduce

greduce has three arguments : a multivariate polynomial, a vector made of poly-
nomials which is supposed to be a Gröbner basis, and a vector of variable names.
greduce returns the reduction of the polynomial given as first argument with re-
spect to the Gröbner basis given as the second argument. It is 0 if and only if the
polynomial belongs to the ideal.

Input:

5.32. GRÖBNER BASIS AND GRÖBNER REDUCTION 305

greduce(x*y-1,[x^2-y^2,2*x*y-y^2,y^3],[x,y])

Output:

y^2-2

that is to say xy − 1 = 1
2(y2 − 2) mod I where I is the ideal generated by the

Gröbner basis [x2 − y2, 2xy − y2, y3], because y2 − 2 is the euclidean division
remainder of 2(xy − 1) by G2 = 2xy − y2.

Like gbasis (cf. 5.32.1), greduce may have more than 3 arguments to
specify ordering and algorithm if they differ from the default (lexicographic order-
ing).
Input :

greduce(x1^2*x3^2,[x3^3-1,-x2^2-x2*x3-x3^2,x1+x2+x3],
[x1,x2,x3],tdeg)

Output

x2

5.32.3 Test if a polynomial or list of polynomials belongs to an ideal
given by a Gröbner basis: in_ideal

The in_ideal command takes three mandatory arguments and one optional ar-
gument. The mandatory arguments are a polynomial (or list of polynomials), a list
giving a Gröbner basis, and the list of polynomial variables. The optional fourth
argument can be an optional argument from gbasic (see section 5.32.1), such as
plex or tdeg. By default it will be plex. If a Gröbner basis is computed with a
different order from the default, then in_ideal must use the same order.
in_basis returns the value true (1) or false (0), or a list of trues and
falses, indicating whether or not the polynomial(s) in the first argument are in
the ideal generated by the Gröbner basis in the second argument, using the vari-
ables from the third argument.
Input:

in_ideal((x+y)ˆ2,[yˆ2,xˆ2 + 2*x*y],[x,y])

Output:

1

Input:

in_ideal([(x+y)ˆ2,x+y],[yˆ2,xˆ2+2*x*y],[x,y])

Output:

[1,0]

Input:

in_ideal(x+y,[yˆ2,xˆ2+2*x*y],[x,y])

Output:

0

306 CHAPTER 5. THE CAS FUNCTIONS

5.32.4 Build a polynomial from its evaluation : genpoly

ındexgenpoly genpoly takes three arguments : a polynomial P with n − 1 vari-
ables, an integer b and the name of a variable var.
genpoly returns the polynomialQ with n variables (the P variables and the vari-
able var given as second argument), such that :

• subst(Q,var=b)==P

• the coefficients of Q belongs to the interval (−b/2 , b/2]

In other words, P is written in base b but using the convention that the euclidean
remainder belongs to]− b/2 ; b/2] (this convention is also known as s-mod repre-
sentation). Input :

genpoly(61,6,x)

Output :

2*x^2-2*x+1

Indeed 61 divided by 6 is 10 with remainder 1, then 10 divided by 6 is 2 with
remainder -2 (instead of the usual quotient 1 and remainder 4 out of bounds),

61 = 2 ∗ 62 − 2 ∗ 6 + 1

Input :

genpoly(5,6,x)

Output :

x-1

Indeed : 5 = 6− 1
Input :

genpoly(7,6,x)

Output :

x+1

Indeed : 7 = 6 + 1
Input :

genpoly(7*y+5,6,x)

Output :

x*y+x+y-1

Indeed : x ∗ y + x+ y − 1 = y(x+ 1) + (x− 1)
Input :

genpoly(7*y+5*z^2,6,x)

Output :

x*y+x*z+y-z

Indeed : x ∗ y + x ∗ z + y − z = y ∗ (x+ 1) + z ∗ (x− 1)

5.33. RATIONAL FRACTIONS 307

5.33 Rational fractions

5.33.1 Numerator : getNum

getNum takes as argument a rational fraction and returns the numerator of this
fraction. Unlike numer, getNum does not simplify the fraction before extracting
the numerator.
Input :

getNum((x^2-1)/(x-1))

Output :

x^2-1

Input :

getNum((x^2+2*x+1)/(x^2-1))

Output :

x^2+2*x+1

5.33.2 Numerator after simplification : numer

numer takes as argument a rational fraction and returns the numerator of the irre-
ducible representation of this fraction (see also 5.8.3).
Input :

numer((x^2-1)/(x-1))

Output :

x+1

Input :

numer((x^2+2*x+1)/(x^2-1))

Output :

x+1

5.33.3 Denominator : getDenom

getDenom takes as argument a rational fraction and returns the denominator of
this fraction. Unlike denom, getDenom does not simplify the fraction before
extracting the denominator.
Input :

getDenom((x^2-1)/(x-1))

Output :

x-1

Input :

getDenom((x^2+2*x+1)/(x^2-1))

Output :

x^2-1

308 CHAPTER 5. THE CAS FUNCTIONS

5.33.4 Denominator after simplification : denom

denom (or getDenom) takes as argument a rational fraction and returns the de-
nominator of an irreducible representation of this fraction (see also 5.8.4).
Input :

denom((x^2-1)/(x-1))

Output :

1

Input :

denom((x^2+2*x+1)/(x^2-1))

Output :

x-1

5.33.5 Numerator and denominator : f2nd fxnd

f2nd (or fxnd) takes as argument a rational fraction and returns the list of the
numerator and the denominator of the irreducible representation of this fraction
(see also 5.8.5).
Input :

f2nd((x^2-1)/(x-1))

Output :

[x+1,1]

Input :

f2nd((x^2+2*x+1)/(x^2-1))

Output :

[x+1,x-1]

5.33.6 Simplify : simp2

simp2 takes as argument two polynomials (or two integers see 5.8.6). These two
polynomials are seen as the numerator and denominator of a rational fraction.
simp2 returns a list of two polynomials seen as the numerator and denominator
of the irreducible representation of this rational fraction.
Input :

simp2(x^3-1,x^2-1)

Output :

[x^2+x+1,x+1]

5.33. RATIONAL FRACTIONS 309

5.33.7 Common denominator : comDenom

comDenom takes as argument a sum of rational fractions.
comDenom rewrite the sum as a unique rational fraction. The denominator of
this rational fraction is the common denominator of the rational fractions given as
argument.
Input :

comDenom(x-1/(x-1)-1/(x^2-1))

Output :

(x^3+-2*x-2)/(x^2-1)

5.33.8 Integer and fractional part : propfrac

propfrac takes as argument a rational fraction.
propfrac rewrites this rational fraction as the sum of its integer part and proper
fractional part.
propfrac(A(x)/B(x)) writes the fraction A(x)

B(x) (after reduction), as :

Q(x) +
R(x)

B(x)
where R(x) = 0 or 0 ≤ degree(R(x)) < degree(B(x))

Input :

propfrac((5*x+3)*(x-1)/(x+2))

Output :

5*x-12+21/(x+2)

5.33.9 Partial fraction expansion : partfrac

partfrac takes as argument a rational fraction.
partfrac returns the partial fraction expansion of this rational fraction.
The partfrac command is equivalent to the convert command with parfrac
(or partfrac or fullparfrac) as option (see also 5.24.27).
Example :
Find the partial fraction expansion of :

x5 − 2x3 + 1

x4 − 2x3 + 2x2 − 2x+ 1

Input :

partfrac((x^5-2*x^3+1)/(x^4-2*x^3+2*x^2-2*x+1))

Output in real mode :

x+2-1/(2*(x-1))+(x-3)/(2*(x^2+1))

Output in complex mode:

x+2+(-1+2*i)/((2-2*i)*((i)*x+1))+1/(2*(-x+1))+

(-1-2*i)/((2-2*i)*(x+i))

310 CHAPTER 5. THE CAS FUNCTIONS

5.33.10 Partial fraction expansion over C: cpartfrac

cpartfrac takes as argument a rational fraction.
cpartfrac returns the partial fraction expansion of this rational fraction over the
complex numbers, whether Xcas is in real or complex mode.

Example :
Find the partial fraction expansion of :

x5 − 2x3 + 1

x4 − 2x3 + 2x2 − 2x+ 1

Input :

cpartfrac((xˆ5-2*xˆ3+1)/(xˆ4-2*xˆ3+2*xˆ2-2*x+1))

Output:

x+2+(-1+2*i)/((2-2*i)*((i)*x+1))+1/(2*(-x+1))+

(-1-2*i)/((2-2*i)*(x+i))

5.34 Exact roots of a polynomial

5.34.1 Exact bounds for complex roots of a polynomial : complexroot

complexroot takes 2 or 4 arguments : a polynomial and a real number ε and
optionally two complex numbers α, β.
complexroot returns a list of vectors.

• If complexroot has 2 arguments, the elements of each vector are

– either an interval (the boundaries of this interval are the opposite ver-
tices of a rectangle with sides parallel to the axis and containing a com-
plex root of the polynomial) and the multiplicity of this root.
Let the interval be [a1 + ib1, a2 + ib2] then |a1− a2| < ε, |b1− b2| < ε
and the root a+ ib verifies a1 ≤ a ≤ a2 and b1 ≤ b ≤ b2.

– or the value of an exact complex root of the polynomial and the multi-
plicity of this root

• If complexroot has 4 arguments, complexroot returns a list of vectors
as above, but only for the roots lying in the rectangle with sides parallel to
the axis having α, β as opposite vertices.

To find the roots of x3 + 1, input:

complexroot(x^3+1,0.1)

Output :

[[-1,1],[[(4-7*i)/8,(8-13*i)/16],1],[[(8+13*i)/16,(4+7*i)/8],1]]

5.34. EXACT ROOTS OF A POLYNOMIAL 311

Hence, for x3 + 1 :

• -1 is a root of multiplicity 1,

• 1/2+i*b is a root of multiplicity 1 with −7/8 ≤ b ≤ −13/16,

• 1/2+i*c is a root of multiplicity 1 with 13/16 ≤ c ≤ 7/8.

To find the roots of x3+1 lying inside the rectangle of opposite vertices−1, 1+2∗i,
input:

complexroot(x^3+1,0.1,-1,1+2*i)

Output :

[[-1,1],[[(8+13*i)/16,(4+7*i)/8],1]]

5.34.2 Exact bounds for real roots of a polynomial : realroot

realroot has 2 or 4 arguments : a polynomial and a real number ε and optionally
two reals numbers α, β.
realroot returns a list of vectors.

• If realroot has 2 arguments, the elements of each vector are

– either a real interval containing a real root of the polynomial and the
multiplicity of this root. Let the interval be [a1, a2] then |a1 − a2| < ε
and the root a verifies a1 ≤ a ≤ a2.

– or the value of an exact real root of the polynomial and the multiplicity
of this root.

• If realroot has 4 arguments, realroot returns a list of vectors as above,
but only for the roots inside the interval [α, β].

To find the real roots of x3 + 1, input:

realroot(x^3+1, 0.1)

Output :

[[-1,1]]

To find the real roots of x3 − x2 − 2x+ 2, input:

realroot(x^3-x^2-2*x+2, 0.1)

Output :

[[1,1],[[(-3)/2,(-45)/32],1],[[45/32,3/2],1]]

To find the real roots of x3 − x2 − 2x+ 2 in the interval [0; 2], input:

realroot(x^3-x^2-2*x+2, 0.1,0,2)

Output :

[[1,1],[[11/8,23/16],1]]

312 CHAPTER 5. THE CAS FUNCTIONS

5.34.3 Exact bounds for real roots of a polynomial: VAS

The VAS command takes one argument, a polynomial.
VAS returns a list of intervals which contain the real roots of the polynomial using
the Vincent-Akritas-Strzebonski algorithm. Each interval will contain exactly one
root.
Input:

VAS(xˆ3 - 7*x + 7)

Output:

[[-4,0],[1,3/2],[3/2,2]]

Input:

VAS(xˆ5 + 2*xˆ4 - 6*xˆ3 - 7*xˆ2 + 7*x + 7)

Output:

[[-5,-1],-1,[1,3/2],[3/2,2]]

Input:

VAS(xˆ3 - xˆ2 -2*x + 2)

Output:

[[-3,0],1,[1,3]]

5.34.4 Exact bounds for positive real roots of a polynomial: VAS_positive

The VAS_positive command takes one argument, a polynomial.
VAS_positive returns a list of intervals which contain the positive real roots
of the polynomial using the Vincent-Akritas-Strzebonski algorithm. Each interval
will contain exactly one interval.

Input:

VAS_positive(xˆ3 - 7*x + 7)

Output:

[[1,3/2],[3/2,2]]

Input:

VAS_positive(xˆ5 + 2*xˆ4 - 6*xˆ3 - 7*xˆ2 + 7*x + 7)

Output:

[[1,3/2],[3/2,2]]

Input:

VAS_positive(xˆ3 - xˆ2 -2*x + 2)

Output:

[1,[1,3]]

5.34. EXACT ROOTS OF A POLYNOMIAL 313

5.34.5 An upper bound for the positive real roots of a polynomial:
posubLMQ

The posubLMQ command takes one argument, a polynomial.
posubLMQ returns a (non-optimal) upper bound for the positive real roots of the
polynomial using the Local Max Quadratic (LMQ) Akritas-Strzebonski-Vigklas
algorithm.
Input:

posubLMQ(xˆ3 - 7*x + 7)

Output:

4

Input:

posubLMQ(xˆ5 + 2*xˆ4 - 6*xˆ3 - 7*xˆ2 + 7*x + 7)

Output:

4

Input:

posubLMQ(xˆ3 - xˆ2 -2*x + 2)

Output:

3

5.34.6 A lower bound for the positive real roots of a polynomial: poslbdLMQ

The poslbdLMQ command takes one argument, a polynomial.
poslbdLMQ returns a (non-optimal) lower bound for the positive real roots of the
polynomial using the Local Max Quadratic (LMQ) Akritas-Strzebonski-Vigklas
algorithm.
Input:

poslbdLMQ(xˆ3 - 7*x + 7)

Output:

1/2

Input:

poslbdLMQ(xˆ5 + 2*xˆ4 - 6*xˆ3 - 7*xˆ2 + 7*x + 7)

Output:

1/2

Input:

poslbdLMQ(xˆ3 - xˆ2 -2*x + 2)

Output:

1/2

314 CHAPTER 5. THE CAS FUNCTIONS

5.34.7 Exact values of rational roots of a polynomial : rationalroot

rationalroot takes 1 or 3 arguments : a polynomial and optionally two real
numbers α, β.

• If rationalroot has 1 argument, rationalroot returns the list of the
value of the rational roots of the polynomial without multiplicity.

• If rationalroot has 3 arguments, rationalroot returns only the ra-
tional roots of the polynomial which are in the interval [α, β].

To find the rational roots of 2 ∗ x3 − 3 ∗ x2 − 8 ∗ x+ 12, input:

rationalroot(2*x^3-3*x^2-8*x+12)

Output :

[2,3/2,-2]

To find the rational roots of 2 ∗ x3 − 3 ∗ x2 − 8 ∗ x+ 12 in [1; 2], input:

rationalroot(2*x^3-3*x^2-8*x+12,1,2)

Output :

[2,3/2]

To find the rational roots of 2 ∗ x3 − 3 ∗ x2 + 8 ∗ x− 12, input:

rationalroot(2*x^3-3*x^2+8*x-12)

Output :

[3/2]

To find the rational roots of 2 ∗ x3 − 3 ∗ x2 + 8 ∗ x− 12, input:

rationalroot(2*x^3-3*x^2+8*x-12)

Output :

[3/2]

To find the rational roots of (3 ∗x− 2)2 ∗ (2x+ 1) = 18 ∗x3− 15 ∗x2− 4 ∗x+ 4,
input:

rationalroot(18*x^3-15*x^2-4*x+4)

Output :

[(-1)/2,2/3]

5.35. EXACT ROOTS AND POLES 315

5.34.8 Exact values of the complex rational roots of a polynomial:
crationalroot

crationalroot takes 1 or 3 arguments : a polynomial and optionally two com-
plex numbers α, β.

• If crationalroot has 1 argument, crationalroot returns the list of
the complex rational roots of the polynomial without multiplicity.

• if crationalroot has 3 arguments, crationalroot returns only the
complex rational roots of the polynomial which are in the rectangle with
sides parallel to the axis having [α, β] as opposite vertices.

To find the rational complex roots of (x2+4)∗(2x−3) = 2∗x3−3∗x2+8∗x−12,
input :

crationalroot(2*x^3-3*x^2+8*x-12)

Output :

[2*i,3/2,-2*i]

5.35 Exact roots and poles

5.35.1 Roots and poles of a rational function : froot

froot takes a rational function F (x) as argument.
froot returns a vector whose components are the roots and the poles of F [x],
each one followed by its multiplicity.
If Xcas can not find the exact values of the roots or poles, it tries to find approxi-
mate values if F (x) has numeric coefficients.
Input :

froot((x^5-2*x^4+x^3)/(x-2))

Output :

[1,2,0,3,2,-1]

Hence, for F (x) =
x5 − 2.x4 + x3

x− 2
:

• 1 is a root of multiplicity 2,

• 0 is a root of multiplicity 3,

• 2 is a pole of order 1.

Input :

froot((x^3-2*x^2+1)/(x-2))

Output :

[1,1,(1+sqrt(5))/2,1,(1-sqrt(5))/2,1,2,-1]

316 CHAPTER 5. THE CAS FUNCTIONS

Remark : to have the complex roots and poles, check Complex in the cas con-
figuration (red button giving the state line).
Input :

froot((x^2+1)/(x-2))

Output :

[-i,1,i,1,2,-1]

5.35.2 Rational function given by roots and poles : fcoeff

fcoeff has as argument a vector whose components are the roots and poles of a
rational function F [x], each one followed by its multiplicity.
fcoeff returns the rational function F (x).
Input :

fcoeff([1,2,0,3,2,-1])

Output :

(x-1)^2*x^3/(x-2)

5.36 Computing in Z/pZ or in Z/pZ[x]

The way to compute over Z/pZ or over Z/pZ[x] depends on the syntax mode :

• In Xcas mode, an object n over Z/pZ is written n%p. Some examples of
input for

– an integer n in Z/13Z
n:=12%13.

– a vector V in Z/13Z
V:=[1,2,3]%13 or V:=[1%13,2%13,3%13].

– a matrix A in Z/13Z
A:=[[1,2,3],[2,3,4]]%13 or
A:=[[1%13,2%13,3%13],[[2%13,3%13,4%13]].

– a polynomial A in Z/13Z[x] in symbolic representation
A:=(2*x^2+3*x-1)%13 or
A:=2%13*x^2+3%13*x-1%13.

– a polynomial A in Z/13Z[x] in list representation
A:=poly1[1,2,3]%13 or A:=poly1[1%13,2%13,3%13].

To recover an object o with integer coefficients instead of modular coeffi-
cients, input o % 0. For example, input o:=4%7 and o%0,then output is
-3.

• In Maple mode, integers modulo p are represented like usual integers in-
stead of using specific modular integers. To avoid confusion with normal
commands, modular commands are written with a capital letter (inert form)
and followed by the mod command (see also the next section).

5.36. COMPUTING IN Z/PZ OR IN Z/PZ[X] 317

Remark

• For some commands in Z/pZ or in Z/pZ[x], p must be a prime integer.

• The representation is the symmetric representation :
11%13 returns -2%13.

5.36.1 Expand and reduce : normal

normal takes as argument a polynomial expression.
normal expands and reduces this expression in Z/pZ[x].
Input :

normal(((2*x^2+12)*(5*x-4))%13)

Output :

(-3%13)*x^3+(5%13)*x^2+(-5%13)*x+4%13

5.36.2 Addition in Z/pZ or in Z/pZ[x] : +

+ adds two integers in Z/pZ, or two polynomials in Z/pZ[x]. For polynomial
expressions, use the normal command to simplify.
For integers in Z/pZ, input :

3%13+10%13

Output :

0%13

For polynomials with coefficients in Z/pZ, input :

normal((11*x+5)% 13+(8*x+6)%13)

or

normal(11% 13*x+5%13+8% 13*x+6%13)

Output :

(6%13)*x+-2%13

5.36.3 Subtraction in Z/pZ or in Z/pZ[x] : -

- subtracts two integers in Z/pZ or two polynomials in Z/pZ[x]. For polynomial
expressions, use the normal command to simplify.
For integers in Z/pZ, input :

31%13-10%13

Output :

-5%13

For polynomials with coefficients in Z/pZ, input :

318 CHAPTER 5. THE CAS FUNCTIONS

normal((11*x+5)%13-(8*x+6)%13)

or :

normal(11% 13*x+5%13-8% 13*x+6%13)

Output :

(3%13)*x+-1%13

5.36.4 Multiplication in Z/pZ or in Z/pZ[x] : *

* multiplies two integers in Z/pZ or two polynomials in Z/pZ[x]. For polynomial
expressions, use the normal command to simplify.
For integers in Z/pZ, input :

31%13*10%13

Output :

-2%13

For polynomials with coefficients in Z/pZ, input :

normal((11*x+5)%13*(8*x+6)% 13)

or :

normal((11% 13*x+5%13)*(8% 13*x+6%13))

Output :

(-3%13)*x^2+(2%13)*x+4%13

5.36.5 Euclidean quotient : quo

quo takes as arguments two polynomials A and B with coefficients in Z/pZ,
where A and B are list polynomials or symbolic polynomials with respect to x
or to an optional third argument.
quo returns the quotient of the euclidean division of A by B in Z/pZ[x].
Input :

quo((x^3+x^2+1)%13,(2*x^2+4)%13)

or :

quo((x^3+x^2+1,2*x^2+4)%13)

Output:

(-6%13)*x+-6%13

Indeed x3+x2+1 = (2x2+4)(
x+ 1

2
)+

5x− 4

4
and−3∗4 = −6∗2 = 1 mod 13.

5.36. COMPUTING IN Z/PZ OR IN Z/PZ[X] 319

5.36.6 Euclidean remainder : rem

rem takes as arguments two polynomials A and B with coefficients in Z/pZ,
where A and B are list polynomials or symbolic polynomials with respect to x
or to an optional third argument.
rem returns the remainder of the euclidean division of A by B in Z/pZ[x].
Input :

rem((x^3+x^2+1)%13,(2*x^2+4)%13)

or :

rem((x^3+x^2+1,2*x^2+4)%13)

Output:

(-2%13)*x+-1%13

Indeed x3+x2+1 = (2x2+4)(
x+ 1

2
)+

5x− 4

4
and−3∗4 = −6∗2 = 1 mod 13.

5.36.7 Euclidean quotient and euclidean remainder : quorem

quorem takes as arguments two polynomials A and B with coefficients in Z/pZ,
where A and B are list polynomials or symbolic polynomials with respect to x or
to an optional third argument.
quorem returns the list of the quotient and remainder of the euclidean division of
A by B in Z/pZ[x] (see also 5.6.12 and 5.30.6).
Input :

quorem((x^3+x^2+1)%13,(2*x^2+4)%13)

or :

quorem((x^3+x^2+1,2*x^2+4)%13)

Output:

[(-6%13)*x+-6%13,(-2%13)*x+-1%13]

Indeed x3 + x2 + 1 = (2x2 + 4)(
x+ 1

2
) +

5x− 4

4
and −3 ∗ 4 = −6 ∗ 2 = 1 mod 13.

5.36.8 Division in Z/pZ or in Z/pZ[x] : /

/ divides two integers in Z/pZ or two polynomials A and B in Z/pZ[x].
For polynomials, the result is the irreducible representation of the fraction A

B in
Z/pZ[x].
For integers in Z/pZ, input :

5%13/2% 13

Since 2 is invertible in Z/13Z, we get the output :

-4%13

320 CHAPTER 5. THE CAS FUNCTIONS

For polynomials with coefficients in Z/pZ, input :

(2*x^2+5)%13/(5*x^2+2*x-3)%13

Output :

((6%13)*x+1%13)/((2%13)*x+2%13)

5.36.9 Power in Z/pZ and in Z/pZ[x] : ˆ

To compute a to the power n in Z/pZ, we use the operator ^. Xcas implementa-
tion is the binary power algorithm.
Input :

(5%13)^2

Output :

-1%13

To compute A to the power n in Z/pZ[x], we use the operator ^ and the normal
command .
Input :

normal(((2*x+1)%13)^5)

Output :

(6%13)*x^5+(2%13)*x^4+(2%13)*x^3+(1%13)*x^2+(-3%13)*x+1%13

because 10 = −3 (mod 13), 40 = 1 (mod 13), 80 = 2 (mod 13), 32 =
6 (mod 13).

5.36.10 Compute an mod p : powmod powermod

powmod (or powermod) takes as argument a, n, p.
powmod (or powermod) returns an mod p in [0; p− 1].
Input :

powmod(5,2,13)

Output :

12

Input :

powmod(5,2,12)

Output :

1

5.36. COMPUTING IN Z/PZ OR IN Z/PZ[X] 321

5.36.11 Inverse in Z/pZ : inv inverse or /

To compute the inverse of an integer n in Z/pZ, input 1/n%p or inv(n%p) or
inverse(n%p).
Input :

inv(3%13)

Output :

-4%13

Indeed 3×−4 = −12 = 1 (mod 13).

5.36.12 Rebuild a fraction from its value modulo p : fracmod iratrecon

fracmod (or iratrecon for Maple compatibility) takes two arguments, an in-
teger n (representing a fraction) and an integer p (the modulus).
If possible, fracmod returns a fraction a/b such that

−
√
p

2
< a ≤

√
p

2
, 0 ≤ b <

√
p

2
, n× b = a (mod p)

In other words n = a/b (mod p).
Input :

fracmod(3,13)

Output :

-1/4

Indeed : 3 ∗ −4 = −12 = 1 (mod 13), hence 3 = −1/4%13.
Input :

fracmod(13,121)

Output :

-4/9

Indeed : 13×−9 = −117 = 4 (mod 121) hence 13 = −4/9%13.

5.36.13 GCD in Z/pZ[x] : gcd

gcd takes as arguments two polynomials with coefficients in Z/pZ (p must be
prime).
gcd returns the GCD of these polynomials computed in Z/pZ[x] (see also 5.30.7
for polynomials with non modular coefficients).
Input :

gcd((2*x^2+5)%13,(5*x^2+2*x-3)%13)

Output :

(-4%13)*x+5%13

322 CHAPTER 5. THE CAS FUNCTIONS

Input :

gcd((x^2+2*x+1,x^2-1)) mod 5)

Output :

x%5

Note the difference with a gcd computation in Z[X] followed by a reduction mod-
ulo 5, input:

gcd(x^2+2*x+1,x^2-1) mod 5

Output :

1

5.36.14 Factorization over Z/pZ[x] : factor factoriser

factor takes as argument a polynomial with coefficients in Z/pZ[x].
factor factorizes this polynomial in Z/pZ[x] (p must be prime).
Input :

factor((-3*x^3+5*x^2-5*x+4)%13)

Output :

((1%13)*x+-6%13)*((-3%13)*x^2+-5%13)

5.36.15 Determinant of a matrix in Z/pZ : det

det takes as argument a matrix A with coefficients in Z/pZ.
det returns the determinant of this matrix A.
Computations are done in Z/pZ by Gauss reduction.
Input :

det([[1,2,9]%13,[3,10,0]%13,[3,11,1]%13])

or :

det([[1,2,9],[3,10,0],[3,11,1]]%13)

Output :

5%13

hence, in Z/13Z, the determinant of A = [[1, 2, 9], [3, 10, 0], [3, 11, 1]] is 5%13 (in
Z, det(A)=31).

5.36. COMPUTING IN Z/PZ OR IN Z/PZ[X] 323

5.36.16 Inverse of a matrix with coefficients in Z/pZ : inv inverse

inverse (or inv) takes as argument a matrix A in Z/pZ.
inverse (or inv) returns the inverse of the matrix A in Z/pZ.
Input :

inverse([[1,2,9]%13,[3,10,0]%13,[3,11,1]%13])

or :

inv([[1,2,9]%13,[3,10,0]%13,[3,11,1]%13])

or :

inverse([[1,2,9],[3,10,0],[3,11,1]]%13)

or :

inv([[1,2,9],[3,10,0],[3,11,1]]%13)

Output :

[[2%13,-4%13,-5%13],[2%13,0%13,-5%13],
[-2%13,-1%13,6%13]]

it is the inverse of A = [[1, 2, 9], [3, 10, 0], [3, 11, 1]] in Z/13Z.

5.36.17 Row reduction to echelon form in Z/pZ : rref

rref finds the row reduction to echelon form of a matrix with coefficients in
Z/pZ.

This may be used to solve a linear system of equations with coefficients in
Z/pZ by rewriting it in matrix form (see also 5.61.3) :

A*X=B

rref takes as argument the augmented matrix of the system (the matrix obtained
by augmenting matrix A to the right with the column vector B).
rref returns a matrix [A1,B1] : A1 has 1 on its principal diagonal, and zeros
outside, and the solutions in Z/pZ, of :

A1*X=B1

are the same as the solutions of:

A*X=B

Example, solve in Z/13Z {
x + 2 · y = 9

3 · x+ 10 · y = 0

Input :

rref([[1, 2, 9]%13,[3,10,0]%13])

or :

rref([[1, 2, 9],[3,10,0]])%13

Output :

[[1%13,0%13,3%13],[0%13,1%13,3%13]]

hence x=3%13 and y=3%13.

324 CHAPTER 5. THE CAS FUNCTIONS

5.36.18 Construction of a Galois field : GF

GF takes as arguments a prime integer p and an integer n > 1.
GF returns a Galois field of characteristic p having pn elements.
Elements of the field and the field itself are represented by GF(...) where ...
is the following sequence:

• the characteristic p (px = 0),

• an irreducible primitive minimal polynomial generating an ideal I in Z/pZ[X],
the Galois field being the quotient of Z/pZ[X] by I ,

• the name of the polynomial variable, by default x,

• a polynomial (a remainder modulo the minimal polynomial) for an element
of the field (field elements are represented with the additive representation)
or undef for the field itself.

You should give a name to this field (for example G:=GF(p,n)), in order to build
elements of the field from a polynomial in Z/pZ[X], for example G(x^3+x).
Note that G(x) is a generator of the multiplicative group G∗.
Input :

G:=GF(2,8)

Output :

GF(2,x^8-x^6-x^4-x^3-x^2-x-1,x,undef)

The field G has 28 = 256 elements and x generates the multiplicative group of this
field ({1, x, x2, ...x254}).
Input :

G(x^9)

Output :

GF(2,x^8-x^6-x^4-x^3-x^2-x-1,x,x^7+x^5+x^4+x^3+x^2+x)

indeed x8 = x6 + x4 + x3 + x2 + x+ 1, hence x9 = x7 + x5 + x4 + x3 + x2 + x.
Input :

G(x)^255

Output should be the unit, indeed:

GF(2,x^8-x^6-x^4-x^3-x^2-x-1,x,1)

As one can see in these examples, the output contains many times the same in-
formation that you would prefer not to see if you work many times with the same
field. For this reason, the definition of a Galois field may have an optional argu-
ment, a variable name which will be used thereafter to represent elements of the
field. Since you will also most likely want to modify the name of the indeterminate,
the field name is grouped with the variable name in a list passed as third argument
to GF. Note that these two variable names must be quoted.
Example,
Input :

5.36. COMPUTING IN Z/PZ OR IN Z/PZ[X] 325

G:=GF(2,2,[’w’,’G’]):; G(w^2)

Output :

Done, G(w+1)

Input :

G(w^3)

Output :

G(1)

Hence, the elements of GF(2,2) are G(0),G(1),G(w),G(w^2)=G(w+1).
We may also impose the irreducible primitive polynomial that we wish to use,

by putting it as second argument (instead of n), for example :

G:=GF(2,w^8+w^6+w^3+w^2+1,[’w’,’G’])

If the polynomial is not primitive, Xcaswill replace it automatically by a primitive
polynomial, for example :
Input :

G:=GF(2,w^8+w^7+w^5+w+1,[’w’,’G’])

Output :

G:=GF(2,w^8-w^6-w^3-w^2-1,[’w’,’G’],undef)

5.36.19 Factorize a polynomial with coefficients in a Galois field :
factor

factor can also factorize a univariate polynomial with coefficients in a Galois
field.
Input for example to have G=F4:

G:=GF(2,2,[’w’,’G’])

Output :

GF(2,w^2+w+1,[w,G],undef)

Input for example :

a:=G(w)

factor(a^2*x^2+1)

Output :

(G(w+1))*(x+G(w+1))^2

326 CHAPTER 5. THE CAS FUNCTIONS

5.37 Compute in Z/pZ[x] using Maple syntax

5.37.1 Euclidean quotient : Quo

Quo is the inert form of quo.
Quo returns the euclidean quotient between two polynomials without evaluation.
It is used in conjunction with mod in Maple syntax mode to compute the euclidean
quotient of the division of two polynomials with coefficients in Z/pZ.
Input in Xcas mode:

Quo((x^3+x^2+1) mod 13,(2*x^2+4) mod 13)

Output :

quo((x^3+x^2+1)%13,(2*x^2+4)%13)

you need to eval(ans()) to get :

(-6%13)*x+-6%13

Input in Maple mode :

Quo(x^3+x^2+1,2*x^2+4) mod 13

Output :

(-6)*x-6

Input in Maple mode :

Quo(x^2+2*x,x^2+6*x+5) mod 5

Output :

1

5.37.2 Euclidean remainder: Rem

Rem is the inert form of rem.
Rem returns the euclidean remainder between two polynomials without evaluation.
It is used in conjunction with mod in Maple syntax mode to compute the euclidean
remainder of the division of two polynomials with coefficients in Z/pZ.
Input in Xcas mode :

Rem((x^3+x^2+1) mod 13,(2*x^2+4) mod 13)

Output :

rem((x^3+x^2+1)%13,(2*x^2+4)%13)

you need to eval(ans()) to get :

(-2%13)*x+-1%13

Input in Maple mode :

Rem(x^3+x^2+1,2*x^2+4) mod 13

5.37. COMPUTE IN Z/PZ[X] USING MAPLE SYNTAX 327

Output :

(-2)*x-1

Input in Maple mode :

Rem(x^2+2*x,x^2+6*x+5) mod 5

Output :

1*x

5.37.3 GCD in Z/pZ[x] : Gcd

Gcd is the inert form of gcd.
Gcd returns the gcd (greatest common divisor) of two polynomials (or of a list of
polynomials or of a sequence of polynomials) without evaluation.
It is used in conjunction with mod in Maple syntax mode to compute the gcd of
two polynomials with coefficients in Z/pZ with p prime (see also 5.30.7).
Input in Xcas mode :

Gcd((2*x^2+5,5*x^2+2*x-3)%13)

Output :

gcd((2*x^2+5)%13,(5*x^2+2*x-3)%13)

you need to eval(ans()) to get :

(1%13)*x+2%13

Input in Maple mode :

Gcd(2*x^2+5,5*x^2+2*x-3) mod 13

Output :

1*x+2

Input:

Gcd(x^2+2*x,x^2+6*x+5) mod 5

Output :

1*x

328 CHAPTER 5. THE CAS FUNCTIONS

5.37.4 Factorization in Z/pZ[x] : Factor

Factor is the inert form of factor.
Factor takes as argument a polynomial.
Factor returns factor without evaluation. It is used in conjunction with mod
in Maple syntax mode to factorize a polynomial with coefficients in Z/pZ where
p must be prime.
Input in Xcas mode :

Factor((-3*x^3+5*x^2-5*x+4)%13)

Output :

factor((-3*x^3+5*x^2-5*x+4)%13)

you need to eval(ans()) to get :

((1%13)*x+-6%13)*((-3%13)*x^2+-5%13)

Input in Maple mode :

Factor(-3*x^3+5*x^2-5*x+4) mod 13

Output :

-3*(1*x-6)*(1*x^2+6)

5.37.5 Determinant of a matrix with coefficients in Z/pZ : Det

Det is the inert form of det.
Det takes as argument a matrix with coefficients in Z/pZ.
Det returns det without evaluation. It is used in conjunction with mod in Maple
syntax mode to find the determinant of a matrix with coefficients in Z/pZ.
Input in Xcas mode :

Det([[1,2,9] mod 13,[3,10,0] mod 13,[3,11,1] mod 13])

Output :

det([[1%13,2%13,-4%13],[3%13,-3%13,0%13],
[3%13,-2%13,1%13]])

you need to eval(ans()) to get :

5%13

hence, in Z/13Z, the determinant of A = [[1, 2, 9], [3, 10, 0], [3, 11, 1]] is 5%13 (in
Z, det(A)=31).
Input in Maple mode :

Det([[1,2,9],[3,10,0],[3,11,1]]) mod 13

Output :

5

5.37. COMPUTE IN Z/PZ[X] USING MAPLE SYNTAX 329

5.37.6 Inverse of a matrix in Z/pZ : Inverse

Inverse is the inert form of inverse.
Inverse takes as argument a matrix with coefficients in Z/pZ.
Inverse returns inverse without evaluation. It is used in conjunction with
mod in Maple syntax mode to find the inverse of a matrix with coefficients in
Z/pZ.
Input in Xcas mode :

Inverse([[1,2,9] mod 13,[3,10,0] mod 13,[3,11,1]
mod13])

Output :

inverse([[1%13,2%13,9%13],[3%13,10%13,0%13],
[3%13,11%13,1%13]])

you need to eval(ans()) to get :

[[2%13,-4%13,-5%13],[2%13,0%13,-5%13],
[-2%13,-1%13,6%13]]

which is the inverse of A = [[1, 2, 9], [3, 10, 0], [3, 11, 1]] in Z/13Z.
Input in Maple mode :

Inverse([[1,2,9],[3,10,0],[3,11,1]]) mod 13

Output :

[[2,-4,-5],[2,0,-5],[-2,-1,6]]

5.37.7 Row reduction to echelon form in Z/pZ : Rref

Rref is the inert form of rref.
Rref returns rref without evaluation. It is used in conjunction with mod in
Maple syntax mode to find the row reduction to echelon form of a matrix with
coefficients in Z/pZ (see also 5.61.3).
Example, solve in Z/13Z {

x + 2 · y = 9
3 · x+ 10 · y = 0

Input in Xcas mode :

Rref([[1,2,9] mod 13,[3,10,0] mod 13])

Output :

rref([[1%13, 2%13, 9%13],[3%13,10%13,0%13]])

you need to eval(ans()) to get :

[[1%13,0%13,3%13],[0%13,1%13,3%13]]

and conclude that x=3%13 and y=3%13.
Input in Maple mode :

Rref([[1,2,9],[3,10,0],[3,11,1]]) mod 13

Output :

[[1,0,0],[0,1,0],[0,0,1]]

330 CHAPTER 5. THE CAS FUNCTIONS

5.38 Taylor and asymptotic expansions

5.38.1 Division by increasing power order : divpc

divpc takes three arguments : two polynomials expressions A, B depending on
x, such that the constant term of B is not 0, and an integer n.
divpc returns the quotientQ of the division ofA byB by increasing power order,
with degree(Q) ≤ n or Q = 0. In other words, Q is the Taylor expansion of

order n of
A

B
in the vicinity of x = 0.

Input :

divpc(1+x^2+x^3,1+x^2,5)

Output :

-x^5+x^3+1

Note that this command does not work on polynomials written as a list of coeffi-
cients.

5.38.2 Taylor expansion : taylor

taylor takes from one to four arguments :

• an expression depending of a variable (by default x),

• an equality variable=value (e.g. x = a) where to compute the Taylor expan-
sion, by default x=0,

• an integer n, the order of the series expansion, by default 5

• a direction -1, 1 (for unidirectional series expansion) or 0 (for bidirec-
tional series expansion) (by default 0).

Note that the syntax ...,x,n,a,... (instead of ...,x=a,n,...) is also
accepted.
taylor returns a polynomial in x-a, plus a remainder of the form:
(x-a)^n*order_size(x-a)
where order_size is a function such that,

∀r > 0, lim
x→0

xrorder_size(x) = 0

For regular series expansion, order_size is a bounded function, but for non
regular series expansion, it might tend slowly to infinity, for example like a power
of ln(x).
Input :

taylor(sin(x),x=1,2)

Or (be careful with the order of the arguments !) :

taylor(sin(x),x,2,1)

Output :

5.38. TAYLOR AND ASYMPTOTIC EXPANSIONS 331

sin(1)+cos(1)*(x-1)+(-(1/2*sin(1)))*(x-1)^2+
(x-1)^3*order_size(x-1)

Remark
The order returned by taylor may be smaller than n if cancellations between
numerator and denominator occur, for example

taylor(
x3 + sin(x)3

x− sin(x)
)

Input :

taylor(x^3+sin(x)^3/(x-sin(x)))

The output is only a 2nd-order series expansion :

6+-27/10*x^2+x^3*order_size(x)

Indeed the numerator and denominator valuation is 3, hence we lose 3 orders. To
get order 4, we should use n = 7.
Input :

taylor(x^3+sin(x)^3/(x-sin(x)),x=0,7)

Output is a 4th-order series expansion :

6+-27/10*x^2+x^3+711/1400*x^4+x^5*order_size(x)

5.38.3 Series expansion : series

series takes from one to four arguments :

• an expression depending of a variable (by default x),

• an equality variable=value (e.g. x = a) where to compute the series expan-
sion, by default x=0,

• an integer n, the order of the series expansion, by default 5

• a direction -1, 1 (for unidirectional series expansion) or 0 (for bidirec-
tional series expansion) (by default 0).

Note that the syntax ...,x,a,n,... (instead of ...,x=a,n,...) is also
accepted.
series returns a polynomial in x-a, plus a remainder of the form:

(x-a)^n*order_size(x-a)

where order_size is a function such that,

∀r > 0, lim
x→0

xrorder_size(x) = 0

The order returned by series may be smaller than n if cancellations between
numerator and denominator occur.

Examples :

332 CHAPTER 5. THE CAS FUNCTIONS

• series expansion in the vicinity of x=0

Find an series expansion of
x3 + sin(x)3

x− sin(x)
in the vicinity of x=0.

Input :

series(x^3+sin(x)^3/(x-sin(x)))

Output is only a 2nd-order series expansion :

6+-27/10*x^2+x^3*order_size(x)

We have lost 3 orders because the valuation of the numerator and denomina-
tor is 3. To get a 4-th order expansion, we must therefore take n = 7.
Input :

series(x^3+sin(x)^3/(x-sin(x)),x=0,7)

or :

series(x^3+sin(x)^3/(x-sin(x)),x,0,7)

Output is a 4th-order series expansion :

6+-27/10*x^2+x^3+711/1400*x^4+ x^5*order_size(x)

• series expansion in the vicinity of x=a
Find a series 4th-order expansion of cos(2x)2 in the vicinity of x = π

6 .
Input:

series(cos(2*x)^2,x=pi/6, 4)

Output :

1/4+(-(4*sqrt(3)))/4*(x-pi/6)+(4*3-4)/4*(x-pi/6)^2+
32*sqrt(3)/3/4*(x-pi/6)^3+(-16*3+16)/3/4*(x-pi/6)^4+

(x-pi/6)^5*order_size(x-pi/6)

• series expansion in the vicinity of x=+∞ or x=-∞

1. Find a 5th-order series expansion of arctan(x) in the vicinity of x=+∞.
Input :

series(atan(x),x=+infinity,5)

Output :

pi/2-1/x+1/3*(1/x)^3+1/-5*(1/x)^5+
(1/x)^6*order_size(1/x)

Note that the expansion variable and the argument of the order_size

function is h =
1

x
→x→+∞ 0.

5.38. TAYLOR AND ASYMPTOTIC EXPANSIONS 333

2. Find a series 2nd-order expansion of (2x − 1)e
1

x−1 in the vicinity of
x=+∞.
Input :

series((2*x-1)*exp(1/(x-1)),x=+infinity,3)

Output is only a 1st-order series expansion :

2*x+1+2/x+(1/x)^2*order_size(1/x)

To get a 2nd-order series expansion in 1/x, input:

series((2*x-1)*exp(1/(x-1)),x=+infinity,4)

Output :

2*x+1+2/x+17/6*(1/x)^2+(1/x)^3*order_size(1/x)

3. Find a 2nd-order series expansion of (2x − 1)e
1

x−1 in the vicinity of
x=-∞.
Input :

series((2*x-1)*exp(1/(x-1)),x=-infinity,4)

Output :

-2*(-x)+1-2*(-1/x)+17/6*(-1/x)^2+
(-1/x)^3*order_size(-1/x)

• unidirectional series expansion.
The fourth parameter indicates the direction :

– 1 to do an series expansion in the vicinity of x = a with x > a,

– -1 to do an series expansion in the vicinity of x = a with x < a,

– 0 to do an series expansion in the vicinity of x = a with x 6= a.

For example, find a 2nd-order series expansion of (1+x)
1
x

x3
in the vicinity of

x = 0+.
Input :

series((1+x)^(1/x)/x^3,x=0,2,1)

Output :

exp(1)/x^3+(-(exp(1)))/2/x^2+1/x*order_size(x)

5.38.4 The inverse of a series: revert

The revert command takes as argument an expression which represents the be-
ginning of a power series centered at 0 for a function f . By default, the variable is
x, if a different variable is used, then that variable should be the second argument.
revert returns the beginning of the power series for the inverse of f , namely
the beginning of the power series for g(f(0) + x) where the function g satisfies
g(f(x)) = x.
Input:

334 CHAPTER 5. THE CAS FUNCTIONS

revert (x + xˆ2 + xˆ4)

Output:

x-xˆ2+2*xˆ3-6*xˆ4

Note that if the power series of a function f begins with x+x2+x4, then f(0) = 0,
f ′(0) = 1, f ′′(0) = 2, f ′′′(0) = 0 and f (4)(0) = 24. The function g with
g(f(x)) = x will then satisfy g(0) = 0, g′(0) = 1/f ′(0) = 1, g′′(0) = −2,
g′′′(0) = 12 and g(4)(0) = −144. The power series for g will then begin x− x2 +
2x3 − 6x4.

Entering the beginning of the power series for exp(x),
Input:

revert(1 + x + xˆ2/2 + xˆ3/6 + xˆ4/24)

Output:

x-1/2*xˆ2+1/3*xˆ3-1/4*xˆ4

returns the beginning of the power series for ln(1 + x).

5.38.5 The residue of an expression at a point : residue

residue takes as argument an expression depending on a variable, the variable
name and a complex a or an expression depending on a variable and the equality :
variable_name=a. residue returns the residue of this expression at the point a.
Input :

residue(cos(x)/x^3,x,0)

or :

residue(cos(x)/x^3,x=0)

Output :

(-1)/2

5.38.6 Padé expansion: pade

pade takes 4 arguments

• an expression,

• the variable name the expression depends on,

• an integer n or a polynomial N ,

• an integer p.

pade returns a rational fraction P/Q such that degree(P)< p and P/Q = f
(mod xn+1) or P/Q = f (mod N). In the first case, it means that P/Q and f
have the same Taylor expansion at 0 up to order n.
Input :

5.38. TAYLOR AND ASYMPTOTIC EXPANSIONS 335

pade(exp(x),x,5,3)

or :

pade(exp(x),x,x^6,3)

Output :

(3*x^2+24*x+60)/(-x^3+9*x^2-36*x+60)

To verify input :

taylor((3*x^2+24*x+60)/(-x^3+9*x^2-36*x+60))

Output :

1+x+1/2*x^2+1/6*x^3+1/24*x^4+1/120*x^5+x^6*order_size(x)

which is the 5th-order series expansion of exp(x) at x = 0.
Input :

pade((x^15+x+1)/(x^12+1),x,12,3)

or :

pade((x^15+x+1)/(x^12+1),x,x^13,3)

Output :

x+1

Input :

pade((x^15+x+1)/(x^12+1),x,14,4)

or :

pade((x^15+x+1)/(x^12+1),x,x^15,4)

Output :

(-2*x^3-1)/(-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-
x^3-x^2+x-1)

To verify, input :

series(ans(),x=0,15)

Output :

1+x-x^12-x^13+2x^15+x^16*order_size(x)

then input :

series((x^15+x+1)/(x^12+1),x=0,15)

Output :

1+x-x^12-x^13+x^15+x^16*order_size(x)

These two expressions have the same 14th-order series expansion at x = 0.

336 CHAPTER 5. THE CAS FUNCTIONS

5.39 Ranges of values

5.39.1 Definition of a range of values: a1..a2

A range of values is represented by two real numbers separated by .., for example

1..4
1.2..sqrt(2)

Input :

A:=1..4

B:=1.2..sqrt(2)

Warning!
The order of the boundaries of the range is significant. For example, if you input

B:=2..3; C:=3..2,

then B and C are different, B==C returns 0.

5.39.2 Boundaries of a range of values: left right

left (resp. right) takes as argument a range of values.
left (resp. right) returns the left (resp. right) boundary of this range.
Note that .. is an infixed operator, therefore:

• sommet(1..5) is equal to ’..’ and feuille(1..5) is equal to
(1,5).

• the name of the range followed by [0] returns the operator ..

• the name of the range followed by [1] (or the left command) returns the
left boundary.

• The name of the range followed by [2] (or the right command) returns
the right boundary.

Input :

(3..5)[0]

or :

sommet(3..5)

Output :

’..’

Input :

left(3..5)

or :

5.39. RANGES OF VALUES 337

(3..5)[1]

or :

feuille(3..5)[0]

or :

op(3..5)[0]

Output :

3

Input :

right(3..5)

or :

(2..5)[2]

or :

feuille(3..5)[1]

or :

op(3..5)[1]

Output :

5

Remark
left (resp. right) returns also the left (resp. right) member of an equation (for
example left(2*x+1=x+2) returns 2*x+1).

5.39.3 Center of a range of values: interval2center

interval2center takes as argument a range of values interval or a list of
ranges of values.
interval2center returns the center of this range or the list of centers of these
ranges.
Input :

interval2center(3..5)

Output :

4

Input :

interval2center([2..4,4..6,6..10])

Output :

[3,5,8]

338 CHAPTER 5. THE CAS FUNCTIONS

5.39.4 Ranges of values defined by their center : center2interval

center2interval takes as argument a vector V of reals and optionally a real
as second argument (by default V[0]-(V[1]-V[0])/2).
center2interval returns a vector of ranges of values having the real values
of the first argument as centers, where the value of the second argument is the left
boundary of the first range.
Input :

center2interval([3,5,8])

Or (since the default value is 3-(5-3)/2=2) :

center2interval([3,5,8],2)

Output :

[2..4,4..6,6..10]

Input :

center2interval([3,5,8],2.5)

Output :

[2.5..3.5,3.5..6.5,6.5..9.5]

5.40 Intervals

5.40.1 Defining intervals: i[]

An interval is a range of real numbers, whose end points will be floats with at least
15 significant digits. The interval from a to b is created with i[a,b].
Input:

i[1,13/11]

Output:

[1.00000000000000..1.18181818181819]

If a > b, then i[a,b] returns i[evalf(b,15)-epsilon,evalf(a,15)+epsilon].
Input:

i[pi,sqrt(3)]

Output:

[1.73205080756886..3.14159265358980]

Intervals can also be created by following a decimal number with a question
mark. If the decimal number contains n digits, the interval will be centered at a
and have width 2 · 10−n.
Input:

0.123?

5.40. INTERVALS 339

Output:

[0.121999999999999..0.124000000000000]

Input:

789.123456?

Output:

[0.789123454999990e3..0.789123456999998e3]

5.40.2 The endpoints of an interval: left,right

The left and right commands take an interval as an argument.
left and right return the left and right endpoints of the interval, respectively.
Input:

left(i[2,5])

Output:

2.00000000000000

Input:

right(i[2,5])

Output:

5.00000000000000

5.40.3 Adding intervals

Intervals are added by adding the left end points and adding the right end points.
Input:

i[1,4] + i[2,3]

Output:

[3.00000000000000..7.00000000000000]

5.40.4 The negative of an interval

The negative of an interval is computed by taking the negative of the end points of
the interval. The new end points will have to be switched.
Input:

-i[2,3]

Output:

[-3.00000000000000..-2.00000000000000]

340 CHAPTER 5. THE CAS FUNCTIONS

5.40.5 Multiplying intervals

Intervals are multiplied by multiplying both end points of the first interval by both
end points of the second interval. The smallest product will be the left end point
of the product interval, and the largest product will be the right end point of the
product interval.
Input:

i[1,4]*i[2,3]

Output:

[2.00000000000000..0.120000000000000e2]

Input:

i[-2,4]*i[3,5]

Output:

[-0.100000000000000e2..0.200000000000000e2]

5.40.6 The reciprocal of an interval

The reciprocal of an interval the interval determined by the reciprocals of the end
points.
Input:

1/i[2,3]

Output:

[0.333333333333333..0.500000000000000]

Input:

1/i[-6,-3]

Output:

[-0.333333333333333..-0.166666666666667]

If the original interval has zero as an end point, then the reciprocal interval will
have infinity or minus infinity as one of the end points.
Input:

1/i[0,2]

Output:

[0.500000000000000..+infinity]

Input:

1/i[-1,0]

Output:

5.40. INTERVALS 341

[-infinity..-1.00000000000000]

If one end point is positive and the other is negative, then the reciprocal will simply
be the interval from -infinity to infinity.
Input:

1/i[-2,3]

Output:

[-infinity..+infinity]

5.40.7 The midpoint of an interval: midpoint

The midpoint takes an interval as argument.
midpoint returns the midpoint of the interval.
Input:

midpoint(i[2,3])

Output:

2.50000000000000

5.40.8 The union of intervals: union

The union operator is an infixed operator.
union takes two intervals and returns their convex hull.
Input:

i[1,3] union i[2,4]

Output:

[1.00000000000000..4.00000000000000]

Input:

i[2,4] union i[6,9]

Output:

[2.00000000000000..9.00000000000000]

5.40.9 The intersection of intervals: intersect

The intersect operator is an infixed operator.
intersect takes two intervals and returns their intersection.
Input:

i[1,3] intersect i[2,4]

Output:

[2.00000000000000..3.00000000000000]

342 CHAPTER 5. THE CAS FUNCTIONS

5.40.10 Test if an object is in an interval: contains

The contains command takes two arguments; an interval and an object to test.
contains returns 1 if the object is contained in the interval; i.e., if the object is a
number then it must be an element of the interval, if the object is another interval
it must be a subset of the interval. contains returns 0 otherwise.
Input:

contains(i[0,2],1)

Output:

1

Input:

contains(i[0,2],3)

Output:

0

Input:

contains(i[0,2],i[1,2])

Output:

1

5.40.11 Convert a number to an interval: convert

To convert a number to an interval, the convert command takes two mandatory
arguments and one optional argument. The first argument is an expression which
evaluates to the desired number, and the second argument is the reserved word
interval. The optional argument is an integer greater than 15 giving the desired
number of digits.
convert returns the smallest interval containing the value of the expression.
Input:

convert(sin(3)+1, interval)

Output:

[1.14112000805985 .. 1.14112000805990]

Input:

convert(sin(3)+1, interval,20)

Output:

[1.1411200080598672220 .. 1.1411200080598672222]

5.41. SEQUENCES 343

5.41 Sequences

5.41.1 Definition : seq[] ()

A sequence is represented by a sequence of elements separated by commas, without
delimiters or with either () or seq[...] as delimiters, for example

(1,2,3,4)
seq[1,2,3,4]

Input :

A:=(1,2,3,4) or A:=seq[1,2,3,4]

B:=(5,6,3,4) or B:=seq[5,6,3,4]

Remarks

• The order of the elements of the sequence is significant. For example, if
B:=(5,6,3,4) and C:=(3,4,5,6), then B==C returns 0.

• (see also 5.41)
seq([0,2])=(0,0) and seq([0,1,1,5])=[0,0,0,0,0] but
seq[0,2]=(0,2) and seq[0,1,1,5]=(0,1,1,5)

5.41.2 Concat two sequences : ,

The infix operator , concatenates two sequences.
Input :

A:=(1,2,3,4)

B:=(5,6,3,4)

A,B

Output :

(1,2,3,4,5,6,3,4)

5.41.3 Get an element of a sequence : [], [[]]

The elements of a sequence have indexes beginning at 0 in Xcas mode or 1 in
other modes.
A sequence or a variable name assigned to a sequence followed by [n] returns the
element of index n of the sequence.
Input :

(0,3,2)[1]

Output :

3

344 CHAPTER 5. THE CAS FUNCTIONS

5.41.4 Sub-sequence of a sequence : []

A sequence or a variable name assigned to a sequence followed by [n1..n2]
returns the sub-sequence of this sequence starting at index n1 and ending at index
n2.
Input :

(0,1,2,3,4)[1..3]

Output :

(1,2,3)

5.41.5 Make a sequence or a list : seq $

seq takes two, three, four or five arguments : the first argument is an expression
depending of a parameter (for example j) and the remaining argument(s) describe
which values of j will be used to generate the sequence. More precisely j is as-
sumed to move from a to b:

• with a default step of 1 or -1: j=a..b or j,a..b (Maple-like syntax),
j,a,b (TI-like syntax)

• or with a specific step: j=a..b,p (Maple-like syntax), j,a,b,p (TI-like
syntax).

If the Maple-like syntax is used, seq returns a sequence, if the TI-like syntax is
used, seq returns a list.

$ is the infixed version of seq when seq has only two arguments and always
returns a sequence.
Remark:

• In Xcas mode, the precedence of $ is not the same as for example in
Maple, in case of doubt put the arguments of $ in parenthesis. For exam-
ple, the equivalent of seq(j^2,j=-1..3) is (j^2)$(j=-1..3) and
returns (1,0,1,4,9). The equivalent of seq(4,3) is 4$3 and returns
(4,4,4).

• With Maple syntax, j,a..b,p is not valid. To specify a step p for the
variation of j from a to b, use j=a..b,p or use the TI syntax j,a,b,p
and get the sequence from the list with op(...).

In summary, the different way to build a sequence are :

• with Maple-like syntax

1. seq has two arguments, either an expression depending on a parameter
(for example j) and j = a..b where a and b are reals, or a constant
expression and an integer n.
seq returns the sequence where j is replaced in the expression by a,
a + 1,...,b if b > a and by a, a − 1,...,b if b < a, or seq returns the
sequence made by copying the constant n times.

5.41. SEQUENCES 345

2. seq has three arguments, an expression depending on a parameter (for
example j) and j = a..b, p where a, b are reals and p is a real number.
seq returns the sequence where j is replaced in the expression by a,
a+ p,...,b if b > a and by a, a− p,...,b if b < a.
Note that j, a..b is also valid but j, a..b, p is not valid.

• TI syntax

1. seq has four arguments, an expression depending on a parameter (for
example j), the name of the parameter (for example j), a and b where
a and b are reals.
seq returns the list where j is replaced in the expression by a, a+1,...,b
if b > a and by a, a− 1,...,b if b < a.

2. seq has five arguments, an expression depending on a parameter (for
example j), the name of the parameter (for example j), a, b and pwhere
a, b and p are reals.
seq returns the list where j is substituted in the expression by a, a +
p,...,a + k ∗ p (a + k ∗ p ≤ b < a + (k + 1) ∗ p or a + k ∗ p ≥ b >
a+ (k + 1) ∗ p). By default, p=1 if b > a and p=-1 if b < a.

Note that in Maple syntax, seq takes no more than 3 arguments and returns a
sequence, while in TI syntax, seq takes at least 4 arguments and returns a list.
Input to have a sequence with same elements :

seq(t,4)

or :

seq(t,k=1..4)

or :

t$4

Output :

(t,t,t,t)

Input to have a sequence :

seq(j^3,j=1..4)

or :

(j^3)$(j=1..4)

or :

seq(j^3,j,1..4)

Output :

(1,8,27,64)

Input to have a sequence :

346 CHAPTER 5. THE CAS FUNCTIONS

seq(j^3,j=-1..4,2)

Output :

(-1,1,27)

Or to have a list,
Input :

seq(j^3,j,1,4)

Output :

[1,8,27,64]

Input :

seq(j^3,j,0,5,2)

Output :

[0,8,64]

Input :

seq(j^3,j,5,0,-2)

or

seq(j^3,j,5,0,2)

Output :

[125,27,1]

Input :

seq(j^3,j,1,3,0.5)

Output :

[1,3.375,8,15.625,27]

Input :

seq(j^3,j,1,3,1/2)

Output :

[1,27/8,8,125/8,27]

Examples

• Find the third derivative of ln(t), input:

diff(log(t),t$3)

Output :

5.41. SEQUENCES 347

-((-(2*t))/t^4)

• Input :

l:=[[2,3],[5,1],[7,2]]

seq((l[k][0])$(l[k][1]),k=0 .. size(l)-1)

Output :

2,2,2,seq[5],7,7

then eval(ans()) returns:

2,2,2,5,7,7

• Input to transform a string into the list of its characters :

f(chn):={
local l;
l:=size(chn);
return seq(chn[j],j,0,l-1);
}

then input:

f("abracadabra")

Output :

["a","b","r","a","c","a","d","a","b","r","a"]

5.41.6 Transform a sequence into a list : [] nop

To transform a sequence into list, just put square brackets ([]) around the sequence
or use the command nop.
Input :

[seq(j^3,j=1..4)]

or :

seq(j^3,j,1,4)

or :

[(j^3)$(j=1..4)]

Output :

[1,4,9,16]

Input :

nop(1,4,9,16)

Output :

[1,4,9,16]

348 CHAPTER 5. THE CAS FUNCTIONS

5.41.7 The + operator applied on sequences

The infixed operator +, with two sequences as argument, returns the total sum of
the elements of the two sequences.
Note the difference with the lists, where the term by term sums of the elements of
the two lists would be returned.
Input :

(1,2,3,4,5,6)+(4,3,5)

or :

’+’((1,2,3,4,5,6),(4,3,5))

Output :

33

But input :

[1,2,3,4,5,6]+[4,3,5]

Output :

[5,5,8,4,5,6]

Warning
When the operator + is prefixed, it has to be quoted (’+’).

5.42 Sets

5.42.1 Definition : set[]

To define a set of elements, put the elements separated by a comma, with %{ ...
%} or set[...] as delimiters.
Input :

%{1,2,3,4%}
set[1,2,3,4]

In the Xcas answers, the set delimiters are displayed as J and K in order not to
confuse sets with lists. For example, J1,2,3K is the set %{1,2,3%}, unlike [1,2,3]
(normal brackets) which is the list [1,2,3].
Input :

A:=%{1,2,3,4%} or A:=set[1,2,3,4]

Output :

J1,2,3,4K

Input :

B:=%{5,5,6,3,4%} or B:=set[5,5,6,3,4]

Output :

5.42. SETS 349

J5,6,3,4K

Remark
The order in a set is not significant and the elements in a set are all distinct. If you
input B:=%{5,5,6,3,4%} and C:=%{3,4,5,3,6%}, then B==C will return
1.

5.42.2 Union of two sets or of two lists : union

union is an infixed operator.
union takes as argument two sets or two lists, union returns the union set of the
arguments.
Input :

set[1,2,3,4] union set[5,6,3,4]

or :

%{1,2,3,4%} union %{5,6,3,4%}

Output :

J1,2,3,4,5,6K

Input :

[1,2,3] union [2,5,6]

Output :

J1,2,3,5,6K

5.42.3 Intersection of two sets or of two lists : intersect

intersect is an infixed operator.
intersect takes as argument two sets or two lists.
intersect returns the intersection set of the arguments.
Input :

set[1,2,3,4] intersect set[5,6,3,4]

or :

%{1,2,3,4%} intersect %{5,6,3,4%}

Output :

J3,4K

Input :

[1,2,3,4] intersect [5,6,3,4]

Output :

J3,4K

350 CHAPTER 5. THE CAS FUNCTIONS

5.42.4 Difference of two sets or of two lists : minus

minus is an infixed operator.
minus takes as argument two sets or two lists.
minus returns the difference set of the arguments.
Input :

set[1,2,3,4] minus set[5,6,3,4]

or :

%{1,2,3,4%} minus %{5,6,3,4%}

Output :

J1,2K

Input :

[1,2,3,4] minus [5,6,3,4]

Output :

J1,2K

5.42.5 Defining an n-tuple: tuple

To define an n-tuple, rather than a list of n objects, the objects should be put in-
side the delimiters tuple[and]. For example, the set consisting of the points
[1,3,4], [1,3,5], [2,3,4 and [2,3,5] is written

set[tuple[1,3,4],tuple[1,3,5],tuple[2,3,4],tuple[2,3,5]]

The Cartesian product of two sets: *
The Cartesian product of two sets is computed with the infixed operator *.

Input:

set[1,2] * set[3,4]

Output:

set[tuple[1,3],tuple[1,4],tuple[2,3],tuple[2,4]]

Input:

set[1,2] * set[3,4] * set[5,6]

Output:

set[tuple[1,3,5],tuple[1,3,6],tuple[1,4,5],tuple[1,4,6],
tuple[2,3,5],tuple[2,3,6],tuple[2,4,5],tuple[2,4,6]]

5.43. LISTS AND VECTORS 351

5.43 Lists and vectors

5.43.1 Definition

A list (or a vector) is delimited by [], its elements must be separated by commas.
For example, [1,2,5] is a list of three integers.

Lists can contain lists (for example, a matrix is a list of lists of the same size).
Lists may be used to represent vectors (list of coordinates), matrices, univariate
polynomials (list of coefficients by decreasing order).

Lists are different from sequences, because sequences are flat : an element of
a sequence cannot be a sequence. Lists are different from sets, because for a list,
the order is important and the same element can be repeated in a list (unlike in a
set where each element is unique).

In Xcas output :

• vector (or list) delimiters are displayed as [],

• matrix delimiters are displayed as [],

• polynomial delimiters are displayed as 8 8,

• set delimiters are displayed as J K.

The list elements are indexed starting from 0 in Xcas syntax mode and from 1
in all other syntax modes. To access an element of a list, follow the list with the
index between square brackets.
Input:

L := [2,5,1,4]

Output:

[2,5,1,4]

Input:

L[1]

Output:

5

To access the last element of a list, you can put -1 between square brackets.
Input:

L[-1]

Output:

4

If you want the indices to start from in Xcas syntax mode, you can enter the index
between double brackets.
Input:

L[[1]]

Output:

2

352 CHAPTER 5. THE CAS FUNCTIONS

5.43.2 Define a list: makelist

See also section 5.43.41.
A list can be defined by listing its elements, separated by commas, between

square brackets.
Input:

L1 := [1,2,3]

To define the empty list, simply enter the brackets.
Input:

L0 := []

L0 is now the empty list.
The subsop command (see section 5.43.14) can be used to modify lists. You

can also redefine elements (or define new elements) with :=.
Input:

L1

Output:

[1,2,3]

Input:

L1[2] := 16

then:

L1

Output:

[1,2,16]

Input:

L0

Output:

[]

Input:

L0[5] := 16

then:

L0

Output:

[0,0,0,0,0,16]

5.43. LISTS AND VECTORS 353

You can also define a list with the makelist command.
Input:

makelist(4,1,3)

creates a list with entries 4, from integers 1 to 3. This is the same as [4 $ 3].
Output:

[4,4,4]

Input:

makelist(4,2,7)

creates a list with entries 4, from integers 2 to 7. This is the same as [4 $ 6].
Output:

[4,4,4,4,4,4]

Input:

makelist(x -> xˆ2,1,10,2)

creates a list of the squares of the numbers, starting at 1, ending at 10, and going in
steps of 2. This is the same as [(kˆ2) $ (k = 1..10,2)]. Output:

[1,9,25,49,81]

5.43.3 Flatten a list: flatten

The flatten takes a list as argument.
flatten returns a list which is the result of recursively replacing any elements
that are lists by the elements, resulting in a list with no lists as elements.
Input:

flatten([[1,[2,3],4],[5,6]])

Output:

[1,2,3,4,5,6]

If the original list is a matrix, you can use the mat2list command for this (see
section 5.43.45).

5.43.4 Get an element or a sub-list of a list : at []

Get an element

The n-th element of a list l of size s is addressed by l[n] where n is in [0..s− 1]
or [1..s]. The equivalent prefixed function is at, which takes as argument a list and
an integer n.
at returns the element of the list at index n.
Input :

[0,1,2][1]

or :

at([0,1,2],1)

Output :

1

354 CHAPTER 5. THE CAS FUNCTIONS

Extract a sub-list

If l is a list of size s, l[n1..n2] returns the list extracted from l containing the
elements of indexes n1 to n2 where 0 ≤ n1 ≤ n2 < s (in Xcas syntax mode) or
0 < n1 ≤ n2 ≤ s in other syntax modes. The equivalent prefixed function is at
with a list and an interval of integers (n1..n2) as arguments.
See also : mid, section 5.43.5.
Input :

[0,1,2,3,4][1..3]

or :

at([0,1,2,3,4],1..3)

Output :

[1,2,3]

Warning
at can not be used for sequences, index notation must be used, as in (0,1,2,3,4,5)[2..3].

5.43.5 Extract a sub-list : mid

See also : at section 5.43.4.
mid is used to extract a sub-list of a list.
mid takes as argument a list, the index of the beginning of the sub-list and the
length of the sub-list.
mid returns the sub-list.
Input :

mid([0,1,2,3,4,5],2,3)

Output :

[1,2,3]

Warning
mid can not be used to extract a subsequence of a sequence, because the arguments
of mid would be merged with the sequence. Index notation must be used, like
e.g.(0,1,2,3,4,5)[2..3].

5.43.6 Get the first element of a list : head

head takes as argument a list.
head returns the first element of this list.
Input :

head([0,1,2,3])

Output :

0

a:=head([0,1,2,3]) does the same thing as a:=[0,1,2,3][0]

5.43. LISTS AND VECTORS 355

5.43.7 Remove an element in a list : suppress

suppress takes as argument a list and an integer n.
suppress returns the list where the element of index n is removed.
Input :

suppress([3,4,2],1)

Output :

[3,2]

5.43.8 Insert an element into a list or a string: insert

The insert command takes three arguments, a list (or string), and index, and an
element.
insert returns the list (or string) with the element inserted into the position given
by the index, with all other elements shifted to the right.
Input:

insert([3,4,2],2,5)

Output:

[3,4,5,2]

Input:

insert("342",2,"5")

Output:

"3452"

insert returns an error if the index is too large.
Input:

insert([3,4,2],4,5)

Output:

insert([3,4,2],4,5) Error: Invalid dimension

5.43.9 Remove the first element : tail

tail takes as argument a list. tail returns the list without its first element.
Input :

tail([0,1,2,3])

Output :

[1,2,3]

l:=tail([0,1,2,3]) does the same thing as l:=suppress([0,1,2,3],0)

356 CHAPTER 5. THE CAS FUNCTIONS

5.43.10 The right and left portions of a list: right, left

The right command takes two arguments, a list and an integer n.
right returns the last n elements of the list.
Input:

right([0,1,2,3,4,5,6,7,8],4)

Output:

[5,6,7,8]

Similarly, left returns the first part of a list.
Input:

left([0,1,2,3,4,5,6,7,8],3)

Output:

[0,1,2]

5.43.11 Reverse order in a list : revlist

revlist takes as argument a list (resp. sequence).
revlist returns the list (resp. sequence) in the reverse order.
Input :

revlist([0,1,2,3,4])

Output :

[4,3,2,1,0]

Input :

revlist([0,1,2,3,4],3)

Output :

3,[0,1,2,3,4]

5.43.12 Reverse a list starting from its n-th element : rotate

rotate takes as argument a list and an integer n (by default n=-1).
rotate rotates the list by n places to the left if n>0 or to the right if n<0. Ele-
ments leaving the list from one side come back on the other side. By default n=-1
and the last element becomes first.
Input :

rotate([0,1,2,3,4])

Output :

[4,0,1,2,3]

Input :

5.43. LISTS AND VECTORS 357

rotate([0,1,2,3,4],2)

Output :

[2,3,4,0,1]

Input :

rotate([0,1,2,3,4],-2)

Output :

[3,4,0,1,2]

5.43.13 Permuted list from its n-th element : shift

shift takes as argument a list l and an integer n (by default n=-1).
shift rotates the list to the left if n>0 or to the right if n<0. Elements leaving
the list from one side are replaced by undef on the other side.
Input :

shift([0,1,2,3,4])

Output :

[undef,0,1,2,3]

Input :

shift([0,1,2,3,4],2)

Output :

[2,3,4,undef,undef]

Input :

shift([0,1,2,3,4],-2)

Output :

[undef,undef,0,1,2]

5.43.14 Modify an element in a list : subsop

subsop modifies an element in a list. subsop takes as argument a list and an
equality (an index=a new value) in all syntax modes, but in Maple syntax mode
the order of the arguments is reversed.
Remark If the second argument is ’k=NULL’, the element of index k is removed
of the list.
Input in Xcas mode (the index of the first element is 0) :

subsop([0,1,2],1=5)

or :

358 CHAPTER 5. THE CAS FUNCTIONS

L:=[0,1,2];L[1]:=5

Output :

[0,5,2]

Input in Xcas mode (the index of the first element is 0) :

subsop([0,1,2],’1=NULL’)

Output :

[0,2]

Input in Mupad TI mode (the index of the first element is 1) :

subsop([0,1,2],2=5)

or :

L:=[0,1,2];L[2]:=5

Output :

[0,5,2]

In Maple mode the arguments are permuted and the index of the first element is 1.
Input :

subsop(2=5,[0,1,2])

or :

L:=[0,1,2];L[2]:=5

Output :

[0,5,2]

5.43.15 Transform a list into a sequence : op makesuite

op or makesuite takes as argument a list.
op or makesuite transforms this list into a sequence.
See 5.16.3 for other usages of op.
Input :

op([0,1,2])

or :

makesuite([0,1,2])

Output :

(0,1,2)

5.43. LISTS AND VECTORS 359

5.43.16 Transform a sequence into a list : makevector []

Square brackets put around a sequence transform this sequence into a list or vec-
tor. The equivalent prefixed function is makevector which takes a sequence as
argument.
makevector transforms this sequence into a list or vector.
Input :

makevector(0,1,2)

Output :

[0,1,2]

Input :

a:=(0,1,2)

Input :

[a]

or :

makevector(a)

Output :

[0,1,2]

5.43.17 Length of a list : size nops length

size or nops or length takes as argument a list (resp. sequence).
size or nops or length returns the length of this list (resp. sequence).
Input :

nops([3,4,2])

or :

size([3,4,2])

or :

length([3,4,2])

Output :

3

5.43.18 Sizes of a list of lists : sizes

sizes takes as argument a list of lists.
sizes returns the list of the lengths of these lists.
Input :

sizes([[3,4],[2]])

Output :

[2,1]

360 CHAPTER 5. THE CAS FUNCTIONS

5.43.19 Concatenate two lists or a list and an element : concat augment

concat (or augment) takes as argument a list and an element or two lists.
concat (or augment) concats this list and this element, or concats these two
lists.
Input :

concat([3,4,2],[1,2,4])

or :

augment([3,4,2],[1,2,4])

Output :

[3,4,2,1,2,4]

Input :

concat([3,4,2],5)

or :

augment([3,4,2],5)

Output :

[3,4,2,5]

Warning If you input :

concat([[3,4,2]],[[1,2,4]])

or

augment([[3,4,2]],[[1,2,4]])

the output will be:

[[3,4,2,1,2,4]]

5.43.20 Append an element at the end of a list : append

append takes as argument a list and an element.
append puts this element at the end of this list.
Input :

append([3,4,2],1)

Output :

[3,4,2,1]

Input :

append([1,2],[3,4])

Output :

[1,2,[3,4]]

5.43. LISTS AND VECTORS 361

5.43.21 Prepend an element at the beginning of a list : prepend

prepend takes as argument a list and an element.
prepend puts this element at the beginning of this list.
Input :

prepend([3,4,2],1)

Output :

[1,3,4,2]

Input :

prepend([1,2],[3,4])

Output :

[[3,4],1,2]

5.43.22 Sort : sort

sort takes as argument a list or an expression.

• For a list,
sort returns the list sorted in increasing order.
Input :

sort([3,4,2])

Output :

[2,3,4]

• For an expression,
sort sorts and collects terms in sums and products.
Input :

sort(exp(2*ln(x))+x*y-x+y*x+2*x)

Output :

2*x*y+exp(2*ln(x))+x

Input :

simplify(exp(2*ln(x))+x*y-x+y*x+2*x)

Output :

x^2+2*x*y+x

362 CHAPTER 5. THE CAS FUNCTIONS

sort accepts an optional second argument, which is a bivariate function return-
ing 0 or 1. If provided, this function will be used to sort the list, for example
(x,y)->x>=y may be used as second argument to sort the list in decreasing or-
der. This may also be used to sort list of lists (that sort with one argument does
not know how to sort).
Input :

sort([3,4,2],(x,y)->x>=y)

Output :

[4,3,2]

5.43.23 Sort a list by increasing order : SortA

SortA takes as argument a list.
SortA returns this list sorted by increasing order.
Input :

SortA([3,4,2])

Output :

[2,3,4]

SortA may have a matrix as argument and in this case, SortA modifies the order
of columns by sorting the first matrix row by increasing order.
Input :

SortA([[3,4,2],[6,4,5]])

Output :

[[2,3,4],[5,6,4]]

5.43.24 Sort a list by decreasing order : SortD

SortD takes a list as argument.
SortD returns this list sorted by decreasing order.
Input :

SortD([3,4,2])

Output :

[2,3,4]

SortD may have a matrix as argument and in this case, SortD modifies the order
of columns by sorting the first matrix row by decreasing order.
Input :

SortD([[3,4,2],[6,4,5]])

Output :

[[4,3,2],[4,6,5]]

5.43. LISTS AND VECTORS 363

5.43.25 Select the elements of a list : select

select takes as arguments : a boolean function f and a list L.
select selects in the list L, the elements c such that f(c)==true.
Input :

select(x->(x>=2),[0,1,2,3,1,5])

Output :

[2,3,5]

5.43.26 Remove elements of a list : remove

remove takes as argument : a boolean function f and a list L.
remove removes in the list L, the elements c such that f(c)==true.
Input :

remove(x->(x>=2),[0,1,2,3,1,5])

Output :

[0,1,1]

Remark The same applies on strings, for example, to remove all the "a" of a string:
Input :

ord("a")

Output :

97

Input :

f(chn):={
local l:=length(chn)-1;
return remove(x->(ord(x)==97),seq(chn[k],k,0,l));

}

Then, input :

f("abracadabra")

Output :

["b","r","c","d","b","r"]

To get a string, input :

char(ord(["b","r","c","d","b","r"])

Output :

"brcdbr"

364 CHAPTER 5. THE CAS FUNCTIONS

5.43.27 Test if a value is in a list : member

member takes as argument a value c and a list (or a set) L.
member is a function that tests if c is an element of the list L.
member returns 0 if c is not in L, or a strictly positive integer which is 1 plus the
index of the first occurrence of c in L.
Note the order of the arguments (required for compatibility reasons)
Input :

member(2,[0,1,2,3,4,2])

Output :

3

Input :

member(2,%{0,1,2,3,4,2%})

Output :

3

5.43.28 Test if a value is in a list : contains

contains takes as argument a list (or a set) L and a value c.
contains tests if c is an element of the list L.
contains returns 0 if c is not in L, or a strictly positive integer which is 1+the
index of the first occurrence of c in L.
Input :

contains([0,1,2,3,4,2],2)

Output :

3

Input :

contains(%{0,1,2,3,4,2%},2)

Output :

3

5.43.29 Sum of list (or matrix) elements transformed by a function :
count

count takes as argument : a real function f and a list l of length n (or a matrix A
of dimension p*q).
count applies the function to the list (or matrix) elements and returns their sum,
i.e. :
count(f,l) returns f(l[0])+f(l[1])+...+f(l[n-1]) or
count(f,A) returns f(A[0,0])+....+f(A[p-1,q-1]).
If f is a boolean function count returns the number of elements of the list (or of
the matrix) for which the boolean function is true.
Input :

5.43. LISTS AND VECTORS 365

count((x)->x,[2,12,45,3,7,78])

Output :

147

because : 2+12+45+3+7+78=147.
Input :

count((x)->x<12,[2,12,45,3,7,78])

Output :

3

Input :

count((x)->x==12,[2,12,45,3,7,78])

Output :

1

Input :

count((x)->x>12,[2,12,45,3,7,78])

Output :

2

Input :

count(x->x^2,[3,5,1])

Output :

35

Indeed 32 + 52 + 11 = 35.
Input :

count(id,[3,5,1])

Output :

9

Indeed, id is the identity functions and 3+5+1=9.
Input :

count(1,[3,5,1])

Output :

3

Indeed, 1 is the constant function equal to 1 and 1+1+1=3.

366 CHAPTER 5. THE CAS FUNCTIONS

5.43.30 Number of elements equal to a given value : count_eq

count_eq takes as argument : a real and a real list (or matrix).
count_eq returns the number of elements of the list (or matrix) which are equal
to the first argument.
Input :

count_eq(12,[2,12,45,3,7,78])

Output :

1

5.43.31 Number of elements smaller than a given value : count_inf

count_inf takes as argument : a real and a real list (or matrix).
count_inf returns the number of elements of the list (or matrix) which are
strictly less than the first argument.
Input :

count_inf(12,[2,12,45,3,7,78])

Output :

3

5.43.32 Number of elements greater than a given value : count_sup

count_sup takes as argument : a real and a real list (or matrix).
count_sup returns the number of elements of the list (or matrix) which are
strictly greater than the first argument.
Input :

count_sup(12,[2,12,45,3,7,78])

Output :

2

5.43.33 Sum of elements of a list : sum add

sum or add takes as argument a list l (resp. sequence) of reals.
sum or add returns the sum of the elements of l.
Input :

sum(2,3,4,5,6)

Output :

20

5.43. LISTS AND VECTORS 367

5.43.34 Cumulated sum of the elements of a list : cumSum

cumSum takes as argument a list l (resp. sequence) of numbers or of strings.
cumSum returns the list (resp. sequence) with same length as l and with k-th
element the sum (or concatenation) of the elements l[0], .., l[k].
Input :

cumSum(sqrt(2),3,4,5,6)

Output :

sqrt(2),3+sqrt(2),3+sqrt(2)+4,3+sqrt(2)+4+5,

3+sqrt(2)+4+5+6

Input :

normal(cumSum(sqrt(2),3,4,5,6))

Output :

sqrt(2),sqrt(2)+3,sqrt(2)+7,sqrt(2)+12,sqrt(2)+18

Input :

cumSum(1.2,3,4.5,6)

Output :

1.2,4.2,8.7,14.7

Input :

cumSum([0,1,2,3,4])

Output :

[0,1,3,6,10]

Input :

cumSum("a","b","c","d")

Output :

"a","ab","abc","abcd"

Input :

cumSum("a","ab","abc","abcd")

Output :

"a","aab","aababc","aababcabcd"

5.43.35 Product : product mul

See also 5.43.35, 5.49.6 and 5.49.8).

368 CHAPTER 5. THE CAS FUNCTIONS

Product of values of an expression : product

product(expr,var,a,b,p) or mul(expr,var,a,b,p) returns the prod-
uct of values of an expression ex when the variable var goes from a to b with a
step p (by default p=1) : this syntax is for compatibility with Maple.
Input :

product(x^2+1,x,1,4)

or:

mul(x^2+1,x,1,4)

Output :

1700

Indeed 2 ∗ 5 ∗ 10 ∗ 17 = 1700
Input :

product(x^2+1,x,1,5,2)

or:

mul(x^2+1,x,1,5,2)

Output :

520

Indeed 2 ∗ 10 ∗ 26 = 520

Product of elements of a list : product

product or mul takes as argument a list l of reals (or floating numbers) or two
lists of the same size (see also 5.43.35, 5.49.6 and 5.49.8).

• if product or mul has a list l as argument, product or mul returns the
product of the elements of l.
Input :

product([2,3,4])

or :

mul([2,3,4])

Output :

24

Input :

product([[2,3,4],[5,6,7]])

5.43. LISTS AND VECTORS 369

Output :

[10,18,28]

• if product or mul takes as arguments l1 and l2 (two lists or two matri-
ces), product or mul returns the term by term product of the elements of
l1 and l2.
Input :

product([2,3,4],[5,6,7])

or :

mul([2,3,4],[5,6,7])

Output :

[10,18,28]

Input :

product([[2,3,4],[5,6,7]],[[2,3,4],[5,6,7]])

or :

mul([[2,3,4],[5,6,7]],[[2,3,4],[5,6,7]])

Output :

[[4,9,16],[25,36,49]]

5.43.36 Apply a function of one variable to the elements of a list : map
apply of

map or apply or of applies a function to a list of elements.
of is the prefixed function equivalent to the parenthesis : Xcas translates f(x)
internally to of(f,x). It is more natural to call map or apply than of. Be
careful with the order of arguments (that is required for compatibility reasons).
Note that apply returns a list ([]) even if the second argument is not a list.
Input :

apply(x->x^2,[3,5,1])

or :

of(x->x^2,[3,5,1])

or :

map([3,5,1],x->x^2)

or first define the function h(x) = x2, input :

370 CHAPTER 5. THE CAS FUNCTIONS

h(x):=x^2

then :

apply(h,[3,5,1])

or :

of(h,[3,5,1])

or :

map([3,5,1],h)

Output :

[9,25,1]

Next example, define the function g(x) = [x, x2, x3], input :

g:=(x)->[x,x^2,x^3]

then :

apply(g,[3,5,1])

or :

of(g,[3,5,1])

or :

map([3,5,1],g)

Output :

[[3,9,27],[5,25,125],[1,1,1]]

Warning!!! first purge x if x is not symbolic.
Note that if l1,l2,l3 are lists sizes([l1,l2,l3]) is equivalent to map(size,[l1,l2,l3]).

5.43.37 Apply a bivariate function to the elements of two lists : zip

zip applies a bivariate function to the elements of 2 lists.
Input :

zip(’sum’,[a,b,c,d],[1,2,3,4])

Output :

[a+1,b+2,c+3,d+4]

Input :

zip((x,y)->x^2+y^2,[4,2,1],[3,5,1])

or :

f:=(x,y)->x^2+y^2

5.43. LISTS AND VECTORS 371

then,

zip(f,[4,2,1],[3,5,1])

Output :

[25,29,2]

Input :

f:=(x,y)->[x^2+y^2,x+y]

then :

zip(f,[4,2,1],[3,5,1])

Output :

[[25,7],[29,7],[2,2]]

5.43.38 Fold operators : foldl, foldr

The fold operators foldl and foldr both take a binary operator, identifier or
functionR as the first argument followed by an argument I and an arbitrary number
of arguments a, b, c, . . . , like for example foldl(R,I,a,b,c,...).

The left-fold operator foldl composes a binary operator R with initial value
I onto the arguments a, b, . . . (which may be zero in number), associating from the
left. For example, input :

foldl(R,I,a,b,c)

Output :

R(R(R(I,a),b),c)

The right-fold operator foldr is similar but associates operands from the
right. For example, input :

foldr(R,I,a,b,c)

Output :

R(a,R(b,R(c,I)))

5.43.39 Make a list with zeros : newList

newList(n) makes a list of n zeros.
Input :

newList(3)

Output :

[0,0,0]

372 CHAPTER 5. THE CAS FUNCTIONS

5.43.40 Make a list of integers: range

The range command takes one, two or three arguments.

• For one argument, the argument must be a non-negative integer n. range
will then return the list [0,1,...,n− 1]
Input:

range(5)

Output:

[0,1,2,3,4]

• For two arguments, the arguments must be two numbers a and b, with a ≤ b.
range will then return the list [a, a + 1,...] up to, but not including,
b.
Input:

range(4,10)

Output:

[4,5,6,7,8,9]

• For three arguments, the arguments must be three numbers a, b and a non-
zero p. range will then return the list [a, a+ p,a+ 2p,...] up to, but
not including, b. If p > 0, then a ≤ b; if p < 0, then a ≥ b.
Input:

range(4,13,2)

Output:

[4,6,8,10,12]

Input:

range(10,4,-1)

Output:

[10,9,8,7,6,5]

The range command can be used to create a list of values f(k), where k is an
integer satisfying a certain condition.

• You can list the values of an expression in a variable which goes over a range
defined by range.
Input:

5.43. LISTS AND VECTORS 373

[kˆ2 + k for k in range(10)]

Output:

[0,2,6,12,20,30,42,56,72,90]

• YOu can list the values of an expression in a variable which goes over a
range defined by range and which satisfies a given condition.
Input:

[k for k in range (4,10) if isprime(k)]

Output:

[5,7]

Input:

[kˆ2 + k for k in range (1,10,2) if isprime(k)]

Output:

[12,30,56]

5.43.41 Make a list with a function : makelist

makelist takes as argument a function f, the bounds a,b of an index variable
and a step p (by default 1 or -1 depending on the bounds order).
makelist makes the list [f(a),f(a+p)...f(a+k*p)] with k such that :
a < a+ k ∗ p ≤ b < a+ (k + 1) ∗ p or a > a+ k ∗ p ≥ b > a+ (k + 1) ∗ p.
Input :

makelist(x->x^2,3,5)

or

makelist(x->x^2,3,5,1)

or first define the function h(x) = x2 by h(x):=x^2 then input

makelist(h,3,5,1)

Output :

[9,16,25]

Input :

makelist(x->x^2,3,6,2)

Output :

[9,25]

Warning!!! purge x if x is not symbolic.

374 CHAPTER 5. THE CAS FUNCTIONS

5.43.42 Make a random vector or list : randvector

randvector takes as argument an integer n and optionally a second argument,
either an integer k or the quoted name of a random distribution law (see also
5.29.28).
randvector returns a vector of size n containing random integers uniformly
distributed between -99 and +99 (default), or between 0 and k − 1 or containing
random integers according to the law put between quotes.
Input :

randvector(3)

Output :

[-54,78,-29]

Input :

randvector(3,5)

or :

randvector(3,’rand(5)’)

Output :

[1,2,4]

Input :

randvector(3,’randnorm(0,1)’)

Output :

[1.39091705476,-0.136794772167,0.187312440336]

Input :

randvector(3,2..4)

Output :

[3.92450003885,3.50059241243,2.7322040787]

5.43.43 List of differences of consecutive terms : deltalist

deltalist takes as argument a list.
deltalist returns the list of the difference of all pairs of consecutive terms of
this list.
Input :

deltalist([5,8,1,9])

Output :

[3,-7,8]

5.44. FUNCTIONS FOR VECTORS 375

5.43.44 Make a matrix with a list : list2mat

list2mat takes as argument a list l and an integer p.
list2mat returns a matrix having p columns by cutting the list l in rows of
length p. The matrix is filled with 0s if the size of l is not a multiple of p.
Input :

list2mat([5,8,1,9,5,6],2)

Output :

[[5,8],[1,9],[5,6]]

Input :

list2mat([5,8,1,9],3)

Output :

[[5,8,1],[9,0,0]]

Remark
Xcas displays matrix with [and] and lists with [and] as delimiters (the vertical
bar of the brackets are thicker for matrices).

5.43.45 Make a list with a matrix : mat2list

mat2list takes as argument a matrix.
mat2list returns the list of the coefficients of this matrix.
Input :

mat2list([[5,8],[1,9]])

Output :

[5,8,1,9]

5.44 Functions for vectors

5.44.1 Norms of a vector : maxnorm l1norm l2norm norm

The instructions to compute the different norm of a vector are :

• maxnorm returns the l∞ norm of a vector, defined as the maximum of the
absolute values of its coordinates.
Input :

maxnorm([3,-4,2])

Output :

4

Indeed : x=3, y=-4, z=2 and 4=max(|x|,|y|,|z|).

376 CHAPTER 5. THE CAS FUNCTIONS

• l1norm returns the l1 norm of a vector defined as the sum of the absolute
values of its coordinates.
Input :

l1norm([3,-4,2])

Output :

9

Indeed : x=3, y=-4, z=2 and 9=|x|+|y|+|z|.

• norm or l2norm returns the l2 norm of a vector defined as the square root
of the sum of the squares of its coordinates.
Input :

norm([3,-4,2])

Output :

sqrt(29)

Indeed : x=3, y=-4, z=2 and 29 = |x|2 + |y|2 + |z|2.

5.44.2 Normalize a vector : normalize unitV

normalize or unitV takes as argument a vector.
normalize or unitV normalizes this vector for the l2 norm (the square root of
the sum of the squares of its coordinates).
Input :

normalize([3,4,5])

Output :

[3/(5*sqrt(2)),4/(5*sqrt(2)),5/(5*sqrt(2))]

Indeed : x=3, y=4, z=5 and 50 = |x|2 + |y|2 + |z|2.

5.44.3 Term by term sum of two lists : + .+

The infixed operator + or .+ and the prefixed operator ’+’ returns the term by
term sum of two lists.
If the two lists do not have the same size, the smaller list is completed with zeros.
Note the difference with sequences : if the infixed operator + or the prefixed oper-
ator ’+’ takes as arguments two sequences, it merges the sequences, hence return
the sum of all the terms of the two sequences.
Input :

[1,2,3]+[4,3,5]

or :

5.44. FUNCTIONS FOR VECTORS 377

[1,2,3] .+[4,3,5]

or :

’+’([1,2,3],[4,3,5])

or :

’+’([[1,2,3],[4,3,5]])

Output :

[5,5,8]

Input :

[1,2,3,4,5,6]+[4,3,5]

or :

’+’([1,2,3,4,5,6],[4,3,5])

or :

’+’([[1,2,3,4,5,6],[4,3,5]])

Output :

[5,5,8,4,5,6]

Warning !
When the operator + is prefixed, it should be quoted (’+’).

5.44.4 Term by term difference of two lists : - .-

The infixed operator - or .- and the prefixed operator ’-’ returns the term by
term difference of two lists.
If the two lists do not have the same size, the smaller list is completed with zeros.
Input :

[1,2,3]-[4,3,5]

or :

[1,2,3] .+ [4,3,5]

or :

’-’([1,2,3],[4,3,5])

or :

’-’([[1,2,3],[4,3,5]])

Output :

[-3,-1,-2]

Warning !
When the operator - is prefixed, it should be quoted (’-’).

378 CHAPTER 5. THE CAS FUNCTIONS

5.44.5 Term by term product of two lists : .*
The infixed operator .* returns the term by term product of two lists of the same
size.
Input :

[1,2,3] .* [4,3,5]

Output :

[4,6,15]

5.44.6 Term by term quotient of two lists : ./

The infixed operator ./ returns the term by term quotient of two lists of the same
size.
Input :

[1,2,3] ./ [4,3,5]

Output :

[1/4,2/3,3/5]

5.44.7 Scalar product : scalar_product * dotprod dot dotP
scalar_Product

dot or dotP or dotprod or scalar_product or scalarProduct or the
infixed operator * takes as argument two vectors.
dot or dotP or dotprod or scalar_product or scalarProduct or *
returns the scalar product of these two vectors.
Input :

dot([1,2,3],[4,3,5])

or :

scalar_product([1,2,3],[4,3,5])

or :

[1,2,3]*[4,3,5]

or :

’*’([1,2,3],[4,3,5])

Output :

25

Indeed 25=1*4+2*3+3*5.
Note that * may be used to find the product of two polynomials represented

as list of their coefficients, but to avoid ambiguity, the polynomial lists must be
poly1[...].

5.45. STATISTICS FUNCTIONS : MEAN,VARIANCE,STDDEV, STDDEVP,MEDIAN,QUANTILE,QUARTILES,BOXWHISKER379

5.44.8 Cross product : cross crossP crossproduct

cross or crossP or crossproduct takes as argument two vectors.
cross or crossP or crossproduct returns the cross product of these two
vectors.
Input :

cross([1,2,3],[4,3,2])

Output :

[-5,10,-5]

Indeed : −5 = 2 ∗ 2− 3 ∗ 3, 10 = −1 ∗ 2 + 4 ∗ 3, −5 = 1 ∗ 3− 2 ∗ 4.

5.45 Statistics functions : mean,variance,stddev,
stddevp,median,quantile,quartiles,boxwhisker

The functions described here may be used if the statistics series is contained in a
list. See also section 5.49.32 for matrices.

• mean computes the arithmetic mean of a list
Input :

mean([3,4,2])

Output :

3

Input :

mean([1,0,1])

Output

2/3

• stddev computes the standard deviation of a population, if the argument is
the population.
Input :

stddev([3,4,2])

Output :

sqrt(2/3)

• stddevp computes an unbiased estimate of the standard deviation of the
population, if the argument is a sample. The following relation holds:

380 CHAPTER 5. THE CAS FUNCTIONS

stddevp(l)^2=size(l)*stddev(l)^2/(size(l)-1).

Input :

stddevp([3,4,2])

Output :

1

• variance computes the variance of a list, that is the square of stddevp
Input :

variance([3,4,2])

Output :

2/3

• median computes the median of a list.
Input :

median([0,1,3,4,2,5,6])

Output :

3.0

• quantile computes the deciles of a list given as first argument, where the
decile is the second argument.
Input :

quantile([0,1,3,4,2,5,6],0.25)

Output the first quartile :

[1.0]

Input :

quantile([0,1,3,4,2,5,6],0.5)

Output the median :

[3.0]

Input :

quantile([0,1,3,4,2,5,6],0.75)

5.45. STATISTICS FUNCTIONS : MEAN,VARIANCE,STDDEV, STDDEVP,MEDIAN,QUANTILE,QUARTILES,BOXWHISKER381

Output the third quartile :

[4.0]

• quartiles computes the minimum, the first quartile, the median, the third
quartile and the maximum of a list.
Input :

quartiles([0,1,3,4,2,5,6])

Output :

[[0.0],[1.0],[3.0],[4.0],[6.0]]

• boxwhisker draws the whisker box of a statistics series stored in a list.
Input :

boxwhisker([0,1,3,4,2,5,6])

Output

the graph of the whisker box of this statistic
list

Example
Define the list A by:

A:=[0,1,2,3,4,5,6,7,8,9,10,11]

Outputs :

1. 11/2 for mean(A)

2. sqrt(143/12) for stddev(A)

3. 0 for min(A)

4. [1.0] for quantile(A,0.1)

5. [2.0] for quantile(A,0.25)

6. [5.0] for median(A) or for quantile(A,0.5)

7. [8.0] for quantile(A,0.75)

8. [9.0] for quantile(A,0.9)

9. 11 for max(A)

10. [[0.0],[2.0],[5.0],[8.0],[11.0]] for quartiles(A)

382 CHAPTER 5. THE CAS FUNCTIONS

5.46 Table with strings as indexes : table

A table is an associative container (or map), it is used to store information asso-
ciated to indexes which are much more general than integers, like strings or se-
quences. It may be used for example to store a table of phone numbers indexed by
names.
In Xcas, the indexes in a table may be any kind of Xcas objects. Access is done
by a binary search algorithm, where the sorting function first sorts by type then
uses an order for each type (e.g. < for numeric types, lexicographic order for
strings, etc.)
table takes as argument a list or a sequence of equalities index_name=element_value.
table returns this table.
Input :

T:=table(3=-10,"a"=10,"b"=20,"c"=30,"d"=40)

Input :

T["b"]

Output :

20

Input :

T[3]

Output :

-10

Remark
If you assign T[n]:= ... where T is a variable name and n an integer

• if the variable name was assigned to a list or a sequence, then the n-th ele-
ment of T is modified,

• if the variable name was not assigned, a table T is created with one entry
(corresponding to the index n). Note that after the assignation T is not a list,
despite the fact that n was an integer.

5.47 Usual matrix

A matrix is represented by a list of lists, all having the same size. In the Xcas
answers, the matrix delimiters are [] (bold brackets). For example, [1,2,3] is the
matrix [[1,2,3]] with only one row, unlike [1,2,3] (normal brackets) which is the
list [1,2,3].
In this document, the input notation ([[1,2,3]]) will be used for input and output.

5.47. USUAL MATRIX 383

5.47.1 Identity matrix : idn identity

idn takes as argument an integer n or a square matrix.
idn returns the identity matrix of size n or of the same size as the matrix argument.
Input :

idn(2)

Output :

[[1,0],[0,1]]

Input :

idn(3)

Output :

[[1,0,0],[0,1,0],[0,0,1]]

5.47.2 Zero matrix : newMat matrix

newMat(n,p) or matrix(n,p) takes as argument two integers.
newMat(n,p) returns the zero matrix with n rows and p columns.
Input :

newMat(4,3)

Output :

[[0,0,0],[0,0,0],[0,0,0],[0,0,0]]

5.47.3 Random matrix : ranm randMat randmatrix

ranm or randMat or randmatrix takes as argument an integer n or two inte-
gers n,m and optionally a third argument, either an integer k or the quoted name
of a random distribution law (see also 5.29.28 and 5.43.42.
ranm returns a vector of size n or a matrix of size n×m containing random inte-
gers uniformly distributed between -99 and +99 (default), or between 0 and k − 1
or a matrix of size n × m containing random integers according to the law put
between quotes.
Input :

ranm(3)

Output :

[-54,78,-29]

Input :

ranm(2,4)

Output :

[[27,-29,37,-66],[-11,76,65,-33]]

384 CHAPTER 5. THE CAS FUNCTIONS

Input :

ranm(2,4,3)

or :

ranm(2,4,’rand(3)’)

Output :

[[0,1,1,0],[0,1,2,0]]

Input :

ranm(2,4,’randnorm(0,1)’)

Output :

[[1.83785427742,0.793007112053,-0.978388964902,-1.88602023857],
[-1.50900874199,-0.241173369698,0.311373795585,-0.532752431454]]

Input :

ranm(2,4,2..4)

Output :

[[2.00549363438,3.03381264955,2.06539073586,2.04844321217],
[3.88383254968,3.28664474655,3.76909781061,2.39113253355]]

5.47.4 Diagonal of a matrix or matrix of a diagonal : BlockDiagonal
diag

diag or BlockDiagonal takes as argument a matrix A or a list l.
diag returns the diagonal ofA or the diagonal matrix with the list l on the diagonal
(and 0 elsewhere).
Input :

diag([[1,2],[3,4]])

Output :

[1,4]

Input :

diag([1,4])

Output :

[[1,0],[0,4]]

5.48. CREATING MATRICES AND EXTRACTING ELEMENTS 385

5.47.5 Jordan block : JordanBlock

JordanBlock takes as argument an expression a and an integer n.
JordanBlock returns a square matrix of size n with a on the principal diagonal,
1 above this diagonal and 0 elsewhere.
Input :

JordanBlock(7,3)

Output :

[[7,1,0],[0,7,1],[0,0,7]]

5.47.6 Hilbert matrix : hilbert

hilbert takes as argument an integer n.
hilbert returns the Hilbert matrix.
A Hilbert matrix is a square matrix of size n whose elements aj,k are :

aj,k =
1

j + k + 1
, 0 ≤ j, 0 ≤ k

Input :

hilbert(4)

Output :

[[1,1/2,1/3,1/4],[1/2,1/3,1/4,1/5],[1/3,1/4,1/5,1/6],
[1/4,1/5,1/6,1/7]]

5.47.7 Vandermonde matrix : vandermonde

vandermonde takes as argument a vector whose components are denoted by xj
for j = 0..n− 1.
vandermonde returns the corresponding Vandermonde matrix (the k-th row of
the matrix is the vector whose components are xki for i = 0..n−1 and k = 0..n−1).
Warning !
The indices of the rows and columns begin at 0 with Xcas.
Input :

vandermonde([a,2,3])

Output (if a is symbolic else purge(a)) :

[[1,1,1],[a,2,3],[a*a,4,9]]

5.48 Creating matrices and extracting elements

5.48.1 Creating matrices and modifying elements by assignment

You can give a matrix a name with assignment.
Input:

386 CHAPTER 5. THE CAS FUNCTIONS

A := [[1,2,6], [3,4,8], [1,0,1]]

The rows are then accessed with indices.
Input:

A[0]

Output:

[1,2,6]

Individual elements are simply elements of the rows.
Input:

A[0][1]

Output:

2

This can be abbreviated by listing the row and column separated by a comma.
Input:

A[0,1]

Output:

2

The indexing begins with 0; if you want the indexing to begin with 1 by enclosing
them in double brackets.
Input:

A[[1,2]]

Output:

2

You can use a range of indices to get submatrices.
Input:

A[0..2,1]

Output:

[2,4,0]

Input:

A[0..2,1..2]

Output:

[[2,6],[4,8],[0,1]]

Input:

5.48. CREATING MATRICES AND EXTRACTING ELEMENTS 387

A[0..1,1..2]

Output:

[[2,6],[4,8]]

An index of -1 returns the last element of a list, an index of -2 the second to last
element, etc.
Input:

A[-1]

Output:

[1,0,1]

Input:

A[1,-1]

Output:

8

Individual elements of a matrix can be changed by assignment.
Input:

A[0,1] := 5

then:

A

Output:

[[1,5,6],[3,4,8],[1,0,1]]

5.48.2 Changing a matrix by multi-assigment

You can use assignment to change several entries of a matrix at one. For example,
to create a diagonal matrix with a diagonal of [1,2,3]:
Input:

M := matrix(3,3)

Output:

[[0,0,0],[0,0,0],[0,0,0]]

Input:

M[0..2,0..2] := [1,2,3]

Output:

matrix[[1,0,0],[0,2,0],[0,0,3]]

To make the last column [4,5,6]:
Input:

M[0..2,2] := [4,5,6]

Output:

matrix[[1,0,4],[0,2,5],[0,0,6]]

388 CHAPTER 5. THE CAS FUNCTIONS

5.48.3 Build a matrix with a function : makemat

makemat takes three arguments :

• a function of two variables j and k which should return the value of aj,k, the
element of row index j and column index k of the matrix to be built.

• two integers n and p.

makemat returns the matrix A = (aj,k) (j = 0..n − 1 and k = 0..p − 1) of
dimension n× p.
Input :

makemat((j,k)->j+k,4,3)

or first define the h function:

h(j,k):=j+k

then, input:

makemat(h,4,3)

Output :

[[0,1,2],[1,2,3],[2,3,4],[3,4,5]]

Note that the indices are counted starting from 0.

5.48.4 Define a matrix : matrix

matrix takes three arguments :

• two integers n and p.

• a function of two variables j and k which should return the value of aj,k, the
element of row index j and column index k of the matrix to be build.

matrix returns the matrix A = (aj,k) (j = 1..n and k = 1..p) of dimension
n× p.
Input :

matrix(4,3,(j,k)->j+k)

or first define the h function:

h(j,k):=j+k

then, input:

matrix(4,3,h)

Output :

[[2,3,4],[3,4,5],[4,5,6],[5,6,7]]

Note the argument order and the fact that the indices are counted starting from 1.
If the last argument is not provided, it defaults to 0.

5.48. CREATING MATRICES AND EXTRACTING ELEMENTS 389

5.48.5 Modify an element or row of a matrix assigned to a variable:
::=, =<

For named matrices, the elements can be changed by assignment. Recall the el-
ements are indexed starting at 0, using double brackets allows you to use indices
starting at 1.
Input:

A := [[1,2,3],[4,5,6]]

Output:

[[1,2,3],[4,5,6]]

Input:

A[0,2] := 7

then:

A

Output:

[[1,2,7],[4,5,6]]

Input:

A[[1,2]] := 9

then:

A

Output:

[[1,9,7],[4,5,6]]

When an element of a matrix is changed with the := assignment, a new copy
of the matrix is created with the modified element. Particularly for large matrices,
it is more efficient to use the =< assignment, which will change the element of the
matrix without making a copy. For example, defining A as
Input:

A := [[4,5],[2,6]]

the following commands will all return the matrix A with the element in the second
row, first column, changed to 3.
Input:

A[1,0] := 3

or:

A[1,0] =< 3

or:

390 CHAPTER 5. THE CAS FUNCTIONS

A[[2,1]] := 3

or:

A[[2,1]] =< 3

then:

A

Output:

[[4,5],[3,6]]

Larger parts of a matrix can be changed simultaneously. Letting A := [[4,5],[2,6]]
again, the following commands will change the second row to [3,7]
Input:

A[1] := [3,7]

or:

A[1] =< [3,7]

or:

A[[2]] := [3,7]

or:

A[[2]] =< [3,7]

The =< assignment must be used carefully, since it not only modifies a matrix
A, it modifies all objects pointing to the matrix. In a program, initialization should
contain a line like A := copy(B), so modifications done on A don’t affect B,
and modifications done on B don’t affect A. For example,
Input:

B := [[4,5],[2,6]]

then:

A := B

or
Input:

A =< B

creates two matrices equal to [[4,5],[2,6]]. Then
Input:

A[1] =< [3,7]

or:

B[1] =< [3,7]

5.49. ARITHMETIC AND MATRICES 391

will transform both A and B to [[4,5],[3,7]]. On the other hand, creating A
and B with
Input:

B := [[4,5],[2,6]]
A := copy(B)

will again create two matrices equal to [[4,5],[2,6]]. But
Input:

A[1] =< [3,7]

will change A to [[4,5],[3,7]], but B will still be [[4,5],[2,6]].

5.49 Arithmetic and matrices

5.49.1 Evaluate a matrix : evalm

evalm is used in Maple to evaluate a matrix. In Xcas, matrices are evaluated by
default, the command evalm is only available for compatibility, it is equivalent to
eval.

5.49.2 Addition and subtraction of two matrices : + - .+ .-

The infixed operator + or .+ (resp. - or .-) are used for the addition (resp. sub-
traction) of two matrices.
Input :

[[1,2],[3,4]] + [[5,6],[7,8]]

Output :

[[6,8],[10,12]]

Input :

[[1,2],[3,4]] - [[5,6],[7,8]]

Output :

[[-4,-4],[-4,-4]]

Remark
+ can be used as a prefixed operator, in that case + must be quoted (’+’).
Input :

’+’([[1,2],[3,4]],[[5,6],[7,8]],[[2,2],[3,3]])

Output :

[[8,10],[13,15]]

392 CHAPTER 5. THE CAS FUNCTIONS

5.49.3 Multiplication of two matrices : * &*

The infixed operator * (or &*) is used for the multiplication of two matrices.
Input :

[[1,2],[3,4]] * [[5,6],[7,8]]

or :

[[1,2],[3,4]] &* [[5,6],[7,8]]

Output :

[[19,22],[43,50]]

5.49.4 Addition of elements of a column of a matrix : sum

sum takes as argument a matrix A.
sum returns the list whose elements are the sum of the elements of each column of
the matrix A.
Input :

sum([[1,2],[3,4]])

Output :

[4,6]

5.49.5 Cumulated sum of elements of each column of a matrix : cumSum

cumSum takes as argument a matrix A.
cumSum returns the matrix whose columns are the cumulated sum of the elements
of the corresponding column of the matrix A.
Input :

cumSum([[1,2],[3,4],[5,6]])

Output :

[[1,2],[4,6],[9,12]]

since the cumulated sums are : 1, 1+3=4, 1+3+5=9 and 2, 2+4=6, 2+4+6=12.

5.49.6 Multiplication of elements of each column of a matrix : product

product takes as argument a matrix A.
product returns the list whose elements are the product of the elements of each
column of the matrix A (see also 5.43.35 and 5.49.8).
Input :

product([[1,2],[3,4]])

Output :

[3,8]

5.49. ARITHMETIC AND MATRICES 393

5.49.7 Power of a matrix : ˆ &ˆ

The infixed operator ^ (or &^) is used to raise a matrix to an integral power.
Input :

[[1,2],[3,4]] ^ 5

or :

[[1,2],[3,4]] &^ 5

Output :

[[1069,1558],[2337,3406]]

5.49.8 Hadamard product : hadamard, product

hadamard (or product) takes as arguments two matrices A and B of the same
size.
hadamard (or product) returns the matrix where each term is the term by term
product of A and B.
Input :

hadamard([[1, 2],[3,4]],[[5, 6],[7, 8]])

Output :

[[5,12],[21,32]]

See also 5.43.35 and 5.49.6 for product.

5.49.9 Hadamard product (infixed version): .*

.* takes as arguments two matrices or two lists A and B of the same size.

.* is an infixed operator that returns the matrix or the list where each term is the
term by term product of the corresponding terms of A and B.
Input :

[[1, 2],[3,4]] .* [[5, 6],[7, 8]]

Output :

[[5,12],[21,32]]

Input :

[1,2,3,4] .* [5,6,7,8]

Output :

[5,12,21,32]

394 CHAPTER 5. THE CAS FUNCTIONS

5.49.10 Hadamard division (infixed version): ./

./ takes as arguments two matrices or two lists A and B of the same size.

./ is an infixed operator that returns the matrix or the list where each term is the
term by term division of the corresponding terms of A and B.
Input :

[[1, 2],[3,4]] ./ [[5, 6],[7, 8]]

Output :

[[1/5,1/3],[3/7,1/2]]

5.49.11 Hadamard power (infixed version): .ˆ

.^ takes as arguments a matrix or a list A and a real b.

.^ is an infixed operator that returns the matrix or the list where each term is the
corresponding term of A raised to the power b.
Input :

[[1, 2],[3,4]] .^ 2

Output :

[[1,4],[9,16]]

5.49.12 Extracting element(s) of a matrix : [] at

Recall that a matrix is a list of lists with the same size.
Input :

A:=[[3,4,5],[1,2,6]]

Output :

[[3,4,5],[1,2,6]]

The prefixed function at or the index notation [...] is used to access to an
element or a row or a column of a matrix:

• To extract an element, put the matrix and then, between square brackets put
its row index, a comma, and its column index. In Xcas mode the first index
is 0, in other modes the first index is 1.
Input :

[[3,4,5],[1,2,6]][0,1]

or :

A[0,1]

or :

A[0][1]

5.49. ARITHMETIC AND MATRICES 395

or :

at(A,[0,1])

Output :

4

• To extract a row of the matrix A, put the matrix and then, between square
brackets put the row index, input :

[[3,4,5],[1,2,6]][0]

or :

A[0]

or :

at(A,0)

Output :

[3,4,2]

• To extract a part of a row, put two arguments between the square brackets :
the row index and an interval to designate the selected columns.
Input :

A[1,0..2]

Output :

[1,2,6]

Input :

A[1,1..2]

Output :

[2,6]

• To extract a column of the matrix A, first transpose A (transpose(A))
then extract the row like above.
Input :

tran(A)[1]

or :

396 CHAPTER 5. THE CAS FUNCTIONS

at(tran(A),1)

Output :

[4,2]

• To extract a part of a column of the matrix A as a list, put two arguments
between the square brackets : an index interval to designate the selected
rows and the column index.
Input :

A[0..0,1]

Output :

[4]

This may be used to extract a full column, by specifying all the rows as an
index interval.
Input :

A[0..1,1]

Output :

[4,2]

• To extract a sub-matrix of a matrix, put between the square brackets two
intervals : one interval for the selected rows and one interval for the selected
columns.
To define the matrix A, input :

A:=[[3,4,5],[1,2,6]]

Input :

A[0..1,1..2]

Output :

[[4,5],[2,6]]

Input :

A[0..1,1..1]

Output :

[[4],[2]]

5.49. ARITHMETIC AND MATRICES 397

Remark If the second interval is omitted, the sub-matrix is made with the
consecutive rows given by the first interval.
Input :

A[1..1]

Output :

[[1,2,6]]

You may also assign an element of a matrix using index notation, if you assign
with := a new copy of the matrix is created and the element is modified, if you
assign with =<, the matrix is modified in place.

5.49.13 Modify an element or a row of a matrix : subsop

subsop modifies an element or a row of a matrix. It is used mainly for Maple
and MuPAD compatibility. Unlike := or =<, it does not require the matrix to be
stored in a variable.
subsop takes two or three arguments, these arguments are permuted in Maple
mode.

1. Modify an element

• In Xcas mode, the first index is 0
subsop has two (resp. three) arguments: a matrix A and an equality
[r,c]=v (resp. a matrix A, a list of indexes [r,c], a value v).
subsop replaces the element A[r,c] by v.
Input in Xcas mode :

subsop([[4,5],[2,6]],[1,0]=3)

or :

subsop([[4,5],[2,6]],[1,0],3)

Output :

[[4,5],[3,6]]

Remark
If the matrix is stored in a variable, for example A:=[[4,5],[2,6]],
it is easier to input A[1,0]:=3 which modifies A into the matrix
[[4,5],[3,6]].

• In Mupad, TI mode, the first index is 1
subsop has two (resp. three) arguments: a matrix A and an equality
[r,c]=v (resp. a matrix A, a list of index [r,c], a value v).
subsop replaces the element A[r,c] by v.
Input in Mupad, TI mode :

subsop([[4,5],[2,6]],[2,1]=3)

or :

398 CHAPTER 5. THE CAS FUNCTIONS

subsop([[4,5],[2,6]],[2,1],3)

Output :

[[4,5],[3,6]]

Remark
If the matrix is stored in a variable, for example A:=[[4,5],[2,6]],
it is easier to input A[2,1]:=3 which modifies A into the matrix
[[4,5],[3,6]].
• In Maple mode, the arguments are permuted and the first index is 1
subsop has two arguments: an equality [r,c]=v and a matrix A.
subsop replaces the element A[r,c] by v.
Input in Maple mode

subsop([2,1]=3,[[4,5],[2,6]])

Output :

[[4,5],[3,6]]

Remark
If the matrix is stored in a variable, for example A:=[[4,5],[2,6]],
it is easier to input A[2,1]:=3 which modifies A into the matrix
[[4,5],[3,6]].

2. Modify a row

• in Xcas mode, the first index is 0
subsop takes two arguments : a matrix and an equality (the index of
the row to be modified, the = sign and the new row value).
Input in Xcas mode :

subsop([[4,5],[2,6]],1=[3,3])

Output :

[[4,5],[3,3]]

Remark
If the matrix is stored in a variable, for example A:=[[4,5],[2,6]],
is is easier to input A[1]:=[3,3] which modifies A into the matrix
[[4,5],[3,3]].
• In Mupad, TI mode, the first index is 1
subsop takes two arguments : a matrix and an equality (the index of
the row to be modified, the = sign and the new row value).
Input in Mupad, TI mode :

subsop([[4,5],[2,6]],2=[3,3])

Output :

[[4,5],[3,3]]

Remark
If the matrix is stored in a variable, for example A:=[[4,5],[2,6]],
it is easier to input A[2]:=[3,3] which modifies A into the matrix
[[4,5],[3,3]].

5.49. ARITHMETIC AND MATRICES 399

• in Maple mode, the arguments are permuted and the first index is 1 :
subsop takes two arguments : an equality (the index of the row to be
modified, the = sign and the new row value) and a matrix.
Input in Maple mode :

subsop(2=[3,3],[[4,5],[2,6]])

Output :

[[4,5],[3,3]]

Remark
If the matrix is stored in a variable, for example A:=[[4,5],[2,6]],
it is easier to input A[2]:=[3,3] which modifies A into the matrix
[[4,5],[3,3]].

Remark
Note also that subsop with a ’n=NULL’ argument deletes row number n. In
Xcas mode input :

subsop([[4,5],[2,6]],’1=NULL’)

Output :

[[4,5]]

5.49.14 Extract rows or columns of a matrix (Maple compatibility) :
row col

row (resp. col) extracts one or several rows (resp. columns) of a matrix.
row (resp. col) takes 2 arguments : a matrix A, and an integer n or an interval
n1..n2.
row (resp. col) returns the row (resp. column) of index n of A, or the sequence
of rows (resp. columns) of index from n1 to n2 of A.
Input :

row([[1,2,3],[4,5,6],[7,8,9]],1)

Output :

[4,5,6]

Input :

row([[1,2,3],[4,5,6],[7,8,9]],0..1)

Output :

([1,2,3],[4,5,6])

Input :

col([[1,2,3],[4,5,6],[7,8,9]],1)

Output :

400 CHAPTER 5. THE CAS FUNCTIONS

[2,5,8]

Input :

col([[1,2,3],[4,5,6],[7,8,9]],0..1)

Output :

([1,4,7,[2,5,8])

5.49.15 Remove rows or columns of a matrix : delrows delcols

delrows (resp. delcols) removes one or several rows (resp. columns) of a
matrix.
delrows (resp. delcols) takes 2 arguments : a matrix A, and an interval
n1..n2.
delrows (resp. delcols) returns the matrix where the rows (resp. columns) of
index from n1 to n2 of A are removed.
Input :

delrows([[1,2,3],[4,5,6],[7,8,9]],1..1)

Output :

[[1,2,3],[7,8,9]]

Input :

delrows([[1,2,3],[4,5,6],[7,8,9]],0..1)

Output :

[[7,8,9]]

Input :

delcols([[1,2,3],[4,5,6],[7,8,9]],1..1)

Output :

[[1,3],[4,6],[7,9]]

Input :

delcols([[1,2,3],[4,5,6],[7,8,9]],0..1)

Output :

[[3],[6],[9]]

5.49. ARITHMETIC AND MATRICES 401

5.49.16 Extract a sub-matrix of a matrix (TI compatibility) : subMat

subMat takes 5 arguments : a matrix A, and 4 integers nl1, nc1, nl2, nc2, where
nl1 is the index of the first row, nc1 is the index of the first column, nl2 is the
index of the last row and nc2 is the index of the last column.
subMat(A,nl1,nc1,nl2,nc2) extracts the sub-matrix of the matrix A with
first element A[nl1,nc1] and last element A[nl2,nc2].
Define the matrix A :

A:=[[3,4,5],[1,2,6]]

Input :

subMat(A,0,1,1,2)

Output :

[[4,5],[2,6]]

Input :

subMat(A,0,1,1,1]

Output :

[[4],[2]]

By default nl1 = 0, nc1 = 0, nl2=nrows(A)-1 and nc2=ncols(A)-1
Input :

subMat(A,1)

or :

subMat(A,1,0)

or :

subMat(A,1,0,1)

or :

subMat(A,1,0,1,2)

Output :

[[1,2,6]]

402 CHAPTER 5. THE CAS FUNCTIONS

5.49.17 Resize a matrix or vector:REDIM, redim

The REDIM (or redim) command takes two arguments. They are either a matrix
and a list of two integers, or a vector and an integer.
REDIM returns the matrix or vector resized according to the second argument;
removing elements to make it shorter, if necessary, or adding 0s to make it larger.
Input:

REDIM([[4,1,-2],[1,2,-1],[2,1,0]],[5,4])

Output:

[[4,1,-2,0],[1,2,-1,0],[2,1,0,0],[0,0,0,0],[0,0,0,0]]

Input:

REDIM([[4,1,-2],[1,2,-1],[2,1,0]],[2,1])

Output:

[[4],[1]]

Input:

REDIM([4,1,-2,1,2,-1],10)

Output:

[4,1,-2,1,2,-1,0,0,0,0]

Input:

REDIM([4,1,-2,1,2,-1],3)

Output:

[4,1,-2]

5.49.18 Replacing part of a matrix or vector: REPLACE, replace

The REPLACE (or replace) command takes three arguments; either a matrix,
a list of two indices, and another matrix, or a vector, a single index, and another
vector.
REPLACE returns the first matrix (or vector) with the second matrix (or vector)
placed at the location given by the indices, replacing the elements previously there.
The second matrix (or vector) will be shrunk, if necessary, so that it fits in the first
matrix (or vector).
Input:

REPLACE([[1,2,3],[4,5,6]],[0,1],[[5,6],[7,8]])

Output:

[[1,5,6],[4,7,8]]

Input:

5.49. ARITHMETIC AND MATRICES 403

REPLACE([[1,2,3],[4,5,6]],[1,2],[[7,8],[9,0]])

Output:

[[1,2,3],[4,5,7]]

Input:

REPLACE([4,1,-2,1,2,-1],2,[10,11])

Output:

[4,1,10,11,2,-1]

Input:

REPLACE([4,1,-2,1,2,-1],1,[10,11,13])

Output:

[4,10,11,13,2,-1]

5.49.19 Add a row to another row : rowAdd

rowAdd takes three arguments : a matrix A and two integers n1 and n2.
rowAdd returns the matrix obtained by replacing in A, the row of index n2 by the
sum of the rows of index n1 and n2.
Input :

rowAdd([[1,2],[3,4]],0,1)

Output :

[[1,2],[4,6]]

5.49.20 Multiply a row by an expression : mRow, scale, SCALE

mRow takes three arguments : an expression, a matrix A and an integer n.
mRow returns the matrix obtained by replacing in A, the row of index n by the
product of the row of index n by the expression.
Input :

mRow(12,[[1,2],[3,4]],1)

Output :

[[1,2],[36,48]]

The scale (or SCALE) command is the same as mRow except that it takes the
arguments in a different order; the matrix comes first, then the expression, then the
integer.
Input:

scale([[1,2],[3,4]],12,1)

Output:

[[1,2],[36,48]]

404 CHAPTER 5. THE CAS FUNCTIONS

5.49.21 Add k times a row to an another row : mRowAdd, scaleadd,
SCALEADD

mRowAdd takes four arguments : a real k, a matrix A and two integers n1 and n2.
mRowAdd returns the matrix obtained by replacing in A, the row of index n2 by
the sum of the row of index n2 and k times the row of index n1.
Input :

mRowAdd(1.1,[[5,7],[3,4],[1,2]],1,2)

Output :

[[5,7],[3,4],[4.3,6.4]]

The scaleadd (or SCALEADD) command is the same as mRowAdd, except
that it takes the arguments in a different order; the matrix comes first, then the real
number, then the two integers.
Input:

scaleadd([[5,7],[3,4],[1,2]],1.1,1,2)

Output:

[[5,7],[3,4],[4.3,6.4]]

5.49.22 Exchange two rows : rowSwap, rowswap, swaprow

rowSwap (or rowswap or swaprow) takes three arguments : a matrix A and
two integers n1 and n2.
rowSwap returns the matrix obtained by exchanging in A, the row of index n1
with the row of index n2.
Input :

rowSwap([[1,2],[3,4]],0,1)

Output :

[[3,4],[1,2]]

5.49.23 Exchange two columns : colSwap, colswap, swapcol

colSwap (or colswap or swapcol) takes three arguments : a matrix A and
two integers n1 and n2.
colSwap returns the matrix obtained by exchanging in A the column of index n1
with the column of index n2.
Input :

colSwap([[1,2],[3,4]],0,1)

Output :

[[2,1],[4,3]]

5.49. ARITHMETIC AND MATRICES 405

5.49.24 Make a matrix with a list of matrices : blockmatrix

blockmatrix takes as arguments two integers n,m and a list of size n ∗m of
matrices of the same dimension p × q (or more generally such that the m first
matrices have the same number of rows and c columns, the m next rows have the
same number of rows and c columns, and so on ...). In both cases, we have n blocks
of c columns.
blockmatrix returns a matrix having c columns by putting these n blocks one
under another (vertical gluing). If the matrix arguments have the same dimension
p× q, the answer is a matrix of dimension p ∗ n× q ∗m.
Input :

blockmatrix(2,3,[idn(2),idn(2),idn(2),
idn(2),idn(2),idn(2)])

Output :

[[1,0,1,0,1,0],[0,1,0,1,0,1],
[1,0,1,0,1,0],[0,1,0,1,0,1]]

Input :

blockmatrix(3,2,[idn(2),idn(2),
idn(2),idn(2),idn(2),idn(2)])

Output :

[[1,0,1,0],[0,1,0,1],
[1,0,1,0],[0,1,0,1],[1,0,1,0],[0,1,0,1]]

Input :

blockmatrix(2,2,[idn(2),newMat(2,3),
newMat(3,2),idn(3)])

Output :

[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],
[0,0,0,1,0],[0,0,0,0,1]]

Input :

blockmatrix(3,2,[idn(1),newMat(1,4),
newMat(2,3),idn(2),newMat(1,2),[[1,1,1]]])

Output :

[[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,1,1]]

Input :

A:=[[1,1],[1,1]];B:=[[1],[1]]

then :

blockmatrix(2,3,[2*A,3*A,4*A,5*B,newMat(2,4),6*B])

Output :

[[2,2,3,3,4,4],[2,2,3,3,4,4],
[5,0,0,0,0,6],[5,0,0,0,0,6]]

406 CHAPTER 5. THE CAS FUNCTIONS

5.49.25 Make a matrix from two matrices : semi_augment

semi_augment concat two matrices with the same number of columns.
Input :

semi_augment([[3,4],[2,1],[0,1]],[[1,2],[4,5]])

Output :

[[3,4],[2,1],[0,1],[1,2],[4,5]]

Input :

semi_augment([[3,4,2]],[[1,2,4]])

Output :

[[3,4,2],[1,2,4]]

Note the difference with concat.
Input :

concat([[3,4,2]],[[1,2,4]]

Output :

[[3,4,2,1,2,4]]

Indeed, when the two matrices A and B have the same dimension, concat makes
a matrix with the same number of rows as A and B by gluing them side by side.
Input :

concat([[3,4],[2,1],[0,1]],[[1,2],[4,5]]

Output :

[[3,4],[2,1],[0,1],[1,2],[4,5]]

but input :

concat([[3,4],[2,1]],[[1,2],[4,5]]

Output :

[[3,4,1,2],[2,1,4,5]]

5.49.26 Make a matrix from two matrices : augment concat

augment or concat concats two matrices A and B having the same number of
rows, or having the same number of columns. In the first case, it returns a matrix
having the same number of rows as A and B by horizontal gluing, in the second
case it returns a matrix having the same number of columns by vertical gluing.
Input :

augment([[3,4,5],[2,1,0]],[[1,2],[4,5]])

Output :

5.49. ARITHMETIC AND MATRICES 407

[[3,4,5,1,2],[2,1,0,4,5]]

Input :

augment([[3,4],[2,1],[0,1]],[[1,2],[4,5]])

Output :

[[3,4],[2,1],[0,1],[1,2],[4,5]]

Input :

augment([[3,4,2]],[[1,2,4]]

Output :

[[3,4,2,1,2,4]]

Note that if A and B have the same dimension, augment makes a matrix with the
same number of rows as A and B by horizontal gluing, in that case you must use
semi_augment for vertical gluing.
Input :

augment([[3,4],[2,1]],[[1,2],[4,5]])

Output :

[[3,4,1,2],[2,1,4,5]]]

5.49.27 Append a column to a matrix : border

border takes as argument a matrix A of dimension p ∗ q and a list b of size p (i.e.
nrows(A)=size(b)).
border returns the matrix obtained by appending tran(b) as last column to the
matrix A, therefore:

border(A,b)=tran([op(tran(A)),b])=tran(append(tran(A),b))

Input :

border([[1,2,4],[3,4,5]],[6,7])

Output :

[[1,2,4,6],[3,4,5,7]]

Input :

border([[1,2,3,4],[4,5,6,8],[7,8,9,10]],[1,3,5])

Output :

[[1,2,3,4,1],[4,5,6,8,3],[7,8,9,10,5]]

408 CHAPTER 5. THE CAS FUNCTIONS

5.49.28 Count the elements of a matrix verifying a property : count

count takes as arguments : a real function f and a real matrix A of dimension
p*q (resp. a list l of size n).
count returns f(A[0,0])+..f(A[p-1,q-1]) (resp. f(l[0])+..f(l[n-1]))
Hence, if f is a boolean function, count returns the number of elements of the
matrix A (resp. the list l) verifying the property f.
Input :

count(x->x,[[2,12],[45,3],[7,78]])

Output :

147

indeed: 2+12+45+3+7+78=147.
Input :

count(x->x<10,[[2,12],[45,3],[7,78]])

Output :

3

5.49.29 Count the elements equal to a given value : count_eq

count_eq takes as arguments: a real and a real list or a real matrix.
count_eq returns the number of elements of the list or matrix equal to the first
argument.
Input :

count_eq(12,[[2,12,45],[3,7,78]])

Output :

1

5.49.30 Count the elements smaller than a given value : count_inf

count_inf takes as arguments: a real and a real list or a real matrix.
count_inf returns the number of elements of the list or matrix which are strictly
less than the first argument.
Input :

count_inf(12,[2,12,45,3,7,78])

Output :

3

5.49. ARITHMETIC AND MATRICES 409

5.49.31 Count the elements greater than a given value : count_sup

count_sup takes as arguments: a real and a real list or a real matrix.
count_sup returns the number of elements of the list or matrix which are strictly
greater to the first argument.
Input :

count_sup(12,[[2,12,45],[3,7,78]])

Output :

2

5.49.32 Statistics functions acting on column matrices : mean, stddev,
variance, median, quantile, quartiles, boxwhisker

The following functions work on matrices, acting column by column:

• mean computes the arithmetic means of the statistical series stored in the
columns of a matrix.
Input :

mean([[3,4,2],[1,2,6]])

Output is the vector of the means of each column :

[2,3,4]

Input :

mean([[1,0,0],[0,1,0],[0,0,1]])

Output

[1/3,1/3,1/3]

• stddev computes the standard deviations of the population statistical series
stored in the columns of a matrix.
Input :

stddev([[3,4,2],[1,2,6]])

Output is the vector of the standard deviations of each column :

[1,1,2]

• variance computes the variances of the statistical series stored in the
columns of a matrix.
Input :

variance([[3,4,2],[1,2,6]])

410 CHAPTER 5. THE CAS FUNCTIONS

Output is the vector of the variance of each column :

[1,1,4]

• median computes the medians of the statistical series stored in the columns
of a matrix.
Input :

median([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0],
[3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]])

Output is the vector of the median of each column :

[3,3,4,4,4,3,4]

• quantile computes the deciles as specified by the second argument of the
statistical series stored in the columns of a matrix.
Input :

quantile([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0],
[3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]],0.25)

Output is the vector of the first quartile of each column :

[1,1,2,2,1,1,1]

Input :

quantile([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0],
[3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]],0.75)

Output is the vector of the third quartile of each column :

[3,3,4,4,4,3,4]

• quartiles computes the minima, the first quartiles, the medians, the third
quartiles and the maxima of the statistical series stored in the columns of a
matrix.
Input :

quartiles([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0],
[3,4,2,5,6,0,1], [4,2,5,6,0,1,3],

[2,5,6,0,1,3,4]])

5.49. ARITHMETIC AND MATRICES 411

Output is a matrix, its first row is the minima of each column, its second row
is the fist quartiles of each column, its third row the medians of each column,
its fourth row the third quartiles of each column and its last row the maxima
of each column:

[[0,0,1,0,0,0,0],[1,1,2,2,1,1,1], [2,2,3,3,2,2,3],

[3,3,4,4,4,3,4],[6,5,6,6,6,6,6]]

• boxwhisker draws the whisker boxes of the statistical series stored in the
columns of a matrix .
Input :

boxwhisker([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],
[1,3,4,2,5,6,0],[3,4,2,5,6,0,1],
[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]])

Output :

the drawing of the whisker boxes of the
statistical series of each column of the matrix

argument

5.49.33 Dimension of a matrix : dim

dim takes as argument a matrix A.
dim returns the list of the number of rows and columns of the matrix A.
Input :

dim([[1,2,3],[3,4,5]])

Output :

[2,3]

5.49.34 Number of rows : rowdim rowDim nrows

rowdim (or rowDim or nrows) takes as argument a matrix A.
rowdim (or rowDim or nrows) returns the number of rows of the matrix A.
Input :

rowdim([[1,2,3],[3,4,5]])

or :

nrows([[1,2,3],[3,4,5]])

Output :

2

412 CHAPTER 5. THE CAS FUNCTIONS

5.49.35 Number of columns : coldim colDim ncols

coldim (or colDim or ncols) takes as argument a matrix A.
coldim (or colDim or ncols) returns the number of columns of the matrix A.
Input :

coldim([[1,2,3],[3,4,5]])

or :

ncols([[1,2,3],[3,4,5]])

Output :

3

5.50 Sparse matrices

5.50.1 Defining sparse matrices

A matrix is sparse if most of its elements are 0. To define a sparse matrix, it
is enough to define the non-zero elements, which can be done with a table. The
matrix command can then turn the table into a matrix.
Input:

A := table((0,0)=1, (1,1)=2, (2,2)=3, (3,3) = 4, (4,4)
= 5)

or:

purge(A)
A[0..4,0..4]:=[1,2,3,4,5]

Output:

table((0,0) = 1, (1,1) = 2, (2,2) = 3, (3,3) = 4,
(4,4) = 5)

This table can be converted to a matrix with either the convert command or
the matrix command.
Input:

a := convert(A,array)

or:

a := matrix(A)

Output:

[[1,0,0,0,0],[0,2,0,0,0],[0,0,3,0,0],[0,0,0,4,0],[0,0,0,0,5]]

5.50. SPARSE MATRICES 413

5.50.2 Operations on sparse matrices

All matrix operations can be done on tables that are used to define sparse matrices.
Input:

purge(A), purge(B)

Input:

A[0..2,0..2] := [1,2,3]

Output:

table((0,0) = 1, (1,1) = 2, (2,2) = 3)

Input:

B[0..1,1..2] := [1,2]

Input:

B[0..2,0]:=5

Output:

table((0,0) = 5, (0,1) = 1, (1,0) = 5, (1,2) = 2,
(2,0) = 5)

The usual operations will work on A and B.
Input:

A + B

Output:

table((0,0) = 6, (0,1) = 1, (1,0) = 5, (1,1) = 2,
(1,2) = 2, (2,0) = 5, (2,2) = 3)

Input:

A * B

Output:

table((0,0) = 5, (0,1) = 1, (1,0) = 10, (1,2) = 4,
(2,0) = 15)

Input:

2*A

Output:

table((0,0) = 2, (1,1) = 4, (2,2) = 6)

414 CHAPTER 5. THE CAS FUNCTIONS

5.51 Linear algebra

5.51.1 Transpose of a matrix : tran transpose

tran or transpose takes as argument a matrix A.
tran or transpose returns the transpose matrix of A.
Input :

tran([[1,2],[3,4]])

Output :

[[1,3],[2,4]]

5.51.2 Inverse of a matrix : inv /

inv takes as argument a square matrix A.
inv returns the inverse matrix of A.
Input :

inv([[1,2],[3,4]])

or :

1/[[1,2],[3,4]])

or :

A:=[[1,2],[3,4]];1/A

Output :

[[-2,1],[3/2,1/-2]]

5.51.3 Trace of a matrix : trace

trace takes as argument a matrix A.
trace returns the trace of the matrix A, that is the sum of the diagonal elements.
Input :

trace([[1,2],[3,4]])

Output :

5

5.51.4 Determinant of a matrix : det

det takes as argument a matrix A.
det returns the determinant of the matrix A.
Input :

det([[1,2],[3,4]])

Output :

5.51. LINEAR ALGEBRA 415

-2

Input :

det(idn(3))

Output :

1

An optional argument can be used to specify with an optional argument.

• lagrangeWhen the matrix elements are polynomials or rational functions,
this method computes the determinant by evaluating the elements and using
Lagrange interpolation.

• rational_det This method uses Gaussian elimination without convert-
ing to to the internal format for fractions.

• bareiss This uses the Gauss-Bareiss algorithm.

• linsolve This uses the p-adic algorithm for matrices with integer coeffi-
cients.

• minor_det This uses expansion by minor determinants. This requires 2n

operations, but can stil be faster for average sized matrices (up to about n =
20).

5.51.5 Determinant of a sparse matrix : det_minor

det_minor takes as argument a matrix A.
det_minor returns the determinant of the matrix A computed by expanding the
determinant using Laplace’s algorithm.
Input :

det_minor([[1,2],[3,4]])

Output :

-2

Input :

det_minor(idn(3))

Output :

1

416 CHAPTER 5. THE CAS FUNCTIONS

5.51.6 Rank of a matrix : rank

rank takes as argument a matrix A.
rank returns the rank of the matrix A.
Input :

rank([[1,2],[3,4]])

Output :

2

Input :

rank([[1,2],[2,4]])

Output :

1

5.51.7 Transconjugate of a matrix : trn

trn takes as argument a matrix A.
trn returns the transconjugate of A (i.e. the conjugate of the transpose matrix of
A).
Input :

trn([[i, 1+i],[1, 1-i]])

Output after simplification:

[[-i,1],[1-i,1+i]]

5.51.8 Equivalent matrix : changebase

changebase takes as argument a matrix A and a change-of-basis matrix P .
changebase returns the matrix B such that B = P−1AP .
Input :

changebase([[1,2],[3,4]],[[1,0],[0,1]])

Output :

[[1,2],[3,4]]

Input :

changebase([[1,1],[0,1]],[[1,2],[3,4]])

Output :

[[-5,-8],[9/2,7]]

Indeed : [
1 2
3 4

]−1
∗
[

1 1
0 1

]
∗
[

1 2
3 4

]
=

[
−5 −8

9
2 7

]
.

5.51. LINEAR ALGEBRA 417

5.51.9 Basis of a linear subspace : basis

basis takes as argument a list of vectors generating a linear subspace of Rn.
basis returns a list of vectors, that is a basis of this linear subspace.
Input :

basis([[1,2,3],[1,1,1],[2,3,4]])

Output :

[[1,0,-1], [0,1,2]]

5.51.10 Basis of the intersection of two subspaces : ibasis

ibasis takes as argument two lists of vectors generating two subspaces of Rn.
ibasis returns a list of vectors, that is a basis of the intersection of these two
subspaces.
Input :

ibasis([[1,2]],[[2,4]])

Output :

[[1,2]]

5.51.11 Image of a linear function : image

image takes as argument the matrix of a linear function f with respect to the
canonical basis.
image returns a list of vectors that is a basis of the image of f .
Input :

image([[1,1,2],[2,1,3],[3,1,4]])

Output :

[[-1,0,1],[0,-1,-2]]

5.51.12 Kernel of a linear function : kernel nullspace ker

ker (or kernel or nullspace) takes as argument the matrix of an linear func-
tion f with respect to the canonical basis.
ker (or kernel or nullspace) returns a list of vectors that is a basis of the
kernel of f .
Input :

ker([[1,1,2],[2,1,3],[3,1,4]])

Output :

[[1,1,-1]]

The kernel is generated by the vector [1,1,-1].

418 CHAPTER 5. THE CAS FUNCTIONS

5.51.13 Kernel of a linear function : Nullspace

Warning This function is useful in Maple mode only (hit the state line red button
then Prog style, then choose Maple and Apply).
Nullspace is the inert form of nullspace.
Nullspace takes as argument an integer matrix of a linear function f with re-
spect to the canonical basis.
Nullspace) followed by mod p returns a list of vectors that is a basis of the
kernel of f computed in Z/pZ[X].
Input :

Nullspace([[1,1,2],[2,1,3],[3,1,4]])

Output :

nullspace([[1,1,2],[2,1,3],[3,1,4]])

Input (in Maple mode):

Nullspace([[1,2],[3,1]]) mod 5

Output :

[2,-1]

In Xcas mode, the equivalent input is :

nullspace([[1,2],[3,1]] % 5)

Output :

[2% 5,-1]

5.51.14 Subspace generated by the columns of a matrix : colspace

colspace takes as argument the matrix A of a linear function f with respect to
the canonical basis.
colspace returns a matrix. The columns of this matrix are a basis of the subspace
generated by the columns of A.
colspace may have a variable name as second argument, where Xcas will store
the dimension of the subspace generated by the columns of A.
Input :

colspace([[1,1,2],[2,1,3],[3,1,4]])

Output :

[[-1,0],[0,-1],[1,-2]]

Input :

colspace([[1,1,2],[2,1,3],[3,1,4]],dimension)

Output :

[[-1,0],[0,-1],[1,-2]]

Then input:

dimension

Output :

2

5.52. LINEAR PROGRAMMATION 419

5.51.15 Subspace generated by the rows of a matrix : rowspace

rowspace takes as argument the matrix A of a linear function f with respect to
the canonical basis.
rowspace returns a list of vectors that is a basis of the subspace generated by the
rows of A.
rowspace may have a variable name as second argument where Xcas will store
the dimension of the subspace generated by the rows of A.
Input :

rowspace([[1,1,2],[2,1,3],[3,1,4]])

Output :

[[-1,0,-1],[0,-1,-1]]

Input :

rowspace([[1,1,2],[2,1,3],[3,1,4]],dimension)

Output :

[[-1,0,-1],[0,-1,-1]]

Then input:

dimension

Output :

2

5.52 Linear Programmation

Linear programming problems are maximization problem of a linear functionals
under linear equality or inequality constraints. The most simple case can be solved
directly by the so-called simplex algorithm. Most cases require to solve an auxil-
iary linear programming problem to find an initial vertex for the simplex algorithm.

5.52.1 Simplex algorithm: simplex_reduce

The simple case
The function simplex_reduce makes the reduction by the simplex algorithm
to find :

max(c.x), A.x ≤ b, x ≥ 0, b ≥ 0

where c, x are vectors of Rn, b ≥ 0 is a vector in Rp and A is a matrix of p rows
and n columns.
simplex_reduce takes as argument A,b,c and returns max(c.x), the aug-
mented solution of x (augmented since the algorithm works by adding rows(A)
auxiliary variables) and the reduced matrix.

420 CHAPTER 5. THE CAS FUNCTIONS

Example
Find

max(X + 2Y) where


(X,Y) ≥ 0

−3X + 2Y ≤ 3
X + Y ≤ 4

Input :

simplex_reduce([[-3,2],[1,1]],[3,4],[1,2])

Output :

7,[1,3,0,0],[[0,1,1/5,3/5,3],[1,0,(-1)/5,2/5,1],
[0,0,1/5,8/5,7]]

Which means that the maximum of X+2Y under these conditions is 7, it is obtained
for X=1,Y=3 because [1,3,0,0] is the augmented solution and the reduced
matrix is :
[[0,1,1/5,3/5,3],[1,0,(-1)/5,2/5,1], [0,0,1/5,8/5,7]].

A more complicated case that reduces to the simple case
With the former call of simplex_reduce, we have to :

• rewrite constraints to the form xk ≥ 0,

• remove variables without constraints,

• add variables such that all the constraints have positive components.

For example, find :

min(2x+ y − z + 4) where


x ≤ 1
y ≥ 2

x+ 3y − z = 2
2x− y + z ≤ 8
−x+ y ≤ 5

(5.5)

Let x = 1−X , y = Y + 2, z = 5−X + 3Y the problem is equivalent to finding
the minimum of (−2X + Y − (5−X + 3Y) + 8) where :

X ≥ 0
Y ≥ 0

2(1−X)− (Y + 2) + 5−X + 3Y ≤ 8
−(1−X) + (Y + 2) ≤ 5

or to find the minimum of :

(−X − 2Y + 3) where


X ≥ 0
Y ≥ 0

−3X + 2Y ≤ 3
X + Y ≤ 4

i.e. to find the maximum of −(−X − 2Y + 3) = X + 2Y − 3 under the same
conditions, hence it is the same problem as to find the maximum of X + 2Y seen
before. We found 7, hence, the result here is 7-3=4.

5.52. LINEAR PROGRAMMATION 421

The general case
A linear programming problem may not in general be directly reduced like above
to the simple case. The reason is that a starting vertex must be found before ap-
plying the simplex algorithm. Therefore, simplex_reduce may be called by
specifying this starting vertex, in that case, all the arguments including the starting
vertex are grouped in a single matrix.

We first illustrate this kind of call in the simple case where the starting point
does not require solving an auxiliary problem. If A has p rows and n columns and
if we define :

B:=augment(A,idn(p)); C:=border(B,b);
d:=append(-c,0$(p+1)); D:=augment(C,[d]);

simplex_reduce may be called with D as single argument.
For the previous example, input :

A:=[[-3,2],[1,1]];B:=augment(A,idn(2));
C:=border(B,[3,4]); D:=augment(C,[[-1,-2,0,0,0]])

Here C=[[-3,2,1,0,3],[1,1,0,1,4]]
and D=[[-3,2,1,0,3],[1,1,0,1,4],[-1,-2,0,0,0]]
Input :

simplex_reduce(D)

Output is the same result as before.
Back to the general case.

The standard form of a linear programming problem is similar to the simplest case
above, but with Ax = b (instead of Ax ≤ b) under the conditions x ≥ 0. We may
further assume that b ≥ 0 (if not, one can change the sign of the corresponding
line).

• The first problem is to find an x in the Ax = b, x ≥ 0 domain. Let m
be the number of lines of A. Add artificial variables y1, ..., ym and max-
imize −

∑
yi under the conditions Ax = b, x ≥ 0, y ≥ 0 starting with

initial value 0 for x variables and y = b (to solve this with Xcas, call
simplex_reduce with a single matrix argument obtained by augment-
ing A by the identity, b unchanged and an artificial c with 0 under A and
1 under the identity). If the maximum exists and is 0, the identity subma-
trix above the last column corresponds to an x solution, we may forget the
artificial variables (they are 0 if the maximum is 0).

• Now we make a second call to simplex_reduce with the original c and
the value of x we found in the domain.

• Example : find the minimum of 2x+ 3y − z + t with x, y, z, t ≥ 0 and :{
−x− y + t = 1
y − z + t = 3

This is equivalent to find the opposite of the maximum of−(2x+3y−z+t).
Let us add two artificial variables y1 and y2,

422 CHAPTER 5. THE CAS FUNCTIONS

simplex_reduce([[-1,-1,0,1,1,0,1],
[0,1,-1,1,0,1,3],
[0,0,0,0,1,1,0]])

Output: optimum=0, artificial variables=0, and the matrix −1/2 0 −1/2 1 1/2 1/2 2
1/2 1 −1/2 0 −1/2 1/2 1
0 0 0 0 1 1 0


Columns 2 and 4 are the columns of the identity (in lines 1 and 2). Hence
x = (0, 1, 0, 2) is an initial point in the domain. We are reduced to solve the
initial problem, after replacing the lines of Ax = b by the two first lines of
the answer above, removing the last columns corresponding to the artificial
variables. We add c.x as last line

simplex_reduce([[-1/2,0,-1/2,1,2],
[1/2,1,-1/2,0,1],[2,3,-1,1,0]])

Output: maximum=-5, hence the minimum of the opposite is 5, obtained for
(0, 1, 0, 2), after replacement x = 0, y = 1, z = 0 and t = 2.

For more details, search google for simplex algorithm.

5.52.2 Solving general linear programming problems: lpsolve

Linear programming problems (where a multivariate linear function needs to be
maximized or minimized subject to linear (in)equality constraints), as well as (mixed)
integer programming problems, can be solved by using the function lpsolve.
Problems can be entered directly (in symbolic or matrix form) or loaded from a file
in LP or (gzipped) MPS format.

lpsolve accepts four arguments :

1. obj : symbolic expression representing the objective function or path to file
containing LP problem (in the latter case parameter constr should not be
given)

2. constr (optional) : list of linear constraints which may be equalities or
inequalities or bounded expressions entered as expr=a..b

3. bd (optional) : sequence of expressions of type var=a..b specifying that
the variable var is bounded with a below and with b above

4. opts (optional) : sequence of solver settings in form option=value,
where option may be one of :

assume – one of lp_nonnegative, lp_integer (integer), lp_binary
or lp_nonnegint (or nonnegint), default : unset

lp_integervariables – list of identifiers or indices (of integer vari-
ables), default : empty

5.52. LINEAR PROGRAMMATION 423

lp_binaryvariables – list of identifiers or indices (of binary vari-
ables), default : empty

lp_maximize (or maximize) – true or false (objective direction), de-
fault : false

lp_method – one of exact, float, lp_simplex or lp_interiorpoint
(solver type), default lp_simplex

lp_depthlimit – positive integer (max. depth of branch&bound tree),
default : unlimited

lp_nodelimit – positive integer (max. nodes in branch&bound tree),
default : unlimited

lp_iterationlimit – positive integer (max. iterations of simplex al-
gorithm), default : unlimited

lp_timelimit – positive number (max. solving time in milliseconds),
default : unlimited

lp_maxcuts – nonnegative integer (max. GMI cuts per node), default : 5

lp_gaptolerance – positive number (relative integrality gap thresh-
old), default : 0

lp_nodeselect – one of lp_depthfirst, lp_breadthfirst, lp_hybrid
or lp_bestprojection (branching node selection strategy), de-
fault : lp_hybrid

lp_varselect – one of lp_firstfractional, lp_lastfractional,
lp_mostfractional or lp_pseudocost (branching variable se-
lection strategy), default : lp_pseudocost

lp_verbose – true or false, default : false

The return value is in the form [optimum,soln] where optimum is the
minimum/maximum value of the objective function and soln is the list of coor-
dinates corresponding to the point at which the optimal value is attained, i.e. the
optimal solution. If there is no feasible solution, an empty list is returned. When
the objective function is unbounded, optimum is returned as +infinity (for
maximization problems) or -infinity (for minimization problems). If an error
is experienced while solving (terminating the process), undef is returned.

The given objective function is minimized by default. To maximize it, include
the option lp_maximize=true or lp_maximize or simply maximize. Also
note that all variables are, unless specified otherwise, assumed to be continuous and
unrestricted in sign.

Solving LP problems

By default, lpsolve uses primal simplex method implementation to solve LP
problems. For example, to solve the problem specified in (5.5), input :

constr:=[x<=1,y>=2,x+3y-z=2,3x-y+z<=8,-x+y<=5];
lpsolve(2x+y-z+4,constr)

Output :

424 CHAPTER 5. THE CAS FUNCTIONS

[-4,[x=0,y=5,z=13]]

Therefore, the minimum value of f(x, y, z) = 2x+y− z+ 4 is equal to−4 under
the given constraints. The optimal value is attained at point (x, y, z) = (0, 5, 13).

Constraints may also take the form expr=a..b for bounded linear expres-
sions.
Input :

lpsolve(x+2y+3z,[x+y=1..5,y+z+1=2..4,x>=0,y>=0])

Output :

[-2,[x=0,y=5,z=-4]]

Use the assume=lp_nonnegative option to specify that all variables are
nonnegative. It is easier than entering the nonnegativity constraints explicitly.
Input:

lpsolve(-x-y,[y<=3x+1/2,y<=-5x+2],
assume=lp_nonnegative)

Output:

[-5/4,[x=3/16,y=17/16]]

Bounds can be added separately for some variables. They should be entered
after constraints.
Input :

constr:=[5x-10y<=20,2z-3y=6,-x+3y<=3];
lpsolve(-6x+4y+z,constr,x=1..20,y=0..inf)

Output :

[-133/2,[x=18,y=7,z=27/2]]

Number of iterations can be limited by setting lp_iterationlimit to
some positive integer. If maximum number of iterations is reached, the current
feasible solution (not necessarily an optimal one) is returned.

Entering problems in matrix form

lpsolve supports entering linear programming problems in matrix form, where
obj is a vector of coefficients c and constr is a list [A,b,Aeq,beq] such that ob-
jective function cT x is to be minimized/maximized subject to constraints Ax ≤ b
and Aeq x = beq. If a problem does not contain equality constraints, parameters
Aeq and beq may be omitted. For a problem that does not contain inequality con-
straints, empty lists must be entered in place of A and in place of b.

The parameter bd is entered as a list of two vectors bl and bu of the same
length as the vector c such that bl ≤ x ≤ bu. These vectors may contain
+infinity or -infinity.
Input :

5.52. LINEAR PROGRAMMATION 425

c:=[-2,1];A:=[[-1,1],[1,1],[-1,0],[0,-1]];
b:=[3,5,0,0];lpsolve(c,[A,b])

Output :

[-10,[5,0]]

Input :

c:=[-2,5,-3];bl:=[2,3,1];bu:=[6,10,7/2];
lpsolve(c,[],[bl,bu])

Output :

[-15/2,[6,3,7/2]]

Input :

c:=[4,5];Aeq:=[[-1,3/2],[-3,2]];beq:=[2,3];
lpsolve(c,[[],[],Aeq,beq])

Output :

[26/5,[-1/5,6/5]]

Solving MIP (Mixed Integer Programming) problems

lpsolve allows restricting (some) variables to integer values. Such problems,
called (mixed) integer programming problems, are solved by applying branch&bound
method.

To solve pure integer programming problems, in which all variables are inte-
gers, use option assume=integer or assume=lp_integer.
Input :

lpsolve(-5x-7y,[7x+y<=35,-x+3y<=6],assume=integer)

Output :

[-41,[x=4,y=3]]

Use option assume=lp_binary to specify that all variables are binary,
i.e. the only allowed values are 0 and 1. These usually represent false and true,
respectively, giving the variable a certain meaning in logical context.
Input :

lpsolve(8x1+11x2+6x3+4x4,[5x1+7x2+4x3+3x4<=14],
assume=lp_binary,maximize)

Output :

[21,[x1=0,x2=1,x3=1,x4=1]]

To solve mixed integer problems, where some variables are integers and some
are continuous, use option keywords lp_integervariables to specify inte-
ger variables and/or lp_binaryvariables to specify binary variables.
Input :

426 CHAPTER 5. THE CAS FUNCTIONS

lpsolve(x+3y+3z,[x+3y+2z<=7,2x+2y+z<=11],
assume=lp_nonnegative,lp_maximize,

lp_integervariables=[x,z])

Output :

[10,[x=1,y=0,z=3]]

Use the assume=lp_nonnegint or assume=nonnegint option to get
nonnegative integer values.
Input :

lpsolve(2x+5y,[3x-y=1,x-y<=5],assume=nonnegint)

Output :

[12,[x=1,y=2]]

When specifying MIP problems in matrix form, lists corresponding to op-
tions lp_integervariables and lp_binaryvariables are populated
with variable indices, like in the following example.
Input :

c:=[2,-3,-5];A:=[[-5,4,-5],[2,5,7],[2,-3,4]];
b:=[3,1,-2];lpsolve(c,[A,b],lp_integervariables=[0,2])

Output :

[19,[1,3/4,-1]]

One can also specify a range of indices instead of a list when there is too much
variables. Example : lp_binaryvariables=0..99 means that all variables
xi such that 0 ≤ i ≤ 99 are binary.

Implementation details. Branch&bound algorithm by definition generates a bi-
nary tree of subproblems by branching on integer variables with fractional val-
ues. lpsolve features an implementation which stores only active nodes of
branch&bound tree in a list, thus saving a lot of space. Also, since variable bounds
are the only parameters that change during branch&bound algorithm, number of
constraints does not rise with depth, which is the benefit of the upper-bounding
technique built in the simplex algorithm. Therefore a steady speed and minimal re-
source usage is always maintained, no matter how long the execution time is. This
allows for solving problems that require tens or hundreds of thousands of nodes to
be generated before finding an optimal solution.

Stopping criteria. There are several ways to force the branch&bound algorithm
to stop prematurely when the execution takes too much time. One can set lp_timelimit
to integer number which defines the maximum number of milliseconds allowed to
find an optimal solution. Other ways are to set lp_nodelimit or lp_depthlimit
to limit the number of nodes generated in branch&bound tree or its depth, respec-
tively. Finally, one can set lp_gaptolerance to some positive value, say t > 0,
which terminates the algorithm after finding an incumbent solution and proving

5.52. LINEAR PROGRAMMATION 427

that the corresponding objective value differs from optimum value for less than
t · 100 %. It is done by monitoring the size of integrality gap, i.e. the difference be-
tween current incumbent objective value and the best objective value bound among
active nodes.

If branch&bound algorithm terminates prematurely, a warning message indi-
cating the cause is displayed. Incumbent solution, if any, is returned as the result,
else the problem is declared to be infeasible.

Branching strategies. At every iteration of branch&bound algorithm, a node
must be selected for branching on some variable that has a fractional optimal value
for the corresponding relaxed subproblem. There exist different methods for mak-
ing such decisions, called branching strategies. Two types of branching strategies
exist: node selection and variable selection strategy.

Node selection strategy can be set by using the lp_nodeselect option. Pos-
sible values are :

lp_breadthfirst – choose the active node which provides the best bound for
the objective value,

lp_depthfirst – choose the deepest active node and break ties by selecting
the node providing the best bound,

lp_hybrid – combine the above two strategies,

lp_bestprojection – choose the node with best simple projection.

By default, lp_bestprojection strategy is used. Another sophisticated strat-
egy is lp_hybrid : before an incumbent solution is found, solver uses lp_depthfirst
strategy, “diving” into the tree as an incumbent solution is more likely to be located
deeply. When an incumbent is found, solver switches to lp_breadthfirst
strategy trying to close the integrality gap as quickly as possible.

Variable selection strategy can be set by using the lp_varselect option.
Possible values are :

lp_firstfractional – choose the first fractional variable,

lp_lastfractional – choose the last fractional variable,

lp_mostfractional – choose the variable with fractional part closest to 0.5,

lp_pseudocost – choose the variable which had the greatest impact on the
objective value in previous branchings.

By default, lp_pseudocost strategy is used. However, since pseudocost-based
choice cannot be made before all integer variables have been branched upon at
least one time in each direction, lp_mostfractional strategy is used until
that condition is fulfilled.

Using the right combination of branching strategies may significantly reduce
the number of subproblems needed to be examined when solving a particular MIP
problem. However, what is “right” varies from problem to problem. Default strate-
gies are the most sophisticated (as they use the available data most extensively) and
usually the most effective ones. But that is not always the case, as illustrated by
the following example :

428 CHAPTER 5. THE CAS FUNCTIONS

Minimize cT x subject to Ax = b, where x ∈ Z8
+ and

A =


22 13 26 33 21 3 14 26
39 16 22 28 26 30 23 24
18 14 29 27 30 38 26 26
41 26 28 36 18 38 16 26

 , b =


7872
10466
11322
12058

 , c =



2
10
13
17
7
5
7
3


.

When using the default settings, about 24000 subproblems need to be examined be-
fore an optimal solution is found. When lp_nodeselect is set to lp_breadthfirst
the solver needs to examine only about 20000 subproblems, but when set to lp_hybrid
(a strategy which in general performs better) it examines about 111000 nodes in to-
tal.

Cutting planes. Strong Gomory mixed integer cuts are generated at every node
of the branch&bound tree and used to improve the objective value bound. After
solving the relaxed subproblem with simplex method, at most one strong cut is
generated and added to the subproblem which is subsequently reoptimized. Sim-
plex reoptimizations are fast because they start with the last feasible basis, but
applying cuts makes the simplex tableau larger, hence applying many of them may
actually slow the computation down. To limit the number of cuts that can be ap-
plied to a subproblem, one can use lp_maxcuts option, setting it either to zero
(which disables cut generation altogether) or to some positive integer. Also, one
may set it to +infinity, which means that any number of cuts may be applied
to any node. By default, lp_maxcuts equals to 5.

Displaying detailed output. By typing lp_verbose=true or simply lp_verbose
when specifying options for lpsolve, detailed messages are printed during and
after solving a MIP problem. During branch&bound algorithm a status report in
form

<n>: <m> nodes active, lower bound: <lb>[, integrality gap: <g>]

is displayed every 5 seconds, where n is the number of already examined subprob-
lems. Also, a report is printed every time incumbent solution is found or updated,
as well as when the solver switches to pseudocost-based branching. After the al-
gorithm is finished, i.e. when an optimal solution is found, summary is displayed
containing the total number of examined subproblems, the number of most nodes
being active at the same time and the number of applied Gomory mixed integer
cuts.

In the following example, two nonnegative integers x1 and x2 are found such
that 1867x1 + 1913x2 = 3618894 and x1 + x2 is minimal. The solver shows all
progress and summary messages.
Input :

lpsolve(x1+x2,[1867x1+1913x2=3618894],
assume=nonnegint,lp_verbose=true)

5.52. LINEAR PROGRAMMATION 429

Output :

Optimizing...
Applying branch&bound method to find integer feasible solutions...

3937: Incumbent solution found
Summary:

* 3938 subproblem(s) examined

* max. tree size: 1 nodes

* 0 Gomory cut(s) applied

[1916,[x1=1009,x2=907]]

Solving problems in floating-point arithmetic

lpsolve provides, in addition to its own exact solver implementing primal sim-
plex method with upper-bounding technique, an interface to GLPK (GNU Linear
Programming Kit) library which contains sophisticated LP/MIP solvers in floating-
point arithmetic, designed to be very fast and to handle large problems. Choosing
between the available solvers is done by setting lp_method option.

By default, lp_method is set to lp_simplex, which solves the problem
using primal simplex method, but performing exact computation only when all
problem coefficients are exact. If at least one of them is approximative (a floating-
point number), GLPK solver is used instead (see below).

Setting lp_method to exact forces the solver to perform exact computation
even when some coefficients are inexact (they are converted to rational equivalents
before applying simplex method).

Specifying lp_method=float forces lpsolve to use floating-point solver.
If a MIP problem is given, it is combined with branch&cut algorithm. GLPK sim-
plex solver parameters can be controlled by setting lp_timelimit, lp_gaptolerance
and lp_varselect options. If the latter is not set, Driebeek–Tomlin heuristic
is used by default (see GLPK manual for details). If lp_maxcuts is greater than
zero, GMI and MIR cut generation is enabled, else it is disabled. If the problem
contains binary variables, cover and clique cut generation is enabled, else it is dis-
abled. Finally, lp_verbose=true enables detailed messages.

Setting lp_method to lp_interiorpoint uses primal-dual interior-point
algorithm which is part of GLPK. The only parameter that can be controlled via
options is the verbosity level.

For example, try to solve the following LP problem using the default settings.

Minimize 1.06x1 + 0.56x2 + 3.0x3

subject to

1.06x1 + 0.015x3 ≥ 729824.87

0.56x2 + 0.649x3 ≥ 1522188.03

x3 ≥ 1680.05

xk ≥ 0 for k = 1, 2, 3

Input :

430 CHAPTER 5. THE CAS FUNCTIONS

lpsolve(1.06x1+0.56x2+3x3,[1.06x1+0.015x3>=729824.87,
0.56x2+0.649x3>=1522188.03,x3>=1680.05],

assume=lp_nonnegative)

Output :

[2255937.4968,[x1=688490.254009,x2=2716245.85277,x3=1680.05]]

If assume=nonnegint is used for the same problem, i.e. when xk ∈ Z+ for
k = 1, 2, 3, the following result is obtained by GLPK MIP solver :

[2255940.66,[x1=688491.0,x2=2716245.0,x3=1681.0]]

The solution of the original problem can also be obtained with interior-point solver
by including lp_method=lp_interiorpoint after assume=lp_nonnegative :

[2255937.50731,[x1=688490.256652,x2=2716245.85608,
x3=1680.05195065]]

Loading problem from a file

Linear (integer) programming problems can be loaded from MPS or CPLEX LP
format files (these formats are described in GLPK manual, Appendices B and C).
The file name string needs to be passed as obj parameter. If the file name has
extension “lp”, CPLEX LP format is assumed, and if the extension is “mps” or
“gz”, MPS or gzipped MPS format is assumed.

For example, assume that somefile.lp file is stored in directory /path/to/file
contains the following lines of text :

Maximize
obj: x1 + 2 x2 + 3 x3 + x4
Subject To
c1: - x1 + x2 + x3 + 10 x4 <= 20
c2: x1 - 3 x2 + x3 <= 30
c3: x2 - 3.5 x4 = 0
Bounds
0 <= x1 <= 40
2 <= x4 <= 3
End

To find an optimal solution to linear program specified in the file, one just needs to
input :

lpsolve("/path/to/file/somefile.lp")

Output :

Reading problem data from ’/path/to/file/somefile.lp’...
3 rows, 4 columns, 9 non-zeros
10 lines were read

[116,[x1=38,x2=9,x3=19,x4=3]]

5.52. LINEAR PROGRAMMATION 431

Additional variable bounds and options may be provided alongside the file
name. Note that the original constraints (those which are read from file) cannot
be removed.
Input :

lpsolve("/path/to/file/somefile.lp",x2=1..8,x3=-10..10,
lp_integervariables=[x4])

Output :

[82,[x1=38,x2=6,x3=10,x4=2]]

It is advisable to use only (capital) letters, digits and underscore when naming
variables in a LP file, although the corresponding format allows many more char-
acters. That is because these names are converted to Giac identifiers during the
loading process.

Warning! Too large problems won’t be loaded. More precisely, if nv · nc >
105, where nv is the number of variables and nc is the number of constraints,
loading is aborted. Many MPS files available, for example, in the Netlib repository
(http://www.netlib.org/), contain very large problems with thousands of
variables and constraints. Trying to load them to Xcas without a safety limit could
easily eat up huge amounts of available memory, probably freezing up the whole
system. If a large LP problem needs to be solved, one may consider using GLPK
standalone solver1.

5.52.3 Solving transportation problems: tpsolve

The objective of a transportation problem is to minimize the cost of distributing a
product from m sources to n destinations. It is determined by three parameters :

• supply vector s = (s1, s2, . . . , sm), where sk ∈ Z, sk > 0 is the maximum
number of units that can be delivered from k-th source for k = 1, 2, . . . ,m,

• demand vector d = (d1, d2, . . . , dn), where dk ∈ Z, dk > 0 is the minimum
number of units required by k-th destination for k = 1, 2, . . . , n,

• cost matrix C = [cij]m×n, where cij ∈ R, cij ≥ 0 is the cost of transporting
one unit of product from i-th source to j-th destination for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n.

The optimal solution is represented as matrix X∗ = [x∗ij]m×n, where x∗ij is num-
ber of units that must be transported from i-th source to j-th destination for i =
1, 2, . . . ,m and j = 1, 2, . . . , n.

Function tpsolve accepts three arguments: supply vector, demand vector
and cost matrix, respectively. It returns a sequence of two elements: the total
(minimal) cost c =

∑m
i=1

∑n
j=1 cij x

∗
ij of transportation and the optimal solution

X∗.
Input :

1See https://www.gnu.org/software/glpk/ for installing GLPK in Linux or
http://winglpk.sourceforge.net/ for MS Windows.

432 CHAPTER 5. THE CAS FUNCTIONS

s:=[12,17,11];d:=[10,10,10,10];
C:=[[50,75,30,45],[65,80,40,60],[40,70,50,55]];

tpsolve(s,d,C)

Output :

2020,[[0,0,2,10],[0,9,8,0],[10,1,0,0]]

If total supply and total demand are equal, i.e. if
∑m

i=1 si =
∑n

j=1 dj holds,
transportation problem is closed or balanced. If total supply exceeds total demand
or vice versa, the problem is unbalanced. The excess supply/demand is covered by
adding a dummy demand/supply point with zero cost of “transportation” from/to
that point. Function tpsolve handles such cases automatically.
Input :

s:=[7,10,8,8,9,6];d:=[9,6,12,8,10];
C:=[[36,40,32,43,29],[28,27,29,40,38],[34,35,41,29,31],
[41,42,35,27,36],[25,28,40,34,38],[31,30,43,38,40]];

tpsolve(s,d,C)

Output :

1275,[[0,0,2,0,5],[0,0,10,0,0],[0,0,0,0,5],
[0,0,0,8,0],[9,0,0,0,0],[0,6,0,0,0]]

Sometimes it is desirable to forbid transportation on certain routes. That is usu-
ally achieved by setting very high cost to these routes, represented by symbol M .
If tpsolve detects a symbol in the cost matrix, it interprets it as M and assigns
100 times larger cost than the largest numeric element of C to the corresponding
routes, which forces the algorithm to avoid them.
Input :

s:=[95,70,165,165];d:=[195,150,30,45,75];
C:=[[15,M,45,M,0],[12,40,M,M,0],

[0,15,25,25,0],[M,0,M,12,0]]
tpsolve(s,d,C)

Output :

2820,[[20,0,0,0,75],[70,0,0,0,0],
[105,0,30,30,0],[0,150,0,15,0]]

5.53 Nonlinear optimization

5.53.1 Global extrema: minimize maximize

The function minimize takes four arguments :

• obj : univariate or multivariate expression

• constr (optional) : list of equality and inequality constraints

• vars : list of variables

5.53. NONLINEAR OPTIMIZATION 433

• location (optional) : option keyword which may be coordinates,
locus or point

The expression obj is minimized on the domain specified by constraints and/or
bounding variables, which can be done as specifying e.g. x=a..b in vars. The
domain must be closed and bounded and obj must be continuous in every point of
it. Else, the final result may be incorrect or meaningless.

Constraints may be given as equalities or inequalities, but also as expressions
which are assumed to be equal to zero. If there is only one constraint, the list
delimiters may be dropped. The same applies to the specification of variables.

minimize returns the minimal value. If it could not be obtained, it returns
undef. If location is specified, the list of points where the minimum is
achieved is also returned as the second member in a list. Keywords locus,
coordinates and point all have the same effect.

The function maximize takes the same parameters as minimize. The dif-
ference is that it computes global maximum of obj on the specified domain.

Examples

Input :

minimize(sin(x),[x=0..4])

Output :

sin(4)

Input :

minimize(asin(x),x=-1..1)

Output :

-pi/2

Input :

minimize(x^4-x^2,x=-3..3,locus)

Output :

-1/4,[-sqrt(2)/2]

Input :

minimize(x-abs(x),x=-1..1)

Output :

-2

Input :

minimize(when(x==0,0,exp(-1/x^2)),x=-1..1)

Output :

434 CHAPTER 5. THE CAS FUNCTIONS

0

Input :

minimize(sin(x)+cos(x),x=0..20,coordinates)

Output :

-sqrt(2),[5*pi/4,13*pi/4,21*pi/4]

Input :

minimize(x^2-3x+y^2+3y+3,[x=2..4,y=-4..-2],point)

Output :

-1,[[2,-2]]

Input :

obj:=sqrt(x^2+y^2)-z;
constr:=[x^2+y^2<=16,x+y+z=10];
minimize(obj,constr,[x,y,z])

Output :

-4*sqrt(2)-6

Input :

minimize(x^2*(y+1)-2y,[y<=2,sqrt(1+x^2)<=y],[x,y])

Output :

-4

Input :

maximize(cos(x),x=1..3)

Output :

cos(1)

Input :

obj:=piecewise(x<=-2,x+6,x<=1,x^2,3/2-x/2);
maximize(obj,x=-3..2)

Output :

4

Input :

maximize(x*y*z,x^2+2*y^2+3*z^2<=1,[x,y,z])

Output :

5.53. NONLINEAR OPTIMIZATION 435

sqrt(2)/18

Input :

maximize(x*y,[x+y^2<=2,x>=0,y>=0],[x,y],locus)

Output :

4*sqrt(6)/9,[[4/3,sqrt(6)/3]]

Input :

maximize(y^2-x^2*y,y<=x,[x=0..2,y=0..2])

Output :

4/27

Input :

assume(a>0);
maximize(x^2*y^2*z^2,x^2+y^2+z^2=a^2,[x,y,z])

Output :

a^6/27

5.53.2 Local extrema: extrema

Local extrema of a univariate or multivariate differentiable expression under equal-
ity constraints can be obtained by using function extrema which takes four argu-
ments :

• expr : differentiable expression

• constr (optional) : list of equality constraints

• vars : list of variables

• order_size=<positive integer> or lagrange (optional) : up-
per bound for the order of derivatives examined in the process (defaults to 5)
or the specifier for the method of Lagrange multipliers

Function returns a list containing two lists of points: local minima and local max-
ima of expr, respectively. Saddle and unclassified points are reported in the mes-
sage area. Also, information about possible (non)strict extrema is printed out. If
lagrange is passed as an optional last argument, the method of Lagrange mul-
tipliers is used. Else, the problem is reduced to an unconstrained one by applying
implicit differentiation.

A single constraint/variable can be specified without list delimiters. A con-
straint may be specified as an equality or expression which is assumed to be equal
to zero.

Number of constraints must be strictly less than number of variables. Addition-
ally, denoting k-th constraint by gk(x1, x2, . . . , xn) = 0 for k = 1, 2, . . . ,m and

436 CHAPTER 5. THE CAS FUNCTIONS

letting g = (g1, g2, . . . , gm), Jacobian matrix of g has to be full rank (i.e. equal to
m).

Variables may be specified with bounds, e.g. x=a..b, which is interpreted
as x ∈ (a, b). For semi-bounded variables one can use -infinity for a or
+infinity for b. Also, parameter varsmay be entered as e.g. [x1=a1,x2=a2,...,xn=an],
in which case the critical point close to a = (a1, a2, . . . , an) is computed numeri-
cally, applying an iterative method with initial point a.

If order_size=<n> is specified as the fourth argument, derivatives up to or-
der n are inspected to find critical points and classify them. For order_size=1
the function returns a single list containing all critical points found. The default is
n = 5. If some critical points are left unclassified one might consider repeating the
process with larger value of n, although the success is not guaranteed.

Examples

Input :

extrema(-2*cos(x)-cos(x)^2,x)

Output :

[0],[pi]

Input :

extrema(x/2-2*sin(x/2),x=-12..12)

Output :

[2*pi/3,-10*pi/3],[10*pi/3,-2*pi/3]

Input :

assume(a>=0);extrema(x^2+a*x,x)

Output :

[-a/2],[]

Input :

extrema(exp(x^2-2x)*ln(x)*ln(1-x),x=0.5)

Output :

[],[0.277769149124]

Input :

extrema(x^3-2x*y+3y^4,[x,y])

Output :

[[12^(1/5)/3,(12^(1/5))^2/6]],[]

Input :

5.53. NONLINEAR OPTIMIZATION 437

assume(a>0);extrema(x/a^2+a*y^2,x+y=a,[x,y])

Output :

[[(2*a^4-1)/(2*a^3),1/(2*a^3)]],[]

Input :

extrema(x^2+y^2,x*y=1,[x=0..inf,y=0..inf])

Output :

[[1,1]],[]

Input :

extrema(x*y*z,x+y+z=1,[x,y,z],order_size=1)

Output :

[[1,0,0],[0,1,0],[0,0,1],[1/3,1/3,1/3]]

5.53.3 Global extrema without using derivatives : nlpsolve

nlpsolve computes the optimum of a (not necessarily differentiable) nonlin-
ear (multivariate) objective function, subject to a set of nonlinear equality and/or
inequality constraints, using the COBYLA algorithm. The command takes the fol-
lowing arguments:

• obj : objective expression

• constr : list of equality and inequality constraints (optional)

• bd : sequence of variable boundaries (optional) : x=a..b, y=c..d, . . .

• opt : sequence of options (optional), which may be one of:

– maximize=true or false (or just maximize)

– nlp_initialpoint=[x=x0,y=y0,...]

– nlp_iterationlimit=n

– assume=nlp_nonnegative

– nlp_precision=eps

nlpsolve returns a list containing the optimal value of the objective and a
vector of optimal values of the decision variables.

The objective is minimized by default, unless maximize or maximize=true
is specified as an option.

Initial point, if given, does not need to be feasible. Note, however, that the
initial value of a variable must not be zero. If the initial point is not given or isn’t
feasible, a feasible starting guess is automatically generated. Note that choosing a
good initial point is needed for obtaining a correct solution in some cases.

Input syntax for nlpsolve resembles that of Maple’s NLPSolve (entering
the objective as a function (univariate case) is not supported, however).

438 CHAPTER 5. THE CAS FUNCTIONS

Examples

Input :

nlpsolve(ln(1+x1ˆ2)-x2,[(1+x1ˆ2)ˆ2+x2ˆ2=4])

Output :

[-1.73205080757,[x1=-4.77142305945e-08,x2=1.73205080757]]

Input :

nlpsolve(-x1*x2*x3,[72-x1-2x2-2x3>=0],
x1=0..20,x2=0..11,x3=0..42)

Output :

[-3300.0,[x1=20.0,x2=11.0,x3=15.0]]

Input :

nlpsolve(xˆ3+2x*y-2yˆ2,x=-10..10,y=-10..10,
nlp_initialpoint=[x=3,y=4],maximize)

Output :

[1050.0,[x=10.0,y=4.99999985519]]

Input :

nlpsolve(sin(x)/x,x=1..30)

Output :

[-0.217233628211,[x=4.49340942383]]

Input :

nlpsolve(2-1/120*x1*x2*x3*x4*x5,
[x1<=1,x2<=2,x3<=3,x4<=4,x5<=5],assume=nlp_nonnegative)

Output :

[1.0,[x1=1.0,x2=2.0,x3=3.0,x4=4.0,x5=5.0]]

5.53.4 Minimax polynomial approximation: minimax

The function minimax is called by entering :

minimax(expr,var=a..b,n,[limit=m])

5.54. DIFFERENT MATRIX NORMS 439

where expr is an univariate expression (e.g. f(x)) to approximate, var is a vari-
able (e.g. x), [a, b] ⊂ R and n ∈ N. Expression expr must be continuous on
[a, b]. The function returns minimax polynomial (e.g. p(x)) of degree n or lower
that approximates expr on [a, b]. The approximation is found by applying Remez
algorithm.

If the fourth argument is specified, m is used to limit the number of iterations
of the algorithm. It is unlimited by default.

The largest absolute error of the approximation p(x), i.e. maxa≤x≤b |f(x) −
p(x)|, is printed in the message area.

Since the coefficients of p are computed numerically, one should avoid setting
n unnecessary high as it may result in a poor approximation due to the roundoff
errors.
Input :

minimax(sin(x),x=0..2*pi,10)

Output :

5.8514210172e-06+0.999777263385*x+0.00140015265723*x^2
-0.170089663733*x^3+0.0042684304696*x^4+
0.00525794766407*x^5+0.00135760214958*x^6

-0.000570502074548*x^7+6.07297119422e-05*x^8
-2.14787414001e-06*x^9-2.97767481643e-15*x^10

The largest absolute error of this approximation is 5.85234008632× 10−6.

5.54 Different matrix norms

See section 5.44.1 for different norms on vectors.

5.54.1 The Frobenius norm: frobenius_norm

The frobenius_norm command takes a matrix A as an argument.
frobenius_norm returns the Frobenius norm of the matrix; namely

√∑
i,j(A[i, j])2.

Input:

B := [[1,2,3],[3,-9,6],[4,5,6]]

then:

frobenius_norm(B)

Output:

sqrt(217)

since
√

12 + 22 + 32 + 32 + (−9)2 + 62 + 42 + 52 + 62 =
√

217.

440 CHAPTER 5. THE CAS FUNCTIONS

5.54.2 l2 matrix norm : norm l2norm

norm (or l2norm) takes as argument a matrix A = aj,k (see also 5.44.1).

norm (or l2norm) returns
√∑

j,k

a2j,k.

Input :

norm([[1,2],[3,-4]])

or :

l2norm([[1,2],[3,-4]])

Output :

sqrt(30)

5.54.3 l∞ matrix norm : maxnorm

maxnorm takes as argument a matrix A = aj,k (see also 5.44.1).
maxnorm returns max(|aj,k|).
Input :

maxnorm([[1,2],[3,-4]])

Output :

4

5.54.4 Matrix row norm : rownorm rowNorm

rownorm (or rowNorm) takes as argument a matrix A = aj,k.
rownorm (or rowNorm) returns maxk(

∑
j |aj,k|).

Input :

rownorm([[1,2],[3,-4]])

or :

rowNorm([[1,2],[3,-4]])

Output :

7

Indeed : max(1 + 2, 3 + 4) = 7

5.54. DIFFERENT MATRIX NORMS 441

5.54.5 Matrix column norm : colnorm colNorm

colnorm (or colNorm) takes as argument a matrix A = aj,k.
colnorm (or colNorm) returns maxj(

∑
k(|aj,k|)).

Input :

colnorm([[1,2],[3,-4]])

or :

colNorm([[1,2],[3,-4]])

Output :

6

Indeed : max(1 + 3, 2 + 4) = 6

5.54.6 The operator norm of a matrix: matrix_norm, l1norm,
l2norm, norm, specnorm, linfnorm

The matrix_norm command takes two arguments, a matrix A and a second ar-
gument of either 1, 2 or inf.
matrix_norm returns the operator norm of the operator associated to the matrix.
(See the reminder below for a discussion of operator norms.) The operator norm
will be relative to the `1, `2 or `∞ norm on Rn, depending on the second argument.
Note that

• matrix_norm(A,1) is the same as l1norm(A) and colnorm(A).

• matrix_norm(A,2) is the same as l2norm(A) and max(SVL(A)).

• matrix_norm(A,inf) is the same as linfnorm(A) and rownorm(A).

Input:

B := [[1,2,3],[3,-9,6],[4,5,6]]

then:

matrix_norm(B,1)

or:

l1norm(B)

or:

colNorm(B)

Output:

16

since max(1 + 3 + 4, 2 + 9 + 5, 3 + 6 + 6) = 16.
Input:

442 CHAPTER 5. THE CAS FUNCTIONS

matrix_norm(B,2)

or:

l2norm(B)

or:

max(SVL(B))

Output:

11.2449175989

Input:

matrix_norm(B,inf)

or:

linfnorm(B)

or:

rowNorm(B)

Output:

18

since max(1 + 2 + 3, 3 + 9 + 6, 4 + 5 + 6) = 18.
Reminder:
In mathematics, particularly functional analysis, a linear function between two
normed spaces f : E → F is continuous exactly when there is a number K such
that ‖f(x)‖F ≤ K‖x‖ for all x in E. For this reason, they are also called bounded
linear functions. The infimum of all such K is defined to be the operator norm of
f , and it depends on the norms of E and F . There are other characterizations of
the operator norm of f , such as the supremum of ‖f(x)‖F over all x in E with
‖x‖E ≤ 1.

If E and F are finite dimensional, then any linear function f : E → F will be
bounded.

Any m × n matrix A = (ajk) corresponds to a linear function f : Rn → Rm
defined by f(x) = Ax. We will refer to the operator norm of f as the operator
norm of A.

• If Rn and Rm both have the `1 norm, namely for x = (x1, x2, . . .) the norm
is ‖x‖ =

∑
j |xj |, the operator norm of A is

max
k

(
∑
j

|ajk|,

which is given by matrix_norm(A,1) and colnorm(A).

5.55. MATRIX REDUCTION 443

• If Rn and Rm both have the `2 norm, namely for x = (x1, x2, . . .) the

norm is ‖x‖ =
√∑

j x
2
j (the usual Euclidean norm), the operator norm of

A is the largest eigenvalue of f∗ ◦ f , where f∗ is the transpose of f , and so
the largest singular value of f , which is given by matrix_norm(A,2),
l2norm(A), and max(SVL(A)).

• If Rn and Rm both have the `∞ norm, namely for x = (x1, x2, . . .) the norm
is |x| = maxj |xj |, the operator norm of A is

max
j

(
∑
k

|ajk|,

which is given by matrix_norm(A,inf) and rownorm(A).

5.55 Matrix reduction

5.55.1 Eigenvalues : eigenvals

eigenvals takes as argument a square matrix A of size n.
eigenvals returns the sequence of the n eigenvalues of A.
Remark : If A is exact, Xcas may not be able to find the exact roots of the
characteristic polynomial, eigenvals will return approximate eigenvalues of A
if the coefficients are numeric or a subset of the eigenvalues if the coefficients are
symbolic.
Input :

eigenvals([[4,1,-2],[1,2,-1],[2,1,0]])

Output :

(2,2,2)

Input :

eigenvals([[4,1,0],[1,2,-1],[2,1,0]])

Output :

(0.324869129433,4.21431974338,1.46081112719)

5.55.2 Eigenvalues : egvl eigenvalues eigVl

egvl (or eigenvalues eigVl) takes as argument a square matrix A of size
n.
egvl (or eigenvalues eigVl) returns the Jordan normal form of A.
Remark : If A is exact, Xcas may not be able to find the exact roots of the char-
acteristic polynomial, eigenvalues will return an approximate diagonalization
of A if the coefficients are numeric.
Input :

egvl([[4,1,-2],[1,2,-1],[2,1,0]])

444 CHAPTER 5. THE CAS FUNCTIONS

Output :

[[2,1,0],[0,2,1],[0,0,2]]

Input :

egvl([[4,1,0],[1,2,-1],[2,1,0]])

Output :

[[0.324869129433,0,0],[0,4.21431974338,0],[0,0,1.46081112719]]

5.55.3 Eigenvectors : egv eigenvectors eigenvects eigVc

egv (or eigenvectors eigenvects eigVc) takes as argument a square
matrix A of size n.
IfA is a diagonalizable matrix, egv (or eigenvectors eigenvects eigVc)
returns a matrix whose columns are the eigenvectors of the matrix A. Otherwise,
it will fail (see also jordan for characteristic vectors).
Input :

egv([[1,1,3],[1,3,1],[3,1,1]])

Output :

[[-1,1,1],[2,1,0],[-1,1,-1]]

Input :

egv([[4,1,-2],[1,2,-1],[2,1,0]])

Output :

"Not diagonalizable at eigenvalue 2"

In complex mode, input :

egv([[2,0,0],[0,2,-1],[2,1,2]])

Output :

[0,1,0],[-1,-2,-1],[i,0,-i]]

5.55.4 Rational Jordan matrix : rat_jordan

rat_jordan takes as argument a square matrix A of size n with exact coeffi-
cients.
rat_jordan returns :

• in Xcas, Mupad or TI mode
a sequence of two matrices : a matrix P (the columns of P are the eigen-
vectors if A is diagonalizable in the field of its coefficients) and the rational
Jordan matrix J of A, that is the most reduced matrix in the field of the
coefficients of A (or the complexified field in complex mode), where

J = P−1AP

5.55. MATRIX REDUCTION 445

• in Maple mode
the Jordan matrix J of A. We can also have the matrix P verifying J =
P−1AP in a variable by passing this variable as second argument, for exam-
ple

rat_jordan([[1,0,0],[1,2,-1],[0,0,1]],’P’)

Remarks

• the syntax Maple is also valid in the other modes, for example, in Xcas
mode input

rat_jordan([[4,1,1],[1,4,1],[1,1,4]],’P’)

Output :

[[1,-1,1/2],[1,0,-1],[1,1,1/2]]

then P returns

[[6,0,0],[0,3,0],[0,0,3]]

• the coefficients of P and J belongs to the same field as the coefficients of A.
For example, in Xcas mode, input :

rat_jordan([[1,0,1],[0,2,-1],[1,-1,1]])

Output :

[[1,1,2],[0,0,-1],[0,1,2]],[[0,0,-1],[1,0,-3],[0,1,4]]

Input (put -pcar(...) because the argument of companion is a unit
polynomial (see 5.55.11)

companion(-pcar([[1,0,1],[0,2,-1],[1,-1,1]],x),x)

Output :

[[0,0,-1],[1,0,-3],[0,1,4]]

Input :

rat_jordan([[1,0,0],[0,1,1],[1,1,-1]])

Output :

[[-1,0,0],[1,1,1],[0,0,1]],[[1,0,0],[0,0,2],[0,1,0]]

446 CHAPTER 5. THE CAS FUNCTIONS

Input :

factor(pcar([[1,0,0],[0,1,1],[1,1,-1]],x))

Output :

-(x-1)*(x^2-2)

Input :

companion((x^2-2),x)

Output :

[[0,2],[1,0]]

• When A is symmetric and has eigenvalues with an multiple order, Xcas re-
turns orthogonal eigenvectors (not always of norm equal to 1) i.e. tran(P)*P
is a diagonal matrix where the diagonal is the square norm of the eigenvec-
tors, for example :

rat_jordan([[4,1,1],[1,4,1],[1,1,4]])

returns :

[[1,-1,1/2],[1,0,-1],[1,1,1/2]],[[6,0,0],[0,3,0],[0,0,3]]

Input in Xcas, Mupad or TI mode :

rat_jordan([[1,0,0],[1,2,-1],[0,0,1]])

Output :

[[0,1,0],[1,0,1],[0,1,1]],[[2,0,0],[0,1,0],[0,0,1]]

Input in Xcas, Mupad or TI mode :

rat_jordan([[4,1,-2],[1,2,-1],[2,1,0]])

Output :

[[[1,2,1],[0,1,0],[1,2,0]],[[2,1,0],[0,2,1],[0,0,2]]]

In complex mode and in Xcas, Mupad or TI mode , input :

rat_jordan([[2,0,0],[0,2,-1],[2,1,2]])

Output :

[[1,0,0],[-2,-1,-1],[0,-i,i]],[[2,0,0],[0,2-i,0],[0,0,2+i]]

Input in Maple mode :

5.55. MATRIX REDUCTION 447

rat_jordan([[1,0,0],[1,2,-1],[0,0,1]],’P’)

Output :

[[2,0,0],[0,1,0],[0,0,1]]

then input :

P

Output :

[[0,1,0],[1,0,1],[0,1,1]]]

5.55.5 Jordan normal form : jordan

jordan takes as argument a square matrix A of size n.
jordan returns :

• in Xcas, Mupad or TI mode
a sequence of two matrices : a matrix P whose columns are the eigenvectors
and characteristic vectors of the matrix A and the Jordan matrix J of A
verifying J = P−1AP ,

• in Maple mode
the Jordan matrix J of A. We can also have the matrix P verifying J =
P−1AP in a variable by passing this variable as second argument, for exam-
ple

jordan([[1,0,0],[0,1,1],[1,1,-1]],’P’)

Remarks

• the Maple syntax is also valid in the other modes, for example, in Xcas
mode input :

jordan([[4,1,1],[1,4,1],[1,1,4]],’P’)

Output :

[[1,-1,1/2],[1,0,-1],[1,1,1/2]]

then P returns

[[6,0,0],[0,3,0],[0,0,3]]

• When A is symmetric and has eigenvalues with multiple orders, Xcas re-
turns orthogonal eigenvectors (not always of norm equal to 1) i.e. tran(P)*P
is a diagonal matrix where the diagonal is the square norm of the eigenvec-
tors, for example :

jordan([[4,1,1],[1,4,1],[1,1,4]])

448 CHAPTER 5. THE CAS FUNCTIONS

returns :

[[1,-1,1/2],[1,0,-1],[1,1,1/2]],[[6,0,0],[0,3,0],[0,0,3]]

Input in Xcas, Mupad or TI mode :

jordan([[1,0,0],[0,1,1],[1,1,-1]])

Output :

[[1,0,0],[0,1,1],[1,1,-1]],[[-1,0,0],[1,1,1],[0,-sqrt(2)-1,sqrt(2)-1]],[[1,0,0],[0,-(sqrt(2)),0],[0,0,sqrt(2)]]

Input in Maple mode :

jordan([[1,0,0],[0,1,1],[1,1,-1]])

Output :

[[1,0,0],[0,-(sqrt(2)),0],[0,0,sqrt(2)]]

then input :

P

Output :

[[-1,0,0],[1,1,1],[0,-sqrt(2)-1,sqrt(2)-1]]

Input in Xcas, Mupad or TI mode :

jordan([[4,1,-2],[1,2,-1],[2,1,0]])

Output :

[[[1,2,1],[0,1,0],[1,2,0]],[[2,1,0],[0,2,1],[0,0,2]]]

In complex mode and in Xcas, Mupad or TI mode , input :

jordan([[2,0,0],[0,2,-1],[2,1,2]])

Output :

[[1,0,0],[-2,-1,-1],[0,-i,i]],[[2,0,0],[0,2-i,0],[0,0,2+i]]

5.55.6 Powers of a square matrix: matpow

The matpow command takes two arguments, a square matrix and an integer.
matpow returns the corresponding power of the matrix, computed using the Jordan
form.
Input:

matpow([[1,2],[2,1]],n)

Output:

[[(3ˆn+(-1)ˆn)/2,(3ˆn-(-1)ˆn)/2],[(3ˆn-(-1)ˆn)/2,(3ˆn+(-1)ˆn)/2]]

Notice that jordan([[1,2],[2,1]]) returns [[1,-1],[1,1]],[[3,0],[0,-1]].

5.55. MATRIX REDUCTION 449

5.55.7 Characteristic polynomial : charpoly

charpoly (or pcar) takes one or two argument(s), a square matrix A of size n
and optionally the name of a symbolic variable.
charpoly returns the characteristic polynomial P of A written as the list of its
coefficients if no variable name was provided or written as an expression with
respect to the variable name provided as second argument.
The characteristic polynomial P of A is defined as

P (x) = det(xI −A)

Input :

charpoly([[4,1,-2],[1,2,-1],[2,1,0]])

Output :

[1,-6,12,-8]

Hence, the characteristic polynomial of this matrix is x3 − 6x2 + 12x − 8 (in-
put normal(poly2symb([1,-6,12,-8],x)) to get its symbolic represen-
tation).
Input :

purge(X):; charpoly([[4,1,-2],[1,2,-1],[2,1,0]],X)

Output :

X^3-6*X^2+12*X-8

5.55.8 Characteristic polynomial using Hessenberg algorithm : pcar_hessenberg

pcar_hessenberg takes as argument a square matrixA of size n and optionally
the name of a symbolic variable.
pcar_hessenberg returns the characteristic polynomial P of A written as the
list of its coefficients if no variable was provided or written in its symbolic form
with respect to the variable name given as second argument, where

P (x) = det(xI −A)

The characteristic polynomial is computed using the Hessenberg algorithm (see
e.g. Cohen) which is more efficient (O(n3) deterministic) if the coefficients of A
are in a finite field or use a finite representation like approximate numeric coeffi-
cients. Note however that this algorithm behaves badly if the coefficients are e.g.
in Q.
Input :

pcar_hessenberg([[4,1,-2],[1,2,-1],[2,1,0]] % 37)

Output :

[1 % 37 ,-6% 37,12 % 37,-8 % 37]

Input :

450 CHAPTER 5. THE CAS FUNCTIONS

pcar_hessenberg([[4,1,-2],[1,2,-1],[2,1,0]] % 37,x)

Output :

x^3-6 %37 *x^2+12 % 37 *x-8 % 37

Hence, the characteristic polynomial of [[4,1,-2],[1,2,-1],[2,1,0]] in Z/37Z is

x3 − 6x2 + 12x− 8

5.55.9 Minimal polynomial : pmin

pmin takes one (resp. two) argument(s): a square matrixA of size n and optionally
the name of a symbolic variable.
pmin returns the minimal polynomial of A written as a list of its coefficients if
no variable was provided, or written in symbolic form with respect to the variable
name given as second argument. The minimal polynomial of A is the polynomial
P having minimal degree such that P (A) = 0.
Input :

pmin([[1,0],[0,1]])

Output :

[1,-1]

Input :

pmin([[1,0],[0,1]],x)

Output :

x-1

Hence the minimal polynomial of [[1,0],[0,1]] is x-1.
Input :

pmin([[2,1,0],[0,2,0],[0,0,2]])

Output :

[1,-4,4]

Input :

pmin([[2,1,0],[0,2,0],[0,0,2]],x)

Output :

x^2-4*x+4

Hence, the minimal polynomial of [[2,1,0],[0,2,0],[0,0,2]] is x2 − 4x+ 4.

5.55. MATRIX REDUCTION 451

5.55.10 Adjoint matrix : adjoint_matrix

adjoint_matrix takes as argument a square matrix A of size n.
adjoint_matrix returns the list of the coefficients of P (the characteristic
polynomial of A), and the list of the matrix coefficients of Q (the adjoint matrix of
A).

The comatrix of a square matrixA of size n is the matrixB defined byA×B =
det(A)× I . The adjoint matrix of A is the comatrix of xI −A. It is a polynomial
of degree n− 1 in x having matrix coefficients. The following relation holds:

P (x)× I = det(xI −A)I = (xI −A)Q(x)

Since the polynomial P (x)× I − P (A) (with matrix coefficients) is also divisible
by x × I − A (by algebraic identities), this proves that P (A) = 0. We also have
Q(x) = I × xn−1 + ...+ B0 where B0 = is the comatrix of A (up to the sign if
n is odd).
Input :

adjoint_matrix([[4,1,-2],[1,2,-1],[2,1,0]])

Output :

[[1,-6,12,-8],
[[[1,0,0],[0,1,0],[0,0,1]], [[-2,1,-2],

[1,-4,-1],[2,1,-6]], [[1,-2,3],[-2,4,2],[-3,-2,7]]]]

Hence the characteristic polynomial is :

P (x) = x3 − 6 ∗ x2 + 12 ∗ x− 8

The determinant of A is equal to −P (0) = 8. The comatrix of A is equal to :

B = Q(0) = [[1,−2, 3], [−2, 4, 2], [−3,−2, 7]]

Hence the inverse of A is equal to :

1/8 ∗ [[1,−2, 3], [−2, 4, 2], [−3,−2, 7]]

The adjoint matrix of A is :

[[x2−2x+1, x−2,−2x+3], [x−2, x2−4x+4,−x+2], [2x−3, x−2, x2−6x+7]]

Input :

adjoint_matrix([[4,1],[1,2]])

Output :

[[1,-6,7],[[[1,0],[0,1]],[[-2,1],[1,-4]]]]

Hence the characteristic polynomial P is :

P (x) = x2 − 6 ∗ x+ 7

452 CHAPTER 5. THE CAS FUNCTIONS

The determinant of A is equal to +P (0) = 7. The comatrix of A is equal to

Q(0) = −[[−2, 1], [1,−4]]

Hence the inverse of A is equal to :

−1/7 ∗ [[−2, 1], [1,−4]]

The adjoint matrix of A is :

−[[x− 2, 1], [1, x− 4]]

5.55.11 Companion matrix of a polynomial : companion

companion takes as argument an unitary polynomial P and the name of its vari-
able.
companion returns the matrix whose characteristic polynomial is P .
If P (x) = xn+an−1x

n−1+...+a−1x+a0, this matrix is equal to the unit matrix of
size n−1 bordered with [0, 0.., 0,−a0] as first row, and with [−a0,−a1,,−an−1]
as last column.
Input :

companion(x^2+5x-7,x)

Output :

[[0,7],[1,-5]]

Input :

companion(x^4+3x^3+2x^2+4x-1,x)

Output :

[[0,0,0,1],[1,0,0,-4],[0,1,0,-2],[0,0,1,-3]]

5.55.12 Hessenberg matrix reduction : hessenberg

hessenberg takes as argument a matrix A.
hessenberg returns a matrixB equivalent to A where the coefficients below the
sub-principal diagonal are zero. B is a Hessenberg matrix.
Input :

hessenberg([[3,2,2,2,2],[2,1,2,-1,-1],[2,2,1,-1,1],
[2,-1,-1,3,1],[2,-1,1,1,2]])

Output :

[[3,8,5,10,2],[2,1,1/2,-5,-1],[0,2,1,8,2],
[0,0,1/2,8,1],[0,0,0,-26,-3]]

Input

A:=[[3,2,2,2,2],[2,1,2,-1,-1],[2,2,1,-1,1],
[2,-1,-1,3,1],[2,-1,1,1,2]] :;

B:= hessenberg(A):; pcar(A); pcar(B)

Output: [1,-7,-66,-24].

5.55. MATRIX REDUCTION 453

5.55.13 Hermite normal form : ihermite

ihermite takes as argument a matrix A with coefficients in Z.
ihermite returns two matrices U and B such that B=U*A, U is invertible in Z
(det(U) = ±1) and B is upper-triangular. Moreover, the absolute value of the
coefficients above the diagonal of B are smaller than the pivot of the column divided
by 2.

The answer is obtained by a Gauss-like reduction algorithm using only opera-
tions of rows with integer coefficients and invertible in Z.
Input :

A:=[[9,-36,30],[-36,192,-180],[30,-180,180]];
U,B:=ihermite(A)

Output :

[[9,-36,30],[-36,192,-180],[30,-180,180]],
[[13,9,7],[6,4,3],[20,15,12]],[[3,0,30],[0,12,0],[0,0,60]]

Application: Compute a Z-basis of the kernel of a matrix having integer
coefficients
Let M be a matrix with integer coefficients.
Input :

(U,A):=ihermite(transpose(M)).

This returns U and A such that A=U*transpose(M) hence
transpose(A)=M*transpose(U).
The columns of transpose(A) which are identically 0 (at the right, coming
from the rows of A which are identically 0 at the bottom) correspond to columns
of transpose(U) which form a basis of Ker(M). In other words, the rows of
A which are identically 0 correspond to rows of U which form a basis of Ker(M).
Example
Let M:=[[1,4,7],[2,5,8],[3,6,9]]. Input

U,A:=ihermite(tran(M))

Output

U:=[[-3,1,0],[4,-1,0],[-1,2,-1]] and
A:=[[1,-1,-3],[0,3,6],[0,0,0]]

Since A[2]=[0,0,0], a Z-basis of Ker(M) is U[2]=[-1,2,-1].
Verification M*U[2]=[0,0,0].

5.55.14 Smith normal form in Z: ismith

ismith takes as argument a matrix with coefficients in Z.
ismith returns three matrices U,B and V such that B=U*A*V, U and V are in-
vertible in Z, B is diagonal, and B[i,i] divides B[i+1,i+1]. The coefficients
B[i,i] are called invariant factors, they are used to describe the structure of finite
abelian groups.
Input :

454 CHAPTER 5. THE CAS FUNCTIONS

A:=[[9,-36,30],[-36,192,-180],[30,-180,180]];
U,B,V:=ismith(A)

Output :

[[-3,0,1],[6,4,3],[20,15,12]],
[[3,0,0],[0,12,0],[0,0,60]],
[[1,24,-30],[0,1,0],[0,0,1]]

The invariant factors are 3, 12 and 60.

5.55.15 Smith normal form: smith

The smith command takes one argument, a square matrix A with elements in a
field K.
smith returns matrices U, V, and D, where U and V are invertible, D is diagonal,
and D = U*A*V.
Input:

M:=([[5,-2,3,6],[1,-3,1,3],[7,-6,-4,7],[-2,-4,-3,0]])
% 17

A := x*idn(4) -M

Output:

[[x-5 % 17,2 % 17,-3 % 17,-6 % 17],[-1 % 17,x+3 %
17,-1 % 17,-3 % 17],[-7 % 17,6 % 17,x+4 % 17,-7 %

17],[2 % 17,4 % 17,3 % 17,x]]

Input:

U, D, V := smith(A)

then:

U

Output:

[[0 % 17,-1 % 17,0 % 17,0 % 17],[0 % 17,0 % 17,6 %
17,4 % 17],[(-2*x+5) % 17,(-4*x-5) % 17,(-3*x-6) %

17,(xˆ2-3*x+6) % 17],[(2*xˆ2+5*x+6) % 17,(4*xˆ2+8*x+2)
% 17,(3*xˆ2+4*x+1) % 17,(-xˆ3-2*xˆ2+2*x-6) % 17]]

Input:

V

Output:

[[1 % 17,(x+3) % 17,(-6*xˆ2-3*x-7) %
17,(6*xˆ5+2*xˆ4-2*xˆ3+xˆ2-8*x+6) % 17],[0 % 17,1 %
17,(-6*x-2) % 17,(6*xˆ4+xˆ3-6*xˆ2+5*x-6) % 17],[0 %

17,0 % 17,1 % 17,(-xˆ3+3*xˆ2+7) % 17],[0 % 17,0 % 17,0
% 17,1 % 17]]

5.56. ISOMETRIES 455

Input:

D

Output:

[[1 % 17,0 % 17,0 % 17,0 % 17],[0 % 17,1 % 17,0 % 17,0
% 17],[0 % 17,0 % 17,1 % 17,0 % 17],[0 % 17,0 % 17,0 %

17,(-xˆ4-2*xˆ3+8*xˆ2-3*x+2) % 17]]

We can check this:
Input:

normal(U*A*V-D)

Output:

[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]

Input:

B:=[[xˆ2+x-1,1,0,1],[-1,x,0,-1],[0,xˆ2+1,x,0],[1,0,1,xˆ2+x+1]]
% 3

L:=smith(B)

Output:

[[0 % 3,-1 % 3,0 % 3,0 % 3],[1 % 3,0 % 3,0 %
3,(-xˆ2-x+1) % 3],[0 % 3,(xˆ2+1) % 3,(-x) % 3,(xˆ2+1)

% 3],[-1 % 3,(-xˆ4-xˆ3+x+1) % 3,(xˆ3+xˆ2-x+1) %
3,(-xˆ4-xˆ3+xˆ2-x) % 3]],[[1 % 3,0 % 3,0 % 3,0 % 3],[0
% 3,1 % 3,0 % 3,0 % 3],[0 % 3,0 % 3,1 % 3,0 % 3],[0 %

3,0 % 3,0 % 3,(-xˆ6+xˆ5+x+1) % 3]],[[1 % 3,x %
3,(xˆ3+xˆ2-x) % 3,(-xˆ7+xˆ6+xˆ4+xˆ3+xˆ2+x-1) % 3],[0 %
3,1 % 3,(xˆ2+x-1) % 3,(-xˆ6+xˆ5+xˆ3+xˆ2+x+1) % 3],[0 %
3,0 % 3,1 % 3,(-xˆ4-xˆ3-xˆ2-x) % 3],[0 % 3,0 % 3,0 %

3,1 % 3]]

5.56 Isometries

5.56.1 Recognize an isometry : isom

isom takes as argument the matrix of a linear function in dimension 2 or 3.
isom returns :

• if the linear function is a direct isometry,
the list of the characteristic elements of this isometry and +1,

• if the linear function is an indirect isometry,
the list of the characteristic elements of this isometry and -1

• if the linear function is not an isometry,
[0].

456 CHAPTER 5. THE CAS FUNCTIONS

Input :

isom([[0,0,1],[0,1,0],[1,0,0]])

Output :

[[1,0,-1],-1]

which means that this isometry is a 3-d symmetry with respect to the plane x− z =
0.
Input :

isom(sqrt(2)/2*[[1,-1],[1,1]])

Output :

[pi/4,1]

Hence, this isometry is a 2-d rotation of angle
π

4
.

Input :

isom([[0,0,1],[0,1,0],[0,0,1]])

Output :

[0]

therefore this transformation is not an isometry.

5.56.2 Find the matrix of an isometry : mkisom

mkisom takes as argument :

• In dimension 3, the list of characteristic elements (axis direction, angle for a
rotation or normal to the plane for a symmetry) and +1 for a direct isometry
or -1 an indirect isometry.

• In dimension 2, a characteristic element (an angle or a vector) and +1 for a
direct isometry (rotation) or -1 for an indirect isometry (symmetry).

mkisom returns the matrix of the corresponding isometry.
Input :

mkisom([[-1,2,-1],pi],1)

Output the matrix of the rotation of axis [−1, 2,−1] and angle π:

[[-2/3,-2/3,1/3],[-2/3,1/3,-2/3],[1/3,-2/3,-2/3]]

Input :

mkisom([pi],-1)

Output the matrix of the symmetry with respect to O :

[[-1,0,0],[0,-1,0],[0,0,-1]]

5.57. MATRIX FACTORIZATIONS 457

Input :

mkisom([1,1,1],-1)

Output the matrix of the symmetry with respect to the plane x+ y + z = 0 :

[[1/3,-2/3,-2/3],[-2/3,1/3,-2/3],[-2/3,-2/3,1/3]]

Input :

mkisom([[1,1,1],pi/3],-1)

Output the matrix of the product of a rotation of axis [1, 1, 1] and angle π
3 and of a

symmetry with respect to the plane x+ y + z = 0:

[[0,-1,0],[0,0,-1],[-1,0,0]]

Input :

mkisom(pi/2,1)

Output the matrix of the plane rotation of angle π
2 :

[[0,-1],[1,0]]

Input :

mkisom([1,2],-1)

Output matrix of the plane symmetry with respect to the line of equation x+ 2y =
0:

[[3/5,-4/5],[-4/5,-3/5]]

5.57 Matrix factorizations

Note that most matrix factorization algorithms are implemented numerically, only
a few of them will work symbolically.

5.57.1 Cholesky decomposition : cholesky

cholesky takes as argument a square symmetric positive definite matrix M of
size n.
cholesky returns a symbolic or numeric matrix P. P is a lower triangular matrix
such that :

tran(P)*P=M

Input :

cholesky([[1,1],[1,5]])

Output :

[[1,0],[1,2]]

458 CHAPTER 5. THE CAS FUNCTIONS

Input :

cholesky([[3,1],[1,4]])

Output :

[[sqrt(3),0],[(sqrt(3))/3,(sqrt(33))/3]]

Input :

cholesky([[1,1],[1,4]])

Output :

[[1,0],[1,sqrt(3)]]

Warning If the matrix argument A is not a symmetric matrix, cholesky does
not return an error, instead cholesky will use the symmetric matrix B of the the
quadratic form q corresponding to the (non symmetric) bilinear form of the matrix
A.
Input :

cholesky([[1,-1],[-1,4]])

or :

cholesky([[1,-3],[1,4]])

Output :

[[1,0],[-1,sqrt(3)]]

5.57.2 QR decomposition : qr

qr takes as argument a numeric square matrix A of size n.
qr factorizes numerically this matrix as Q ∗ R where Q is an orthogonal matrix
(tQ ∗ Q = I) and R is an upper triangular matrix. qr(A) returns only R, run
Q=A*inv(R) to get Q.
Input :

qr([[3,5],[4,5]])

Output is the matrix R :

[[-5,-7],[0,-1]]

Input :

qr([[1,2],[3,4]])

Output is the matrix R :

[[-3.16227766017,-4.42718872424],[0,-0.632455532034]]

5.57. MATRIX FACTORIZATIONS 459

5.57.3 QR decomposition (for TI compatibility) : QR

QR takes as argument a numeric square matrix A of size n and two variable names,
var1 and var2.
QR factorizes this matrix numerically as Q ∗ R where Q is an orthogonal matrix
(tQ ∗ Q = I) and R is an upper triangular matrix. QR(A,var1,var2) returns
R, stores Q=A*inv(R) in var1 and R in var2.
Input :

QR([[3,5],[4,5]],Q,R)

Output the matrix R :

[[-5,-7],[0,-1]]

Then input :

Q

Output the matrix Q :

[[-0.6,-0.8],[-0.8,0.6]]

5.57.4 LQ decomposition (HP compatible): LQ

The LQ command takes a matrix A as argument.
LQ returns three matrices L, Q and P. If A is an m × n matrix, then L will be an
m × n lower triangular matrix, Q will be an n × n orthogonal matrix, and P will
be an n× n permutation matrix.
Input:

L, Q, P := LQ([[4,0,0],[8,-4,3]])

Output:

[[[4.0,0.0,0.0],[8.0,5.0,0.0]],[[1.0,0.0,0.0],[0.0,-0.8,0.6],[0.0,-0.6,-0.8]],[[1,0,0],[0,1,0],[0,0,1]]]

Here, L*Q is the same as P*A.
Input:

L,Q,P:=LQ([[24,18],[30,24]])

or:

[[[-30.0,0.0],[-38.4,-1.2]],[[-0.8,-0.6],[0.6,-0.8]],[[1,0],[0,1]]]

Again, L*Q = P*A.

460 CHAPTER 5. THE CAS FUNCTIONS

5.57.5 LU decomposition : lu

lu takes as argument a square matrix A of size n (numeric or symbolic).
lu(A) returns a permutation p of 0..n− 1, a lower triangular matrix L, with 1s on
the diagonal, and an upper triangular matrix U , such that :

• P ∗A = L ∗ U where P is the permutation matrix associated to p (that may
be computed by P:=permu2mat(p)),

• the equation A ∗ x = B is equivalent to :

L∗U∗x = P∗B = p(B) where p(B) = [bp(0), bp(1)..bp(n−1)], B = [b0, b1..bn−1]

The permutation matrix P is defined from p by :

P [i, p(i)] = 1, P [i, j] = 0 if j 6= p(i)

In other words, it is the identity matrix where the rows are permuted according
to the permutation p. The function permu2mat may be used to compute P
(permu2mat(p) returns P).
Input :

(p,L,U):=lu([[3.,5.],[4.,5.]])

Output :

[1,0],[[1,0],[0.75,1]],[[4,5],[0,1.25]]

Here n = 2, hence :

P [0, p(0)] = P2[0, 1] = 1, P [1, p(1)] = P2[1, 0] = 1, P = [[0, 1], [1, 0]]

Verification :
Input :

permu2mat(p)*A; L*U

Output:

[[4.0,5.0],[3.0,5.0]],[[4.0,5.0],[3.0,5.0]]

Note that the permutation is different for exact input (the choice of pivot is the
simplest instead of the largest in absolute value).
Input :

lu([[1,2],[3,4]])

Output :

[1,0],[[1,0],[3,1]],[[1,2],[0,-2]]

Input :

lu([[1.0,2],[3,4]])

Output :

[1,0],[[1,0],[0.333333333333,1]],[[3,4],
[0,0.666666666667]]

5.57. MATRIX FACTORIZATIONS 461

5.57.6 LU decomposition (for TI compatibility) : LU

LU takes as argument a numeric square matrixA of size n and three variable names,
var1, var2 and var3.
LU(A,var1,var2,var3) returns P , a permutation matrix, and stores :

• a lower triangular matrix L, with 1 on the diagonal, in var1,

• an upper triangular matrix U in var2,

• the permutation matrix P , result of the command LU, in var3.

These matrices are such that

the equation A ∗ x = B is equivalent to L ∗ U ∗ x = P ∗B.

Input :

LU([[3,5],[4,5]],L,U,P)

Output :

[[0,1],[1,0]]

Input :

L

Output :

[[1,0],[0.75,1]]

Input :

U

Output :

[[4,5],[0,1.25]]

Input :

P

Output :

[[0,1],[1,0]]

462 CHAPTER 5. THE CAS FUNCTIONS

5.57.7 Singular values (HP compatible): SVL, svl

The SVL (or svl) command takes a square matrix as argument.
SVL returns the singular values of the matrix.

The singular values of a matrix A are the positive square roots of the eigenval-
ues of A ·AT . So, if A is symmetric, the singular values are the absolute values of
the eigenvalues of A.
Input:

SVL([[1,2],[3,4]])

or:

svl([[1,2],[3,4]])

Output:

[0.365966190626,5.46498570422]

Input:

evalf(sqrt(eigenvals([[1,2],[3,4]]*[[1,3],[2,4]])))

Output:

5.46498570422,0.365966190626

Input:

SVL([[1,4],[4,1]])

or:

svl([[1,4],[4,1]])

or:

[5.0,3.0]

or:

abs(eigenvals([[1,4],[4,1]]))

Output:

5,3

5.57.8 Singular value decomposition : svd

svd (singular value decomposition) takes as argument a numeric square matrix of
size n.
svd(A) returns an orthogonal matrix U , the diagonal s of a diagonal matrix S
and an orthogonal matrix Q (tQ ∗Q = I) such that :

A = UStQ

Input :

5.57. MATRIX FACTORIZATIONS 463

svd([[1,2],[3,4]])

Output :

[[-0.404553584834,-0.914514295677],[-0.914514295677,
0.404553584834]], [5.46498570422,0.365966190626],
[[-0.576048436766,0.81741556047],[-0.81741556047,

-0.576048436766]]

Input :

(U,s,Q):=svd([[3,5],[4,5]])

Output :

[[-0.672988041811,-0.739653361771],[-0.739653361771,
0.672988041811]],[8.6409011028,0.578643354497],
[[-0.576048436766,0.81741556047],[-0.81741556047,

-0.576048436766]]

Verification :
Input :

U*diag(s)*tran(Q)

Output :

[[3.0,5.0],[4.0,5.0]]

5.57.9 Short basis of a lattice : lll

lll takes as argument an invertible matrix M with integer coefficients.
lll returns (S,A,L,O) such that:

• the rows of S is a short basis of the Z-module generated by the rows of M ,

• A is the change-of-basis matrix from the short basis to the basis defined by
the rows of M (A ∗M = S),

• L is a lower triangular matrix, the modulus of its non diagonal coefficients
are less than 1/2,

• O is a matrix with orthogonal rows such that L ∗O = S.

Input :

(S,A,L,O):=lll(M:=[[2,1],[1,2]])

Output :

[[-1,1],[2,1]], [[-1,1],[1,0]], [[1,0],[1/-2,1]],
[[-1,1],[3/2,3/2]]

464 CHAPTER 5. THE CAS FUNCTIONS

Hence :
S=[[-1,1],[2,1]]
A=[[-1,1],[1,0]]
L=[[1,0],[1/-2,1]]
O=[[-1,1],[3/2,3/2]]
Hence the original basis is v1=[2,1], v2=[1,2]
and the short basis is w1=[-1,1], w2=[2,1].
Since w1=-v1+v2 and w2=v1 then :
A:=[[-1,1],[1,0]], A*M==S and L*O==S.
Input :

(S,A,L,O):=lll([[3,2,1],[1,2,3],[2,3,1]])

Output :

S=[[-1,1,0],[-1,-1,2],[3,2,1]]

A= [[-1,0,1],[0,1,-1],[1,0,0]]

L= [[1,0,0],[0,1,0],[(-1)/2,(-1)/2,1]]

O= [[-1,1,0],[-1,-1,2],[2,2,2]]

Input :
M:=[[3,2,1],[1,2,3],[2,3,1]]
Properties :
A*M==S and L*O==S

5.58 Quadratic forms

5.58.1 Matrix of a quadratic form : q2a

q2a takes two arguments : the symbolic expression of a quadratic form q and a
vector of variable names.
q2a returns the matrix A of q.
Input :

q2a(2*x*y,[x,y])

Output :

[[0,1],[1,0]]

5.58.2 Transform a matrix into a quadratic form : a2q

a2q takes two arguments : the symmetric matrix A of a quadratic form q and a
vector of variable names of the same size.
a2q returns the symbolic expression of the quadratic form q.
Input :

a2q([[0,1],[1,0]],[x,y])

5.58. QUADRATIC FORMS 465

Output :

2*x*y

Input :

a2q([[1,2],[2,4]],[x,y])

Output :

x^2+4*x*y+4*y^2

5.58.3 Reduction of a quadratic form : gauss

gauss takes two arguments : a symbolic expression representing a quadratic form
q and a vector of variable names.
gauss returns q written as sum or difference of squares using Gauss algorithm.
Input :

gauss(2*x*y,[x,y])

Output :

(y+x)^2/2+(-(y-x)^2)/2

5.58.4 The conjugate gradient algorithm: conjugate_gradient

The conjugate_gradient command takes two mandatory arguments and two
optional arguments. The mandatory arguments are an n× n positive definite sym-
metric matrix A and a vector y of length n. The optional arguments are a vector
x0 of length n and a positive number ε.
conjugate_gradient uses the conjugate gradient algorithm to return the so-
lution to Ax = y to within ε or epsilon. The vector x0 is an optional initial
approximation.
Input:

conjugate_gradient([[2,1],[1,5]],[1,0])

Output:

[5/9,-1/9]

Input:

conjugate_gradient([[2,1],[1,5]],[1,0],[0.55,-0.11],1e-2)

Output:

[0.555,-0.11]

Input:

conjugate_gradient([[2,1],[1,5]],[1,0],[0.55,-0.11],1e-10)

Output:

[0.555555555556,-0.111111111111]

466 CHAPTER 5. THE CAS FUNCTIONS

5.58.5 Gram-Schmidt orthonormalization : gramschmidt

gramschmidt takes one or two arguments :

• a matrix viewed as a list of row vectors, the scalar product being the canoni-
cal scalar product, or

• a list of elements that is a basis of a vector subspace, and a function that
defines a scalar product on this vector space.

gramschmidt returns an orthonormal basis for this scalar product.
Input :

normal(gramschmidt([[1,1,1],[0,0,1],[0,1,0]]))

Or input :

normal(gramschmidt([[1,1,1],[0,0,1],[0,1,0]],dot))

Output :

[[(sqrt(3))/3,(sqrt(3))/3,(sqrt(3))/3],[(-(sqrt(6)))/6,
(-(sqrt(6)))/6,(sqrt(6))/3],[(-(sqrt(2)))/2,(sqrt(2))/2,0]]

Example
We define a scalar product on the vector space of polynomials by:

P ·Q =

∫ 1

−1
P (x)Q(x)dx

Input :

gramschmidt([1,1+x],(p,q)->integrate(p*q,x,-1,1))

Or define the function p_scal, input :
p_scal(p,q):=integrate(p*q,x,-1,1)
then input :

gramschmidt([1,1+x],p_scal)

Output :

[1/(sqrt(2)),(1+x-1)/sqrt(2/3)]

5.58.6 Graph of a conic : conic

conic takes as argument the equation of a conic with respect to x, y. You may
also specify the names of the variables as second and third arguments or as a vector
as second argument.
conic draws this conic.
Input:

conic(2*xˆ2+2*x*y+2*yˆ2+6*x)

Output:

5.58. QUADRATIC FORMS 467

Ellipsis of center (-2,1)

Remark:
See also reduced_conic for the parametric equation of the conic.

5.58.7 Conic reduction : reduced_conic

reduced_conic takes two arguments : the equation of a conic and a vector of
variable names.
reduced_conic returns a list whose elements are:

• the origin of the conic,

• the matrix of a basis in which the conic is reduced,

• 0 or 1 (0 if the conic is degenerate),

• the reduced equation of the conic

• a vector of its parametric equations.

Input:

reduced_conic(2*xˆ2+2*x*y+2*yˆ2+5*x+3,[x,y])

Output:

[[-5/3,5/6],[[-1/(sqrt(2)),1/(sqrt(2))],[-1/(sqrt(2)),
-1/(sqrt(2))]],1,3*x^2+y^2+-7/6,[[(-10+5*i)/6+

(1/(sqrt(2))+(i)/(sqrt(2)))*((sqrt(14)*cos(‘ t‘))/6+
((i)*sqrt(42)*sin(‘ t‘))/6),‘ t‘,0,2*pi,(2*pi)/60]]]

Which means that the conic is not degenerate, its reduced equation is

3x2 + y2 − 7/6 = 0

its origin is−5/3+5∗i/6, its axes are parallel to the vectors (−1, 1) and (−1,−1).
Its parametric equation is

−10 + 5 ∗ i
6

+
(1 + i)√

2
∗ (
√

14 ∗ cos(t) + i ∗
√

42 ∗ sin(t))

6

where the suggested parameter values for drawing are t from 0 to 2π with tstep=
2π/60.

Remark :
Note that if the conic is degenerate and is made of 1 or 2 line(s), the lines are not
given by their parametric equation but by the list of two points of the line.
Input:

468 CHAPTER 5. THE CAS FUNCTIONS

reduced_conic(x^2-y^2+3*x+y+2)

Output:

[[(-3)/2,1/2],[[1,0],[0,1]],0,x^;2-y^2,
[[(-1+2*i)/(1-i),(1+2*i)/(1-i)],
[(-1+2*i)/(1-i),(-1)/(1-i)]]]

5.58.8 Graph of a quadric: quadric

quadric takes as arguments the expression of a quadric with respect to x, y, z.
You may also specify the variables as a vector (second argument) or as second,
third and fourth arguments.
quadric draws this quadric.
Input:

quadric(7*xˆ2+4*yˆ2+4*zˆ2+4*x*y-
4*x*z-2*y*z-4*x+5*y+4*z-18)

Output:

Ellipsoid of center [0.407407407407,-0.962962962963,-0.537037037037]

See also reduced_quadric for the parametric equation of the quadric.

5.58.9 Quadric reduction : reduced_quadric

reduced_quadric takes two arguments : the equation of a quadric and a vector
of variable names.
reduced_quadric returns a list whose elements are:

• the origin,

• the matrix of a basis where the quadric is reduced,

• 0 or 1 (0 if the quadric is degenerate),

• the reduced equation of the quadric

• a vector with its parametric equations.

Warning ! u,vwill be used as parameters of the parametric equations : these vari-
ables should not be assigned (purge them before calling reduced_quadric).
Input :

5.58. QUADRATIC FORMS 469

reduced_quadric(7*x^2+4*y^2+4*z^2+
4*x*y-4*x*z-2*y*z-4*x+5*y+4*z-18)

Output is a list containing :

• The origin (center of symmetry) of the quadric

[11/27,(-26)/27,(-29)/54],

• The matrix of the basis change:

[[(sqrt(6))/3,(sqrt(5))/5,(-(sqrt(30)))/15],
[(sqrt(6))/6,0,(sqrt(30))/6],

[(-(sqrt(6)))/6,(2*sqrt(5))/5,(sqrt(30))/30]],

• 1 hence the quadric is not degenerated

• the reduced equation of the quadric :

0,9*x^2+3*y^2+3*z^2+(-602)/27,

• The parametric equations (in the original frame) are :

[[(sqrt(6)*sqrt(602/243)*sin(u)*cos(v))/3+
(sqrt(5)*sqrt(602/81)*sin(u)*sin(v))/5+

((-(sqrt(30)))*sqrt(602/81)*cos(u))/15+11/27,
(sqrt(6)*sqrt(602/243)*sin(u)*cos(v))/6+

(sqrt(30)*sqrt(602/81)*cos(u))/6+(-26)/27,
((-(sqrt(6)))*sqrt(602/243)*sin(u)*cos(v))/6+
(2*sqrt(5)*sqrt(602/81)*sin(u)*sin(v))/5+

(sqrt(30)*sqrt(602/81)*cos(u))/30+(-29)/54], u=(0
.. pi),v=(0.. (2*pi)),ustep=(pi/20),

vstep=((2*pi)/20)]]

Hence the quadric is an ellipsoid and its reduced equation is :

9 ∗ x2 + 3 ∗ y2 + 3 ∗ z2 + (−602)/27 = 0

after the change of origin [11/27, (−26)/27, (−29)/54], the matrix of basis change
P is : 

√
6

3

√
5

5
−
√

30

15√
6

6
0

√
30

6

−
√

6

6

2
√

5

5

√
30

30


Its parametric equation is :

x =

√
6
√

602
243 sin(u) cos(v)

3
+

√
5
√

602
81 sin(u) sin(v)

5
−

√
30
√

602
81 cos(u)

15
+

11

27

y =

√
6
√

602
243 sin(u) cos(v)

6
+

√
30
√

602
81 cos(u))

6
− 26

27

z =
−
√

6
√

602
243 ∗ sin(u) cos(v)

6
+

2
√

5
√

602
81 sin(u) sin(v)

5
+

√
30
√

602
81 cos(u)

30
− 29

54

470 CHAPTER 5. THE CAS FUNCTIONS

Remark :
Note that if the quadric is degenerate and made of 1 or 2 plane(s), each plane is
not given by its parametric equation but by the list of a point of the plane and of a
normal vector to the plane.
Input :

reduced_quadric(x^2-y^2+3*x+y+2)

Output :

[[(-3)/2,1/2,0],[[1,0,0],[0,1,0],[0,0,-1]],0,x^2-y^2,
[hyperplan([1,1,0],[(-3)/2,1/2,0]),
hyperplan([1,-1,0],[(-3)/2,1/2,0])]]

5.59 Multivariate calculus

5.59.1 Gradient : derive deriver diff grad

derive (or diff or grad) takes two arguments : an expression F of n real
variables and a vector of these variable names.
derive returns the gradient of F , where the gradient is the vector of all partial
derivatives, for example in dimension n = 3

−−→
grad(F) = [

∂F

∂x
,
∂F

∂y
,
∂F

∂z
]

Example
Find the gradient of F (x, y, z) = 2x2y − xz3.
Input :

derive(2*x^2*y-x*z^3,[x,y,z])

or :

diff(2*x^2*y-x*z^3,[x,y,z])

or :

grad(2*x^2*y-x*z^3,[x,y,z])

Output :

[2*2*x*y-z^3,2*x^2,-(x*3*z^2)]

Output after simplification with normal(ans()) :

[4*x*y-z^3,2*x^2,-(3*x*z^2)]

To find the critical points of F (x, y, z) = 2x2y − xz3, input :

solve(derive(2*x^2*y-x*z^3,[x,y,z]),[x,y,z])

Output :

[[0,y,0]]

5.59. MULTIVARIATE CALCULUS 471

5.59.2 Laplacian : laplacian

laplacian takes two arguments : an expression F of n real variables and a vec-
tor of these variable names.
laplacian returns the Laplacian ofF , that is the sum of all second partial deriva-
tives, for example in dimension n = 3:

∇2(F) =
∂2F

∂x2
+
∂2F

∂y2
+
∂2F

∂z2

Example
Find the Laplacian of F (x, y, z) = 2x2y − xz3.
Input :

laplacian(2*x^2*y-x*z^3,[x,y,z])

Output :

4*y+-6*x*z

5.59.3 Hessian matrix : hessian

hessian takes two arguments : an expression F of n real variables and a vector
of these variable names.
hessian returns the hessian matrix of F , that is the matrix of the derivatives of
order 2.
Example
Find the hessian matrix of F (x, y, z) = 2x2y − xz3.
Input :

hessian(2*x^2*y-x*z^3 , [x,y,z])

Output :

[[4*y,4*x,-(3*z^2)],[2*2*x,0,0],[-(3*z^2),0,x*3*2*z]]

To have the hessian matrix at the critical points, first input :

solve(derive(2*x^2*y-x*z^3,[x,y,z]),[x,y,z])

Output is the critical points :

[[0,y,0]]

Then, to have the hessian matrix at this points, input :

subst([[4*y,4*x,-(3*z^2)],[2*2*x,0,0],
[-(3*z^2),0,6*x*z]],[x,y,z],[0,y,0])

Output :

[[4*y,4*0,-(3*0^2)],[4*0,0,0],[-(3*0^2),0,6*0*0]]

and after simplification :

[[4*y,0,0],[0,0,0],[0,0,0]]

472 CHAPTER 5. THE CAS FUNCTIONS

5.59.4 Divergence : divergence

divergence takes two arguments : a vector field of dimension n depending on
n real variables.
divergence returns the divergence of F that is the sum of the derivative of the
k-th component with respect to the k-th variable. For example in dimension n = 3:

divergence([A,B,C],[x,y,z])=
∂A

∂x
+
∂B

∂y
+
∂C

∂z

Input :

divergence([x*z,-y^2,2*x^y],[x,y,z])

Output :

z+-2*y

5.59.5 Rotational : curl

curl takes two arguments : a 3-d vector field depending on 3 variables.
curl returns the rotational of the vector, defined by:

curl([A,B,C],[x,y,z])=[
∂C

∂y
− ∂B

∂z
,
∂A

∂z
− ∂C

∂x
,
∂B

∂x
− ∂A

∂y
]

Note that n must be equal to 3.
Input :

curl([x*z,-y^2,2*x^y],[x,y,z])

Output :

[2*x^y*log(x),x-2*y*x^(y-1),0]

5.59.6 Potential : potential

potential takes two arguments : a vector field
−→
V in Rn with respect to n real

variables and the vector of these variable names.
potential returns, if it is possible, a function U such that

−−→
grad(U) =

−→
V . When

it is possible, we say that
−→
V derives the potential U , and U is defined up to a

constant.
potential is the reciprocal function of derive.
Input :

potential([2*x*y+3,x^2-4*z,-4*y],[x,y,z])

Output :

2*y*x^2/ 2+3*x+(x^2-4*z-2*x^2/2)*y

Note that in R3 a vector
−→
V is a gradient if and only if its rotational is zero i.e. if

curl(V)=0. In time-independent electro-magnetism,
−→
V =
−→
E is the electric field

and U is the electric potential.

5.60. EQUATIONS 473

5.59.7 Conservative flux field : vpotential

vpotential takes two arguments : a vector field
−→
V in Rn with respect to n real

variables and the vector of these variable names.
vpotential returns, if it is possible, a vector

−→
U such that

−→
curl(
−→
U) =

−→
V . When

it is possible we say that
−→
V is a conservative flux field or a solenoidal field. The

general solution is the sum of a particular solution and of the gradient of an arbi-
trary function, Xcas returns a particular solution with zero as first component.
vpotential is the reciprocal function of curl.
Input :

vpotential([2*x*y+3,x^2-4*z,-2*y*z],[x,y,z])

Output :

[0,(-(2*y))*z*x,-x^3/3-(-(4*z))*x+3*y]

In R3, a vector field
−→
V is a rotational if and only if its divergence is zero

(divergence(V,[x,y,z])=0). In time-independent electro-magnetism,
−→
V =−→

B is the magnetic field and
−→
U =
−→
A is the potential vector.

5.60 Equations

5.60.1 Define an equation : equal

equal takes as argument the two members of an equation.
equal returns this equation. It is the prefixed version of =
Input :

equal(2x-1,3)

Output :

(2*x-1)=3

We can also directly write (2*x-1)=3.

5.60.2 Transform an equation into a difference : equal2diff

equal2diff takes as argument an equation.
equal2diff returns the difference of the two members of this equation.
Input :

equal2diff(2x-1=3)

Output :

2*x-1-3

474 CHAPTER 5. THE CAS FUNCTIONS

5.60.3 Transform an equation into a list : equal2list

equal2list takes as argument an equation.
equal2list returns the list of the two members of this equation.
Input :

equal2list(2x-1=3)

Output :

[2*x-1,3]

5.60.4 The left member of an equation : left gauche lhs

left or lhs takes as argument an equation or an interval.
left or lhs returns the left member of this equation or the left bound of this
interval.
Input :

left(2x-1=3)

Or input:

lhs(2x-1=3)

Output :

2*x-1

Input :

left(1..3)

Or input:

lhs(1..3)

Output :

1

5.60.5 The right member of an equation : right droit rhs

right or rhs takes as argument an equation or an interval.
right or rhs returns the right member of this equation or the right bound of this
interval.
Input :

right(2x-1=3)

or :

rhs(2x-1=3)

Output :

5.60. EQUATIONS 475

3

Input :

right(1..3)

or :

rhs(1..3)

Output :

3

5.60.6 Solving equation(s): solve

solve solves an equation or a system of polynomial equations. It takes 2 argu-
ments:

• Solving an equation
solve takes as arguments an equation between two expressions or an ex-
pression (=0 is omitted), and a variable name (by default x).
solve solves this equation.

• Solving a system of polynomial equations
solve takes as arguments two vectors : a vector of polynomial equations
and a vector of variable names.
solve solves this polynomial equation system.

Remarks:

• In real mode, solve returns only real solutions. To have the complex so-
lutions, switch to complex mode, e.g. by checking Complex in the cas
configuration, or use the cSolve command.

• For trigonometric equations, solve returns by default the principal solu-
tions. To have all the solutions check All_trig_sol in the cas configu-
ration.

Examples :

• Solve x4 − 1 = 3
Input :

solve(x^4-1=3)

Output in real mode :

[sqrt(2),-(sqrt(2))]

Output in complex mode :

[sqrt(2),-(sqrt(2)),(i)*sqrt(2),-((i)*sqrt(2))]

476 CHAPTER 5. THE CAS FUNCTIONS

• Solve exp(x) = 2
Input :

solve(exp(x)=2)

Output in real mode :

[log(2)]

• Find x, y such that x+ y = 1, x− y = 0
Input :

solve([x+y=1,x-y],[x,y])

Output :

[[1/2,1/2]]

• Find x, y such that x2 + y = 2, x+ y2 = 2
Input :

solve([x^2+y=2,x+y^2=2],[x,y])

Output :

[[-2,-2],[1,1],[(-sqrt(5)+1)/2,(1+sqrt(5))/2],

[(sqrt(5)+1)/2,(1-sqrt(5))/2]]

• Find x, y, z such that x2 − y2 = 0, x2 − z2 = 0
Input :

solve([x^2-y^2=0,x^2-z^2=0],[x,y,z])

Output :

[[x,x,x],[x,-x,-x],[x,-x,x],[x,x,-x]]

• Solve cos(2 ∗ x) = 1/2
Input :

solve(cos(2*x)=1/2)

Output :

[pi/6,(-pi)/6]

Output with All_trig_sol checked :

5.61. LINEAR SYSTEMS 477

[(6*pi*n_0+pi)/6,(6*pi*n_0-pi)/6]

• Find the intersection of a straight line (given by a list of equations) and a
plane.
For example, let D be the straight line of cartesian equations [y− z = 0, z−
x = 0] and let P the plane of equation x−1+y+z = 0. Find the intersection
of D and P .
Input :

solve([[y-z=0,z-x=0],x-1+y+z=0],[x,y,z])

Output :

[[1/3,1/3,1/3]]

5.60.7 Equation solving in C : cSolve

cSolve takes two arguments and solves an equation or a system of polynomial
equations.

• solving an equation
cSolve takes as arguments an equation between two expressions or an ex-
pression (=0 is omitted), and a variable name (by default x).
cSolve solves this equation in C even if you are in real mode.

• solving a system of polynomial equations
cSolve takes as arguments two vectors : a vector of polynomial equations
and a vector of variable names.
cSolve solves this equation system in C even if you are in real mode.

Input :

cSolve(x^4-1=3)

Output :

[sqrt(2),-(sqrt(2)),(i)*sqrt(2),-((i)*sqrt(2))]

Input :

cSolve([-x^2+y=2,x^2+y],[x,y])

Output :

[[i,1],[-i,1]]

5.61 Linear systems

In this paragraph, we call the "augmented matrix" of the system A · X = B (or
matrix "representing" the systemA·X = B), the matrix obtained by gluing the col-
umn vectorB or−B to the right of the matrixA, as with border(A,tran(B)).

478 CHAPTER 5. THE CAS FUNCTIONS

5.61.1 Matrix of a system : syst2mat

syst2mat takes two vectors as arguments. The components of the first vector are
the equations of a linear system and the components of the second vector are the
variable names.
syst2mat returns the augmented matrix of the system AX = B, obtained by
gluing the column vector −B to the right of the matrix A.
Input :

syst2mat([x+y,x-y-2],[x,y])

Output :

[[1,1,0],[1,-1,-2]]

Input :

syst2mat([x+y=0,x-y=2],[x,y])

Output :

[[1,1,0],[1,-1,-2]]

Warning !!!
The variables (here x and y) must be purged.

5.61.2 Gauss reduction of a matrix : ref

ref is used to solve a linear system of equations written in matrix form:

A*X=B

The argument of ref is the augmented matrix of the system (the matrix obtained
by augmenting the matrix A to the right with the column vector B).
The result is a matrix [A1,B1] where A1 has zeros under its principal diagonal,
and the solutions of:

A1*X=B1

are the same as the solutions of:

A*X=B

For example, solve the system :{
3x+ y = −2
3x+ 2y = 2

Input :

ref([[3,1,-2],[3,2,2]])

Output :

[[1,1/3,-2/3],[0,1,4]]

Hence the solution is y = 4 (last row) and x = −2 (substitute y in the first row).

5.61. LINEAR SYSTEMS 479

5.61.3 Gauss-Jordan reduction: rref gaussjord

rref solves a linear system of equations written in matrix form (see also 5.36.17)
:

A*X=B

rref takes one or two arguments.

• If rref has only one argument, this argument is the augmented matrix of
the system (the matrix obtained by augmenting matrix A to the right with the
column vector B).
The result is a matrix [A1,B1] : A1 has zeros both above and under its
principal diagonal and has 1 on its principal diagonal, and the solutions of:

A1*X=B1

are the same as :

A*X=B

For example, to solve the system:{
3x+ y = −2
3x+ 2y = 2

Input :

rref([[3,1,-2],[3,2,2]])

Output :

[[1,0,-2],[0,1,4]]

Hence x = −2 and y = 4 is the solution of this system.

rref can also solve several linear systems of equations having the same
first member. We write the second members as a column matrix.
Input :

rref([[3,1,-2,1],[3,2,2,2]])

Output :

[[1,0,-2,0],[0,1,4,1]]

Which means that (x = −2 and y = 4) is the solution of the system{
3x+ y = −2
3x+ 2y = 2

and (x = 0 and y = 1) is the solution of the system{
3x+ y = 1
3x+ 2y = 2

480 CHAPTER 5. THE CAS FUNCTIONS

• If rref has two parameters, the second parameter must be an integer k,
and the Gauss-Jordan reduction will be performed on (at most) the first k
columns.
Input :

rref([[3,1,-2,1],[3,2,2,2]],1)

Output :

[[3,1,-2,1],[0,1,4,1]]

5.61.4 Solving A*X=B : simult

simult is used to solve a linear system of equations (resp. several linear systems
of equations with the same matrix A) written in matrix form (see also 5.36.17) :

A*X=b (resp. A*X=B)

simult takes as arguments the matrix A of the system and the column vector (i.e.
a one column matrix) b of the second member of the system (resp. the matrix B
whose columns are the vectors b of the second members of the different systems).
The result is a column vector solution of the system (resp. a matrix whose columns
are the solutions of the different systems).
For example, to solve the system :{

3x+ y = −2
3x+ 2y = 2

Input :

simult([[3,1],[3,2]],[[-2],[2]])

Output :

[[-2],[4]]

Hence x = −2 and y = 4 is the solution.
Input :

simult([[3,1],[3,2]],[[-2,1],[2,2]])

Output :

[[-2,0],[4,1]]

Hence x = −2 and y = 4 is the solution of{
3x+ y = −2
3x+ 2y = 2

whereas x = 0 and y = 1 is the solution of{
3x+ y = 1
3x+ 2y = 2

5.61. LINEAR SYSTEMS 481

5.61.5 Step by step Gauss-Jordan reduction of a matrix : pivot

indexpivot
pivot takes three arguments : a matrix with n rows and p columns and two
integers l and c such that 0 ≤ l < n, 0 ≤ c < p and Al,c 6= 0.
pivot(A,l,c) performs one step of the Gauss-Jordan method using A[l,c]
as pivot and returns an equivalent matrix with zeros in the column c of A (except
at row l).
Input :

pivot([[1,2],[3,4],[5,6]],1,1)

Output :

[[-2,0],[3,4],[2,0]]

Input :

pivot([[1,2],[3,4],[5,6]],0,1)

Output :

[[1,2],[2,0],[4,0]]

5.61.6 Linear system solving: linsolve

linsolve is used to solve a system of linear equations.
linsolve takes its arguments in two different ways.

• It can take two arguments, the first is a list of equations or expressions (in
that case the convention is that the equation is expression = 0), and a list
of variable names.
linsolve returns the solution of the system in a list.
Input:

linsolve([2*x+y+z=1,x+y+2*z=1,x+2*y+z=4],[x,y,z])

Output :

[1/-2,5/2,1/-2]

Which means that
x = −1

2
, y =

5

2
, z = −1

2

is the solution of the system :
2x+ y + z = 1
x+ y + 2z = 1
x+ 2y + z = 4

• It can take two arguments, the matrix of coefficients of a system and values
of the right hand side in the form of a list.
Input:

482 CHAPTER 5. THE CAS FUNCTIONS

linsolve ([[2,1,1], [1,1,2], [1,2,1]], [1,1,4])

Output:

[-1/2,5/2,-1/2]

• It can take four arguments; the matrices P, L, U from the lu decomposition
and the values of the right hand side in the form of a list. This is useful when
you have several systems of equations which only differ on their right hand
side.
Input:

p,l,u:=lu([[2,1,1],[1,1,2],[1,2,1]])
linsolve(p,l,u,[1,1,4])

Output:

[-1/2,5/2,-1/2]

If the Step by step option is checked in the general configuration, a win-
dow will also pop up showing:

Matrix [[1,1,2, -1], [0,1, -1, -3], [0, -1, -3,1]]
Row operation L2 <- (1) * L1- (1) * L2
Matrix [[1,0,3,2], [0,1, -1, -3], [0, -1, -3,1]]
Row operation L2 <- (1) * L3 - (- 1) * L2
Matrix [[1,0,3,2], [0,1, -1, -3], [0,0, -4, -2]]
Reducing column 3 using pivot -4 at row 3
Matrix [[1,0,3,2], [0,1, -1, -3], [0,0, -4, -2]]
Row operation L3 <- (-4) * L1- (3) * L3
Matrix [[-4,0,0, -2], [0,1, -1, -3], [0,0, -4, -2]]
Row operation L3 <- (-4) * L2 - (- 1) * L3
End reduction [[-4,0,0, -2], [0, -4,0,10], [0,0, -4, -2]]

The linsolve command also solves systems with coefficients in Z/nZ.
Input:

linsolve([2*x+y+z-1,x+y+2*z-1,x+2*y+z-4]%3,[x,y,z])

Output:

[1 % 3,1 % 3,1 % 3]

5.61.7 Solving a linear system using the Jacobi iteration method: jacobi_linsolve

The jacobi_linsolve command takes two mandatory arguments and two op-
tional arguments. The mandatory arguments are the matrix of coefficients of a
system and the right hand side of the system as a list. The optional arguments are
an integer indicating the maximum number of iterations (by default maxiter)
and a positive number indicating the error tolerance (by default epsilon).
jacobi_linsolve uses the Jacobi iteration method to solve and return the so-
lution of the system.
Input:

5.61. LINEAR SYSTEMS 483

A:=[[100,2],[2,100]];
jacobi_linsolve(A,[0,1],1e-12);

Output:

[-0.000200080032,0.0100040016006]

Input:

evalf(linsolve(A,[0,1]))

Output:

[-0.000200080032013,0.0100040016006]

5.61.8 Solving a linear system using the Gauss-Seidel iteration method:
gauss_seidel_linsolve

The gauss_seidel_linsolve command takes two mandatory arguments and
two optional arguments. The mandatory arguments are the matrix of coefficients
of a system and the right hand side of the system as a list. The optional arguments
are a positive number indicating the error tolerance (by default epsilon) and an
integer indicating the maximum number of iterations (by default maxiter).
jacobi_linsolve uses the Gauss-Seidel iteration method to solve and return
the solution of the system.
Input:

A:=[[100,2],[2,100]];
gauss_seidel_linsolve(A,[0,1],1e-12);

Output:

[-0.000200080032013,0.0100040016006]

Additionally, gauss_seidel_linsolve can take an optional first argu-
ment (by default 1) of ω used for a general form of the Gauss-Seidel method (the
successive overrelaxation method).
Input:

gauss_seidel_linsolve (1.5, A, [0,1], 1e-12);

Output:

[-0.000200080032218,0.0100040016006]

5.61.9 The least squares solution of a linear system: LSQ, lsq

The lsq (or LSQ) command takes two arguments; a matrix A and a vector or
matrix B.
lsq returns the least squares solution to the equation A*X = B.
Input:

LSQ([[1,2],[3,4]], [5,11])

484 CHAPTER 5. THE CAS FUNCTIONS

Output:

[[1],[2]]

Input:

LSQ([[1,2], [3,4]], [[5,7], [11,9]])

Output:

[[1,-5],[2,6]]

Note that
Input:

linsolve([[1,2],[3,4],[3,6]]*[x, y] - [5,11,13],[x,
y])

Output:

[]

since the linear system has no solution. We can still find the least squares solution
Input:

LSQ([[1,2],[3,4],[3,6]],[5,11,13])

Output:

[[11/5],[11/10]]

The least squares solution
Input:

LSQ ([[3,4]], [12])

Output:

[[36/25],[48/25]]

represents the point on the line 3x+ 4y = 12 closest to the origin;
Input:

coordinates(projection(line(3*x+4*y=12),point(0)))

Output:

[36/25,48/25]

5.61. LINEAR SYSTEMS 485

5.61.10 Finding linear recurrences : reverse_rsolve

reverse_rsolve takes as argument a vector v = [v0...v2n−1] made of the first
2n terms of a sequence (vn) which is supposed to verify a linear recurrence relation
of degree smaller than n

xn ∗ vn+k + ...+ x0 ∗ vk = 0

where the xj are n+ 1 unknowns.
reverse_rsolve returns the list x = [xn, ..., x0] of the xj coefficients (if xn 6=
0 it is reduced to 1).

In other words reverse_rsolve solves the linear system of n equations :

xn ∗ vn + ...+ x0 ∗ v0 = 0

...

xn ∗ vn+k + ...+ x0 ∗ vk = 0

...

xn ∗ v2∗n−1 + ...+ x0 ∗ vn−1 = 0

The matrix A of the system has n rows and n+ 1 columns :

A = [[v0, v1...vn], [v1, v2, ...vn−1], ..., [vn−1, vn...v2n−1]]

reverse_rsolve returns the list x = [xn, ...x1, x0] with xn = 1 and x is the
solution of the system A ∗ revlist(x).

Examples

• Find a sequence satisfying a linear recurrence of degree at most 2 whose first
elements 1, -1, 3, 3.
Input :

reverse_rsolve([1,-1,3,3])

Output :

[1,-3,-6]

Hence x0 = −6, x1 = −3, x2 = 1 and the recurrence relation is

vk+2 − 3vk+1 − 6vk = 0

Without reverse_rsolve, we would write the matrix of the system :
[[1,-1,3],[-1,3,3]] and use the rref command :
rref([[1,-1,3],[-1,3,3]])
Output is [[1,0,6],[0,1,3]] hence x0 = −6 and x1 = −3 (because
x2 = 1).

• Find a sequence satisfying a linear recurrence of degree at most 3 whose first
elements are 1, -1, 3, 3,-1, 1.
Input :

486 CHAPTER 5. THE CAS FUNCTIONS

reverse_rsolve([1,-1,3,3,-1,1])

Output :

[1,(-1)/2,1/2,-1]

Hence so, x0 = −1, x1 = 1/2, x2 = −1/2, x3 = 1, the recurrence relation
is

vk+3 −
1

2
vk+2 +

1

2
vk+1 − vk = 0

Without reverse_rsolve, we would write the matrix of the system :
[[1,-1,3,3],[-1,3,3,-1],[3,3,-1,1]].
Using rref command, we would input :
rref([[1,-1,3,3],[-1,3,3,-1],[3,3,-1,1]])
Output is [1,0,0,1],[0,1,0,1/-2],[0,0,1,1/2]] hence x0 =
−1, x1 = 1/2 and x2 = −1/2 because x3 = 1),

5.62 Differential equations

This section is limited to symbolic (or exact) solutions of differential equations.
For numeric solutions of differential equations, see odesolve. For graphic rep-
resentation of solutions of differential equations, see plotfield, plotode and
interactive_plotode.

5.62.1 Solving differential equations : desolve deSolve dsolve

desolve (or deSolve) can solve :

• linear differential equations with constant coefficients,

• first order linear differential equations,

• first order differential equations without y,

• first order differential equations without x,

• first order differential equations with separable variables,

• first order homogeneous differential equations (y′ = F (y/x)),

• first order differential equations with integrating factor,

• first order Bernoulli differential equations (a(x)y′ + b(x)y = c(x)yn),

• first order Clairaut differential equations (y = x ∗ y′ + f(y′)).

desolve takes as arguments :

• if the independent variable is the current variable (here supposed to be x),

– the differential equation (or the list of the differential equation and of
the initial conditions)

5.62. DIFFERENTIAL EQUATIONS 487

– the unknown (usually y).

In the differential equation, the function y is denoted by y, its first derivative
y′ is denoted by y′, and its second derivative y′′ is written y′′.
For example desolve(y”+2*y’+y,y) or
desolve([y”+2*y’+y,y(0)=1,y’(0)=0],y).

• if the independent variable is not the current variable, for example t instead
of x,

– the differential equation (or the list of the differential equation and of
the initial conditions),

– the variable, e.g. t

– the unknown as a variable y or as a function y(t).

In the differential equation, the function y is denoted by y(t), its derivative
y′ is denoted by diff(y(t),t), and its second derivative y′′ is denoted
by diff(y(t),t$2).
For example :
desolve(diff(y(t),t$2)+2*diff(y(t),t)+y(t),y(t)); or
desolve(diff(y(t),t$2)+2*diff(y(t),t)+y(t),t,y); and

desolve([diff(y(t),t$2)+2*diff(y(t),t)+y(t),
y(0)=1,y’(0)=0],y(t)); or

desolve([diff(y(t),t$2)+2*diff(y(t),t)+y(t),
y(0)=1,y’(0)=0],t,y);

If there is no initial conditions (or one initial condition for a second order equation),
desolve returns the general solution in terms of constants of integration c_0,
c_1, where y(0)=c_0 and y’(0)=c_1, or a list of solutions.
Examples

• Examples of second linear differential equations with constant coefficients.

1. Solve :
y′′ + y = cos(x)

Input (typing twice prime for y”):

desolve(y”+y=cos(x),y)

or input :

desolve((diff(diff(y))+y)=(cos(x)),y)

Output :

c_0*cos(x)+(x+2*c_1)*sin(x)/2

c_0, c_1 are the constants of integration : y(0)=c_0 and y’(0)=c_1.
If the variable is not x but t, input :

desolve(derive(derive(y(t),t),t)+y(t)=cos(t),t,y)

488 CHAPTER 5. THE CAS FUNCTIONS

Output :

c_0*cos(t)+(t+2*c_1)/2*sin(t)

c_0, c_1 are the constants of integration : y(0)=c_0 and y’(0)=c_1.

2. Solve :
y′′ + y = cos(x), y(0) = 1

Input :

desolve([y”+y=cos(x),y(0)=1],y)

Output :

[cos(x)+(x+2*c_1)/2*sin(x)]

the components of this vector are solutions (here there is just one com-
ponent, so we have just one solution depending of the constant c_1).

3. Solve :
y′′ + y = cos(x) (y(0))2 = 1

Input :

desolve([y”+y=cos(x),y(0)^2=1],y)

Output :

[-cos(x)+(x+2*c_1)/2*sin(x),cos(x)+(x+2*c_1)/2*sin(x)]

each component of this list is a solution, we have two solutions depend-
ing on the constant c_1 (y′(0) = c1) and corresponding to y(0) = 1
and to y(0) = −1.

4. Solve :
y′′ + y = cos(x), (y(0))2 = 1 y′(0) = 1

Input :

desolve([y”+y=cos(x),y(0)^2=1,y’(0)=1],y)

Output :

[-cos(x)+(x+2)/2*sin(x),cos(x)+(x+2)/2*sin(x)]

each component of this list is a solution (we have two solutions).

5. Solve :
y′′ + 2y′ + y = 0

Input :

desolve(y”+2*y’+y=0,y)

Output :

(x*c_0+x*c_1+c_0)*exp(-x)

the solution depends of 2 constants of integration : c_0, c_1 (y(0)=c_0
and y’(0)=c_1).

5.62. DIFFERENTIAL EQUATIONS 489

6. Solve :
y′′ − 6y′ + 9y = xe3x

Input:

desolve(y”-6*y’+9*y=(x*exp(3*x),y)

Output :

(x^3+(-(18*x))*c_0+6*x*c_1+6*c_0)*1/6*exp(3*x)

the solution depends on 2 constants of integration : c_0, c_1 (y(0)=c_0
and y’(0)=c_1).

• Examples of first order linear differential equations.

1. Solve :
xy′ + y − 3x2 = 0

Input :

desolve(x*y’+y-3*x^2,y)

Output :

(3*1/3*x^3+c_0)/x

2. Solve :
y′ + x ∗ y = 0, y(0) = 1

Input :

desolve([y’+x*y=0, y(0)=1]),y)

or :

desolve((y’+x*y=0) && (y(0)=1),y)

Output :

[1/(exp(1/2*x^2))]

3. Solve :
x(x2 − 1)y′ + 2y = 0

Input :

desolve(x*(x^2-1)*y’+2*y=0,y)

Output :

(c_0)/((x^2-1)/(x^2))

4. Solve :
x(x2 − 1)y′ + 2y = x2

Input :

desolve(x*(x^2-1)*y’+2*y=x^2,y)

Output :

(ln(x)+c_0)/((x^2-1)/(x^2))

490 CHAPTER 5. THE CAS FUNCTIONS

5. If the variable is t instead of x, for example :

t(t2 − 1)y′(t) + 2y(t) = t2

Input :

desolve(t*(t^2-1)*diff(y(t),t)+2*y(t)=(t^2),y(t))

Output :

(ln(t)+c_0)/((t^2-1)/(t^2))

6. Solve :
x(x2 − 1)y′ + 2y = x2, y(2) = 0

Input :

desolve([x*(x^2-1)*y’+2*y=x^2,y(0)=1],y)

Output :

[(ln(x)-ln(2))*1/(x^2-1)*x^2]

7. Solve : √
1 + x2y′ − x− y =

√
1 + x2

Input :

desolve(y’*sqrt(1+x^2)-x-y-sqrt(1+x^2),y)

Output :

(-c_0+ln(sqrt(x^2+1)-x))/(x-sqrt(x^2+1))

• Examples of first differential equations with separable variables.

1. Solve :
y′ = 2

√
y

Input :

desolve(y’=2*sqrt(y),y)

Output :

[x^2+-2*x*c_0+c_0^2]

2. Solve :
xy′ ln(x)− y(3 ln(x) + 1) = 0

Input :

desolve(x*y’*ln(x)-(3*ln(x)+1)*y,y)

Output :

c_0*x^3*ln(x)

• Examples of Bernoulli differential equations a(x)y′+b(x)y = c(x)yn where
n is a real constant.
The method used is to divide the equation by yn, so that it becomes a first
order linear differential equation in u = 1/yn−1.

5.62. DIFFERENTIAL EQUATIONS 491

1. Solve :
xy′ + 2y + xy2 = 0

Input :

desolve(x*y’+2*y+x*y^2,y)

Output :

[1/(exp(2*ln(x))*(-1/x+c_0))]

2. Solve :
xy′ − 2y = xy3

Input :

desolve(x*y’-2*y-x*y^3,y)

Output :

[((-2*1/5*x^5+c_0)*exp(-(4*log(x))))^(1/-2),

-((-2*1/5*x^5+c_0)*exp(-(4*log(x))))^(1/-2)]

3. Solve :
x2y′ − 2y = xe(4/x)y3

Input :

desolve(x*y’-2*y-x*exp(4/x)*y^3,y)

Output :

[((-2*ln(x)+c_0)*exp(-(4*(-(1/x)))))^(1/-2),

-(((-2*ln(x)+c_0)*exp(-(4*(-(1/x)))))^(1/-2))]

• Examples of first order homogeneous differential equations (y′ = F (y/x),
the method of integration is to search t = y/x instead of y).

1. Solve :
3x3y′ = y(3x2 − y2)

Input :

desolve(3*x^3*diff(y)=((3*x^2-y^2)*y),y)

Output :

[0,pnt[c_0*exp((3*1/2)/(‘ t‘^2)),‘
t‘*c_0*exp((3*1/2)/(‘ t‘^2))]]

hence the solutions are y = 0 and the familiy of curves of parametric
equation x = c0 exp(3/(2t2)), y = t ∗ c0 exp(3/(2t2)) (the parameter
is denoted by ‘ t‘ in the answer).

2. Solve :
xy′ = y +

√
x2 + y2

Input :

492 CHAPTER 5. THE CAS FUNCTIONS

desolve(x*y’=y+sqrt(x^2+y^2),y)

Output :

[(-i)*x,(i)*x,pnt[c_0/(sqrt(‘ t‘^2+1)-‘ t‘),(‘
t‘*c_0)/(sqrt(‘ t‘^2+1)-‘ t‘)]]

hence the solutions are :

y = ix, y = −ix

and the family of curves of parametric equations

x = c0/(
√
t2 + 1− t), y = t ∗ c0/(

√
t2 + 1− t)

(the parameter is denoted by ‘ t‘ in the answer).

• Examples of first order differential equations with an integrating factor. By
multiplying the equation by a function of x, y, it becomes a closed differen-
tial form.

1. Solve :
yy′ + x

Input :

desolve(y*y’+x,y)

Output :

[sqrt(-2*c_0-x^2),-(sqrt(-2*c_0-x^2))]

In this example, xdx+ ydy is closed, the integrating factor was 1.

2. Solve :
2xyy′ + x2 − y2 + a2 = 0

Input :

desolve(2*x*y*y’+x^2-y^2+a^2,y)

Output :

[sqrt(a^2-x^2-c_1*x),-(sqrt(a^2-x^2-c_1*x))]

In this example, the integrating factor was 1/x2.

• Example of first order differential equations without x.
Solve :

(y + y′)4 + y′ + 3y = 0

This kind of equation cannot be solved directly by Xcas, we explain how to
solve them with its help. The idea is to find a parametric representation of
F (u, v) = 0 where the equation is F (y, y′) = 0, Let u = f(t), v = g(t) be
such a parametrization of F = 0, then y = f(t) and dy/dx = y′ = g(t).
Hence

dy/dt = f ′(t) = y′ ∗ dx/dt = g(t) ∗ dx/dt

5.62. DIFFERENTIAL EQUATIONS 493

The solution is the curve of parametric equations x(t), y(t) = f(t), where
x(t) is solution of the differential equation g(t)dx = f ′(t)dt.
Back to the example, we put y + y′ = t, hence:

y = −t− 8 ∗ t4, y′ = dy/dx = 3 ∗ t+ 8 ∗ t4 dy/dt = −1− 32 ∗ t3

therefore

(3 ∗ t+ 8 ∗ t4) ∗ dx = (−1− 32 ∗ t3)dt

Input :

desolve((3*t+8*t^4)*diff(x(t),t)=(-1-32*t^3),x(t))

Output :

-11*1/9*ln(8*t^3+3)+1/-9*ln(t^3)+c_0

eventually the solution is the curve of parametric equation :

x(t) = −11∗1/9∗ ln(8∗ t3 +3)+1/−9∗ ln(t3)+ c0, y(t) = −t−8∗ t4

• Examples of first order Clairaut differential equations (y = x ∗ y′ + f(y′)).
The solutions are the lines Dm of equation y = mx + f(m) where m is a
real constant.

1. Solve :

xy′ + y′3 − y = 0

Input :

desolve(x*y’+y’^3-y),y)

Output :

c_0*x+c_0^3

2. Solve :

y − xy′ −
√
a2 + b2 ∗ y′2 = 0

Input :

desolve((y-x*y’-sqrt(a^2+b^2*y’^2),y)

Output :

c_0*x+sqrt(a^2+b^2*c_0^2)

494 CHAPTER 5. THE CAS FUNCTIONS

5.62.2 Laplace transform and inverse Laplace transform : laplace
ilaplace invlaplace

laplace and ilaplace (or invlaplace) take one, two or three arguments :
an expression and optionally the name(s) of the variable(s).
The expression is an expression of the current variable (here x) or an expression of
the variable given as second argument.
laplace returns the Laplace transform of the expression given as argument and
ilaplace the inverse Laplace transform of the expression given as argument.
The result of laplace or ilaplace is expressed in terms of the variable given
as third argument if supplied or second argument if supplied or x otherwise.

The Laplace transform (laplace) and inverse Laplace transform (ilaplace)
are useful to solve linear differential equations with constant coefficients. For ex-
ample :

y′′+ p.y′+ q.y = f(x)

y(0) = a, y′(0) = b

Denoting by L the Laplace transform, the following relations hold :

L(y)(x) =

∫ +∞

0
e−xuy(u)du

L−1(g)(x) =
1

2iπ

∫
C
ezxg(z)dz

where C is a closed contour enclosing the poles of g.
Input :

laplace(sin(x))

The expression (here sin(x)) is an expression of the current variable (here x) and
the answer will also be an expression of the current variable x.
Output :

1/((-x)^2+1)

or :

laplace(sin(t),t)

here the variable name is t and this name is also used in the answer.
Output :

1/((-t)^2+1)

Or input :

laplace(sin(t),t,s)

here the variable name is t and the variable name of the answer is s.
Output:

1/((-s)^2+1)

5.62. DIFFERENTIAL EQUATIONS 495

The following properties hold :

L(y′)(x) = −y(0) + x.L(y)(x)

L(y′′)(x) = −y′(0) + x.L(y′)(x)

= −y′(0)− x.y(0) + x2.L(y)(x)

If y′′(x) + py′(x) + qy(x) = f(x), then :

L(f)(x) = L(y′′ + p.y′ + q.y)(x)

= −y′(0)− xy(0) + x2L(y)(x)− py(0) + pxL(y)(x)) + qL(y)(x)

= (x2 + px+ q)L(y)(x)− y′(0)− (x+ p)y(0)

Therefore, if a = y(0) and b = y′(0), we have

L(f)(x) = (x2 + px+ q).L(y)(x)− (x+ p)a− b

and the solution of the differential equation is :

y(x) = L−1((L(f)(x) + (x+ p)a+ b)/(x2 + px+ q))

Example :
Solve :

y′′ − 6y′+ 9y = xe3.x, y(0) = c_0, y′(0) = c_1

Here, p = −6, q = 9.
Input :

laplace(x*exp(3*x))

Output :

1/(x^ 2-6*x+9)

Input :

ilaplace((1/(x^2-6*x+9)+(x-6)*c_0+c_1)/(x^2-6*x+9))

Output :

(216*x^3-3888*x*c_0+1296*x*c_1+1296*c_0)*exp(3*x)/1296

After simplification and factorization (factor command) the solution y is :

(-18*c_0*x+6*c_0+x^3+6*x*c_1)*exp(3*x)/6

Note that this equation could be solved directly. Input :

desolve(y”-6*y’+9*y=x*exp(3*x),y)

Output :

exp(3*x)*(-18*c_0*x+6*c_0+x^3+6*x*c_1)/6

496 CHAPTER 5. THE CAS FUNCTIONS

5.62.3 Solving linear homogeneous second-order ODE with rational
coefficients : kovacicsols

kovacicsols uses Kovacic’s algorithm to find a Liouvillian solution of an ordi-
nary linear homogeneous second-order differential equation

a y′′ + b y′ + c y = 0, (5.6)

where a, b and c are rational functions of the independent variable. The command
takes from one to three arguments :

• equation (5.6) as an expression (left-hand side), equality or a list of coeffi-
cients [a, b, c],

• independent variable (optional, by default x),

• dependent variable (optional, by default y).

The dependent variable should not be specified if the equation (5.6) is entered as a
list of coefficients.

The return value can be a list or an expression. An empty list means that there
are no Liouvillian solutions to the input equation. If a non-empty list is returned, it
contains one or two independent solution(s) y1 (and y2) to the equation (5.6). The
general solution to (5.6) is then

y = C1 y1 + C2 y2,

where C1, C2 ∈ R are arbitrary constants. However, for some equations only y1 is
returned, in which case y2 can be obtained as (using reduction of order) :

y2 = y1

∫
y−21 . (5.7)

If kovacicsols returns an expression, it means that the solution to (5.6) is given
implicitly. In that case the return value is a polynomial P of order n ∈ {4, 6, 12}
in the variable omega_ (denoted here by ω) with rational coefficients rk, k =
0, 1, 2, . . . , n. If P (ω0) = 0 for some ω0, then y = exp

(∫
ω0

)
is a solution to the

equation (5.6).

Examples. In the first example we find the general solution to the equation

y′′ =

(
1

x
− 3

16x2

)
y.

Input :

kovacicsols(y’’=y*(1/x-3/16x^2))

Output :

[x^(1/4)*exp(2*sqrt(x)),x^(1/4)*exp(-2*sqrt(x))]

5.62. DIFFERENTIAL EQUATIONS 497

Therefore, y = C1 x
1/4 e2

√
x + C2 x

1/4 e−2
√
x is the general solution.

In the following example we solve the equation

x′′(t) +
3 (t2 − t+ 1)

16 (t− 1)2 t2
x(t) = 0.

Input :

kovacicsols(x’’+3*(t^2-t+1)/(16*(t-1)^2*t^2)*x,t,x)

Output :

[(-t*(t-1)*(2*t+2*sqrt(t^2-t)-1))^(1/4),
(t*(t-1)*(-2*t+2*sqrt(t^2-t)+1))^(1/4)]

Now for arbitrary C1, C2 ∈ R we have

x(t) = C1
4

√
t (t− 1) (1− 2 t− 2

√
t2 − t)+

C2
4

√
t (t− 1) (1− 2 t+ 2

√
t2 − t).

In the next example we find a particular solution to the equation

y′′ =
4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4

4x4
y.

Input :

r:=(4x^6-8x^5+12x^4+4x^3+7x^2-20x+4)/(4x^4):;
kovacicsols(y’’=r*y)

Output :

[(x^2-1)/(x*sqrt(x))*exp((x^3-2*x^2-2)/(2*x))]

Hence y = (x2 − 1)x−3/2 e
x3−2 x2−2

2 x is a solution to the given equation.
A similar output is obtained when solving the equation

y′′ + y′ =
6 y

x2
.

Input :

kovacicsols(y’’+y’=6y/x^2)

Output :

[(x^2+6*x+12)*exp(-x)/x^2]

To solve Titchmarsh equation

y′′ + (19− x2) y = 0,

input :

kovacicsols(y’’+(19-x^2)*y=0,x,y)

498 CHAPTER 5. THE CAS FUNCTIONS

We obtain a particular solution

y =

(
x9 − 18x7 +

189x5

2
− 315x3

2
+

945x

16

)
exp

(
−x

2

2

)
.

To find the general solution of Halm’s equation

(1 + x2)2 y′′(x) + 3 y(x) = 0,

input :

sol:=kovacicsols((1+x^2)^2*y’’+3y=0,x,y)

Output :

[(x^2-1)/(sqrt(x^2+1))]

The other basic solution is obtained by using (5.7). Input :

y1:=sol[0]; y2:=normal(y1*int(y1^-2,x))

Output :

(x^2-1)/(sqrt(x^2+1)),-x/(sqrt(x^2+1))

Therefore, y = C1
x2−1√
x2+1

+ C2
x√
x2+1

, where C1, C2 ∈ R.
In the following example we find the general solution of the non-homogeneous

equation

y′′ − 27 y

36 (x− 1)2
= x+ 4.

First we need to find the general solution to the corresponding homogeneous equa-
tion y′′h −

27 yh
36 (x−1)2 = 0. Input :

sols:=kovacicsols(y’’-y*27/(36*(x-1)^2),x,y)

Output :

[(x^2-2*x)/(sqrt(x-1))]

We call the obtained solution y1 and find the other basic independent solution by
using (5.7). Input :

y1:=sols[0]:; y2:=y1*int(1/y1^2,x)

Output :

-1/(sqrt(x-1)*2)

Now the general solution of the homogeneous equation is

yh = C1 y1 + C2 y2 =
C1 (x2 − 2x) + C2√

x− 1
, C1, C2 ∈ R.

A particular solution yp of the non-homogeneous equation can be obtained by vari-
ation of parameters as

yp = −y1
∫
y2 f(x)

W
dx+ y2

∫
y1 f(x)

W
dx,

where f(x) = x+ 4 and W is the Wronskian of y1 and y2, i.e.

W = y1 y
′
2 − y2 y′1 6= 0.

Input :

5.62. DIFFERENTIAL EQUATIONS 499

W:=y1*y2’-y2*y1’:; f:=x+4:;
yp:=normal(-y1*int(y2*f/W,x)+y2*int(y1*f/W,x))

Output :

(4*x^3+72*x^2-156*x+80)/21

Hence yp = 1
21 (4x3 + 72x2 − 156x + 80). Now y = yp + yh. We proceed by

checking that it is indeed the general solution of the given equation. Input :

purge(C1,C2):; ysol:=yp+C1*y1+C2*y2:;
normal(diff(ysol,x,2)-27/(36*(x-1)^2)*ysol)==f

Output :

true

In the next example we attempt to solve the equation from the original Ko-
vacic’s paper :

y′′ =

(
3

16x (x− 1)
− 2

9 (x− 1)2
− 3

16x2

)
y.

Input :

r:=-3/(16x^2)-2/(9*(x-1)^2)+3/(16x*(x-1)):;
kovacicsols(y’’=r*y)

Output :

-omega_^4*x^4*(x-1)^4+ omega_^3*x^3*(x-1)^3*(7*x-3)/3-
omega_^2*x^2*(x-1)^2*(48*x^2-41*x+9)/24+

omega_*x*(x-1)*(320*x^3-409*x^2+180*x-27)/432+
(-2048*x^4+3484*x^3-2313*x^2+702*x-81)/20736

The solution is y = exp
(∫
ω0

)
, where ω0 is a zero of the above expression, thus

being a root of a fourth-order polynomial in ω. In similar cases one can try the
Ferrari method to obtain ω0.

We get similar output while trying to solve the equation

48 t (t+ 1) (5 t− 4) y′′ + 8 (25 t+ 16) (t− 2) y′ − (5 t+ 68) y = 0.

Input :

de:=[48t*(t+1)*(5t-4),8*(25t+16)*(t-2),-(5t+68)]:;
kovacicsols(de,t)

Output :

omega_^4*(135*t^4-616*t^3-144*t^2+3072*t-4096)/20736-
omega_^2*t^2*(t+1)*(15*t^3-80*t^2+80*t+256)/24-

t^4*(t+1)^2*(t+4)*(5*t+4)+
2*omega_*t^3*(t+1)^2*(t-4)*(5*t+8)/3-
omega_^3*t*(t+1)*(23*t^2-92*t+128)/54

500 CHAPTER 5. THE CAS FUNCTIONS

5.63 The Z-transform

5.63.1 The Z-transform of a sequence: ztrans

The Z-transform of a sequence a0, a1, . . . , an, . . . is the function

f(z) =

∞∑
n=0

an
zn
.

The ztrans command takes one or three arguments.

• A formula in the variable x for the general term ax of a sequence, or

• A formula for the general term of a sequence, the variable used in the for-
mula, and a variable to be used by the resulting function.

ztrans returns the Z-transform of the sequence.
For example, the Z-transform of the sequence

0, 1, 2, 3, . . .

is
f(z) = 0 + 1/z + 2/z2 + 3/z3 + . . .

which has closed form
f(z) = z/(z − 1)2.

Input:

ztrans(x)

Output:

x/(xˆ2-2*x+1)

Input:

ztrans(n,n,z)

Output:

z/(zˆ2-2*z+1)

Note that
Input:

ztrans(1)

Output:

x/(x-1)

since
∞∑
n=0

1/xn = 1/(1− 1/x) = x/(x− 1).

We also have
Input:

5.63. THE Z-TRANSFORM 501

ztrans(1,n,z)

Output:

z/(z-1)

Note that differentiating both sides of

∞∑
n=0

1/zn = z/(z − 1)

gives us
∞∑
n=0

n/zn−1 = 1/(z − 1)2

and so, multiplying both sides by z,

∞∑
n=0

n/zn = z/(z − 1)2 = z/(z2 − 2z + 1)

as indicated above.

5.63.2 The inverse Z-transform of a rational function: invztrans

The invztrans command takes one or three arguments.

• A rational expression in the variable x, or

• A rational expression, the variable used in the expression, and a variable to
be used by the result.

ztrans returns the inverse Z-transform, namely a formula for the general term of
a sequence with the given rational expression as its Z-transform.

Since ztrans(1) = x/(x-1), we get
Input:

invztrans(x/(x-1))

Output:

1

Input:

invztrans(z/(z-1),z,n)

Output:

1

Similarly,
Input:

invztrans(x/(x-1)ˆ2)

502 CHAPTER 5. THE CAS FUNCTIONS

Output:

x

Input:

invztrans(z/(z-1)ˆ2,z,n)

Output:

n

5.64 Other functions

5.64.1 Replace small values by 0: epsilon2zero

epsilon2zero takes as argument an expression of x.
epsilon2zero returns the expression where the values of modulus less than
epsilon are replaced by zero. The expression is not evaluated.
The epsilon value is defined in the cas configuration (by default epsilon=1e-10).
Input :

epsilon2zero(1e-13+x)

Output (with epsilon=1e-10) :

0+x

Input :

epsilon2zero((1e-13+x)*100000)

Output (with epsilon=1e-10) :

(0+x)*100000

Input :

epsilon2zero(0.001+x)

Output (with epsilon=0.0001) :

0.001+x

5.64.2 List of variables : lname indets

lname (or indets) takes as argument an expression.
lname (or indets) returns the list of the symbolic variable names used in this
expression.
Input :

lname(x*y*sin(x))

Output :

[x,y]

5.64. OTHER FUNCTIONS 503

Input :

a:=2;assume(b>0);assume(c=3);

lname(a*x^2+b*x+c)

Output :

[x,b,c]

5.64.3 List of variables and of expressions : lvar

lvar takes as argument an expression.
lvar returns a list of variable names and non-rational expressions such that its
argument is a rational fraction with respect to the variables and expressions of the
list.
Input :

lvar(x*y*sin(x)^2)

Output :

[x,y,sin(x)]

Input :

lvar(x*y*sin(x)^2+ln(x)*cos(y))

Output :

[x,y,sin(x),ln(x),cos(y)]

Input :

lvar(y+x*sqrt(z)+y*sin(x))

Output :

[x,y,sqrt(z),sin(x)]

5.64.4 List of variables of an algebraic expressions: algvar

algvar takes as argument an expression.
algvar returns the list of the symbolic variable names used in this expression.
The list is ordered by the algebraic extensions required to build the original expres-
sion.
Input :

algvar(y+x*sqrt(z))

Output :

[[y,x],[z]]

Input :

504 CHAPTER 5. THE CAS FUNCTIONS

algvar(y*sqrt(x)*sqrt(z))

Output :

[[y],[z],[x]]

Input :

algvar(y*sqrt(x*z))

Output :

[[y],[x,z]]

Input :

algvar(y+x*sqrt(z)+y*sin(x))

Output :

[[x,y,sin(x)],[z]]

5.64.5 Test if a variable is in an expression : has

has takes as argument an expression and the name of a variable.
has returns 1 if this variable is in this expression, and else returns 0.
Input :

has(x*y*sin(x),y)

Output :

1

Input :

has(x*y*sin(x),z)

Output :

0

5.64.6 Numeric evaluation : evalf

evalf takes as argument an expression or a matrix.
evalf returns the numeric value of this expression or of this matrix.
Input :

evalf(sqrt(2))

Output :

1.41421356237

Input :

evalf([[1,sqrt(2)],[0,1]])

Output :

[[1.0,1.41421356237],[0.0,1.0]]

5.65. THE DAY OF THE WEEK: DAYOFWEEK 505

5.64.7 Rational approximation : float2rational exact

float2rational (or exact) takes as argument an expression.
float2rational returns a rational approximation of all the floating point num-
bers r contained in this expression, such that |r − float2rational(r)| < ε,
where ε is defined by epsilon in the cas configuration (Cfgmenu, or cas_setup
command).
Input :

float2rational(1.5)

Output :

3/2

Input :

float2rational(1.414)

Output :

707/500

Input :

float2rational(0.156381102937*2)

Output :

5144/16447

Input :

float2rational(1.41421356237)

Output :

114243/80782

Input :

float2rational(1.41421356237^2)

Output :

2

5.65 The day of the week: dayofweek

The dayofweek command takes as arguments three integers; the first represents
the day of the month, the second the month, and the third the year. The resulting
date should be after 15 October 1582.
dayofweek returns an integer from 0 to 6; 0 represents a Sunday, 1 represents
Monday, etc.
Input:

506 CHAPTER 5. THE CAS FUNCTIONS

dayofweek(15,10,1582)

Output:

5

This indicates that 15 October 1582 was on a Friday.
The Gregorian calendar, the calendar used by most of the world, was intro-

duced on 15 October 1582. Before that, the Julian calendar was used, which had
a leap year every four years and so used years with an average of 365.25, which
is slightly off from the actual value of about 365.242 days. To deal with this, the
Gregorian calendar was introduced, which kept years for every year divisible by 4,
except if a year is divisible by 100 but not 400 it is not a leap year. This gives an
average length of year that is accurate to within 1 day every 3000 years.

Many countries switched from the Julian calendar to the Gregorian calendar
after 4 October 1582 in the Julian calendar, and the next day was 15 October 1582.
Input:

dayofweek(1,10,2014)

Output:

3

This means that 1 October, 2014 was a Wednesday.

Chapter 6

Metric properties of curves

6.1 The center of curvature

Let Γ be a curve in space parameterized by a continuously differentiable function,
andM0 be a point on the curve. The curve will have an arclength parameterization;
namely, it can be parameterized by a function M(s), where M(0) = M0 and |s| is
the length of the curve from M0 to M(s), in the direction of the curve if s > 0 and
the opposite direction if s < 0.

For such a Γ, the vector T (s) = M ′(s) will be the unit tangent to the curve at
M(s), and N(s) = T ′(s) will be perpendicular to the tangent. The circle through
M(s) with center at M(s) + N(s) is called the osculating circle to Γ at M(s).
Informally, the osculating circle is the circle through M(s) which most closely
approximates Γ. The set of all centers of curvature is another curve, called the
evolute of Γ.

The radius of the osculating circle is |N(s)| and is called the radius of curvature
of Γ at M(s). The reciprocal of this is called the curvature of Γ at M(s).

6.2 Computing the curvature and related values: curvature,
osculating_circle, evolute

The curvature command takes two arguments and an optional third argument.
The first argument is a curve, and the second argument is a point on the curve. If
the curve is given by a parameterization, the second argument is the parameter, and
an optional third argument is a value of the parameter.
curvature returns the curvature of the curve at the given point.
Input:

curvature(plot(xˆ2),point(1,1))

Output:

2/25*sqrt(5)

Input:

trigsimplify(curvature([5*cos(t),5*sin(t)],t))

Output:

507

508 CHAPTER 6. METRIC PROPERTIES OF CURVES

1/5

Input:

curvature([2*cos(t),3*sin(t)],t,pi/2)

Output:

3/4

The osculating_circle command takes two or three arguments. The
arguments can be either a curve in the plane and a point on the curve, or the pa-
rameterization of a curve in the plane, the parameter, and a value of the parameter.
osculating_circle returns and draws the osculating circle.
Input:

osculating_circle(plot(xˆ2),point(1,1))

Output:

Input:

equation(osculating_circle(plot(xˆ2),point(1,1)))

Output:

(x+4)ˆ2+(y-7/2)ˆ2=(125/4)

Input:

equation(osculating_circle([tˆ2,tˆ3],t,1))

Output:

(x+11/2)ˆ2+(y-16/3)ˆ2=(2197/36)

The evolute command takes one or two arguments. The arguments can be
either a curve in the plane, or the parameterization of a curve in the plane and the
parameter.
evolute draws and returns the evolute of the curve.
Input:

evolute(plot(xˆ2))

6.2. COMPUTING THE CURVATURE AND RELATED VALUES: CURVATURE, OSCULATING_CIRCLE, EVOLUTE509

Output:

Input:

equation(evolute(plot(xˆ2)))

Output:

27*xˆ2-16*yˆ3+24*yˆ2-12*y+2=0

Input:

equation(evolute([tˆ2,t],t))

Output:

16*xˆ3-24*xˆ2+12*x-27*yˆ2-2=0

510 CHAPTER 6. METRIC PROPERTIES OF CURVES

Chapter 7

Graphs

7.1 Generalities

Most graph instructions take expressions as arguments. A few exceptions (mostly
Maple-compatibility instructions) also accept functions. Some optional arguments,
like color, thickness, can be used as optional attributes in all graphic in-
structions. They are described below.

If a graph depends on a user-defined function, you may want to define the
function when the parameter is a formal variable. For this, it can be useful to test
the type of the parameter while the function is being defined.

For example, suppose f and g are defined by

f(x):= {
if (type(x)!=DOM_FLOAT) return ’f’(x);
while(x>0){ x--; }
return x;

}

and

g(x):= {
while(x>0){ x--; }
return x;

}:;

Graphing these, with
Input:

F := plotfunc(f(x))

Input:

G := plotfunc(g(x))

will both produce the same graph. However, here the graphic G won’t be reusable.
Entering
Input:

511

512 CHAPTER 7. GRAPHS

F

reproduces the graph, but entering
Input:

G

produces the error
Output:

"Unable to eval test in loop : x>0.0 Error: Bad
Argument Value Error: Bad Argument Value"

Internally, F and G contain the formal expressions f(x) and g(x), respectively.
When Xcas tries to evaluate F and G, x has no value and so the test x > 0 pro-
duces an error in g(x), but the line if (type(x)!=DOM_FLOAT) return ’f’(x);
avoids this problem in f(x).

7.2 The graphic screen

A graphic screen, either two- or three-dimensional as appropriate, automatically
opens in response to a graphic command. Alternatively, a graphic screen with
its own command line will open with keystrokes; Alt-g for a two-dimensional
screen and Alt-h for a three-dimensional screen. The graphic screen will have an
array of buttons at the top right.

• There will be red arrows for moving the image in the x direction.

• There will be green arrows for moving the image in the y direction.

• There will be blue arrows for zooming in and out in a two-dimensional
screen, and moving the image in the z direction in a three-dimensional screen.

• There will be in and out buttons for zooming in and out.

• There will be a _|_ button to orthonormalize the graphic.

• There will be a I| button to start and stop animations.

• There will be an auto button to do automatic scaling.

• There will be a cfg button which will bring up a configuration screen (see
XXXX).

• There will be an M button which is a menu. The menu has submenus:

– View which has entries which do the same as the buttons.

– Trace for working with traces.

– Animation for working with animations.

– 3-d for working with three-dimensional graphics.

– Export/Print to export and print the graphic.

The image can also be moved in the screen by clicking and dragging with the
mouse. Scrolling with the mouse will also zoom the images.

7.3. GRAPH AND GEOMETRIC OBJECTS ATTRIBUTES 513

7.3 Graph and geometric objects attributes

There are two kinds of attributes: global attributes of a graphic scene and individual
attributes.

7.3.1 Individual attributes

Graphic attributes are optional arguments of the form display=value, they
must be given as the last argument of a graphic instruction. Attributes are ordered
in several categories: color, point shape, point width, line style, line thickness,
legend value, position and presence. In addition, surfaces may be filled or not, 3-d
surfaces may be filled with a texture, 3-d objects may also have properties with
respect to the light. Attributes of different categories may be added, e.g.
plotfunc(x2 + y2,[x,y],display=red+line_width_3+filled)

• Colors display= or color=

– black, white, red, blue, green, magenta, cyan, yellow,

– a numeric value between 0 and 255,

– a numeric value between 256 and 256+7*16+14 for a color of the rain-
bow,

– any other numeric value smaller than 65535, the rendering is not guar-
anteed to be portable.

• Point shapes display= one of the following value rhombus_point
plus_point square_point cross_point triangle_point star_point
point_point invisible_point

• Point width: display= one of the following value point_width_n
where n is an integer between 1 and 7

• Line thickness: thickness=n or display=line_width_n where n
is an integer between 1 and 7 or

• Line shape: display= one of the following values dash_line solid_line
dashdot_line dashdotdot_line cap_flat_line cap_square_line
cap_round_line

• Legend, value: legend="legendname"; position: display= one of
quandrant1 quadrant2 quadrant3 quadrant4 corresponding to
the position of the legend of the object (using the trigonometric plane con-
ventions). The legend is not displayed if the attribute display=hidden_name
is added

• display=filled specifies that surfaces will be filled,

• gl_texture="picture_filename" is used to fill a surface with a
texture. Cf. the interface manual for a more complete description and for
gl_material= options.

Examples
Input :

514 CHAPTER 7. GRAPHS

polygon(-1,-i,1,2*i,legend="P")

Input :

point(1+i,legend="hello")

Input :

A:=point(1+i);B:=point(-1);display(D:=droite(A,B),hidden_name)

Input :

color(segment(0,1+i),red)

Input :

segment(0,1+i,color=red)

7.3.2 Global attributes

These attributes are shared by all objects of the same scene

• title="titlename" defines the title

• labels=["xname","yname","zname"]: names of the x, y, z axis

• gl_x_axis_name="xname", gl_y_axis_name="yname", gl_z_axis_name="":
individual definitions of the names of the x, y, z axis

• legend=["xunit","yunit","zunit"]: units for the x, y, z axis

• gl_x_axis_unit="xunit", gl_y_axis_unit="yunit", gl_z_axis_unit="":
individual definition of the units of the x, y, z axis

• axes=true or false show or hide axis

• gl_texture="filename": background image

• gl_x=xmin..xmax, gl_y=ymin..ymax, gl_z=zmin..zmax: set
the graphic configuration (do not use for interactive scenes)

• gl_xtick=, gl_ytick=, gl_ztick=: set the tick mark for the axis

• gl_shownames=true or false: show or hide objects names

• gl_rotation=[x,y,z]: defines the rotation axis for the animation ro-
tation of 3-d scenes.

• gl_quaternion=[x,y,z,t]: defines the quaternion for the visualiza-
tion in 3-d scenes (do not use for interactive scenes)

• a few other OpenGL light configuration options are available but not de-
scribed here.

Examples
Input :

7.4. GRAPH OF A FUNCTION : PLOTFUNC FUNCPLOT DRAWFUNC GRAPH515

legend=["mn","kg"]

Input :

title="median_line";triangle(-1-i,1,1+i);median_line(-1-i,1,1+i);median_line(1,-1-i,1+i);median_line(1+i,1,-1-i)

Input :

labels=["u","v"];plotfunc(u+1,u)

7.4 Graph of a function : plotfunc funcplot DrawFunc
Graph

7.4.1 2-d graph

plotfunc(f(x),x) draws the graph of y = f(x) for x in the default inter-
val, plotfunc(f(x),x=a..b) draws the graph of y = f(x) for a ≤ x ≤ b.
plotfunc accepts an optional xstep=... argument to specify the discretiza-
tion step in x.
Input :

plotfunc(x^2-2)

or :

plotfunc(a^2-2,a=-1..2)

Output :

the graph of y=x^2-2

Input :

plotfunc(x^2-2,x,xstep=1)

Output :

a polygonal line which is a bad representation of
y=x^2-2

It is also possible to specify the number of points used for the representation of the
function with nstep= instead of xstep=. For example, input :

plotfunc(x^2-2,x=-2..3,nstep=30)

516 CHAPTER 7. GRAPHS

7.4.2 3-d graph

plotfunc takes two main arguments : an expression of two variables or a list
of several expressions of two variables and the list of these two variables, where
each variable may be replaced by an equality variable=interval to specify the range
for this variable (if not specified, default values are taken from the graph configura-
tion). plotfunc accepts two optional arguments to specify the discretization step
in x and in y by xstep=... and ystep=.... Alternatively one can specify the
number of points used for the representation of the function with nstep= (instead
of xstep and ystep).
plotfunc draws the surface(s) defined by z = the first argument.
Input :

plotfunc(x^2+y^2,[x,y])

Output :

A 3D graph of z=x^2+y^2

Input :

plotfunc(x*y,[x,y])

Output :

The surface z=x*y, default ranges

Input :

plotfunc([x*y-10,x*y,x*y+10],[x,y])

Output :

The surfaces z=x*y-10, z=x*y and z=x*y+10

Input :

plotfunc(x*sin(y),[x=0..2,y=-pi..pi])

Output :

The surface z = x ∗ y for the specified ranges

Now an example where we specify the x and y discretization step with xstep and
ystep.
Input :

plotfunc(x*sin(y),[x=0..2,y=-pi..pi],xstep=1,ystep=0.5)

Output :

A portion of surface z = x ∗ y

Alternatively we may specify the number of points used for the representation of
the function with nstep instead of xstep and ystep.
Input :

7.4. GRAPH OF A FUNCTION : PLOTFUNC FUNCPLOT DRAWFUNC GRAPH517

plotfunc(x*sin(y),[x=0..2,y=-pi..pi],nstep=300)

Output :

A portion of surface z = x ∗ y

Remarks

• Like any 3-d scene, the viewpoint may be modified by rotation around the x
axis, the y axis or the z axis, either by dragging the mouse inside the graphic
window (push the mouse outside the parallelepiped used for the representa-
tion), or with the shortcuts x, X, y, Y, z and Z.

• If you want to print a graph or get a LATEX translation, use the graph menu
MenuIprintIPrint(with Latex)

7.4.3 3-d graph with rainbow colors

plotfunc represents a pure imaginary expression i*E of two variables with a
rainbow color depending on the value of z=E. This gives an easy way to find points
having the same third coordinate.
The first arguments of plotfunc must be i*E instead of E, the remaining argu-
ments are the same as for a real 3-d graph (cf 7.4.2) Input :

plotfunc(i*x*sin(y),[x=0..2,y=-pi..pi])

Output :

A piece of the surface z = x ∗ sin(y) with rainbow colors

Remark
If you want the graphic in LaTeX, you have to use :
MenuIprintIPrint(with Latex).

7.4.4 4-d graph.

plotfunc represents a complex expression E (such that re(E) is not identically
0 on the discretization mesh) by the surface z=abs(E)where arg(E) defines the
color from the rainbow. This gives an easy way to see the points having the same
argument. Note that if re(E)==0 on the discretization mesh, it is the surface
z=E/i that is represented with rainbow colors (cf 7.4.3).
The first argument of plotfunc is E, the remaining arguments are the same as
for a real 3-d graph (cf 7.4.2).
Input :

plotfunc((x+i*y)^2,[x,y])

Output :

A graph 3D of z=abs((x+i*y)^2 with the same color for
points having the same argument

Input :

518 CHAPTER 7. GRAPHS

plotfunc((x+i*y)^2x,[x,y], display=filled)

Output :

The same surface but filled

We may specify the range of variation of x and y and the number of discretization
points.
Input :

plotfunc((x+i*y)^2,[x=-1..1,y=-2..2],
nstep=900,display=filled)

Output :

The specified part of the surface with x between -1
and 1, y between -2 and 2 and with 900 points

7.5 2d graph for Maple compatibility : plot

plot(f(x),x) draws the graph of y = f(x). The second argument may specify
the range of values x=xmin..xmax. One can also plot a function instead of an
expression using the syntax plot(f,xmin..xmax). plot accepts an optional
argument to specify the step used in x for the discretization with xstep= or the
number of points of the discretization with nstep=.
Input :

plot(x^2-2,x)

Output :

the graph of y=x^2-2

Input :

plot(x^2-2,xstep=1)

or :

plot(x^2-2,x,xstep=1)

Output :

a polygonal line which is a bad representation of
y=x^2-2

Input!

plot(x^2-2,x=-2..3,nstep=30)

7.6. 3D SURFACES FOR MAPLE COMPATIBILITY PLOT3D 519

7.6 3d surfaces for Maple compatibility plot3d

plot3d takes three arguments : a function of two variables or an expression of
two variables or a list of three functions of two variables or a list of three expres-
sions of two variables and the names of these two variables with an optional range
(for expressions) or the ranges (for functions).
plot3d(f(x,y),x,y) (resp. plot3d([f(u,v),g(u,v),h(u,v)],u,v))
draws the surface z = f(x, y) (resp. x = f(u, v), y = g(u, v), z = h(u, v)). The
syntax plot3d(f(x,y),x=x0..x1,y=y0..y1) or plot3d(f,x0..x1,y0..y1)
specifies which part of surface will be computed (otherwise default values are taken
from the graph configuration).
Input :

plot3d(x*y,x,y)

Output :

The surface z = x ∗ y

Input :

plot3d([v*cos(u),v*sin(u),v],u,v)

Output :

The cone x = v ∗ cos(u), y = v ∗ sin(u), z = v

Input :

plot3d([v*cos(u),v*sin(u),v],u=0..pi,v=0..3)

Output :

A portion of the cone x = v ∗ cos(u), y = v ∗ sin(u), z = v

7.7 Graph of a line and tangent to a graph

7.7.1 Draw a line : line

line takes as argument cartesian equation(s) :

• in 2D: one line equation,

• in 3D: two plane equations.

line defines and draws the corresponding line.
Input :

line(2*y+x-1=0)

Output :

the line 2*y+x-1=0

Input :

520 CHAPTER 7. GRAPHS

line(y=1)

Output :

the horizontal line y=1

Input :

line(x=1)

Output :

the vertical line x=1

Input :

line(x+2*y+z-1=0,z=2)

Output :

the line x+2*y+1=0 in the plane z=2

Input :

line(y=1,x=1)

Output :

the vertical line crossing through (1,1,0)

Remark
line defines an oriented line :

• when the 2D line is given by an equation, it is rewritten as "left_member-
right_member=ax+by+c=0", this determines its normal vector [a,b] and
the orientation is given by the vector [b,-a]) (or its orientation is defined
by the 3D cross product of its normal vectors (with third coordinate 0) and
the vector [0,0,1]).
For example line(y=2*x) defines the line -2x+y=0 with as direction
the vector [1,2] (or cross([-2,1,0],[0,0,1])=[1,2,0]).

• when the 3D line is given by two plane equations, its direction is defined
by the cross product of the normals to the planes (where the plane equation
is rewritten as "left_member-right_member=ax+by+cz+d=0", so that the
normal is [a,b,c]).
For example the line(x=y,y=z) is the line x-y=0,y-z=0 and its di-
rection is :
cross([1,-1,0],[0,1,-1])=[1,1,1].

7.7.2 Draw an 2D horizontal line : LineHorz

LineHorz takes as argument an expression a.
LineHorz draws the horizontal line y = a.
Input :

LineHorz(1)

Output :

the line y=1

7.7. GRAPH OF A LINE AND TANGENT TO A GRAPH 521

7.7.3 Draw a 2D vertical line : LineVert

LineVert takes as argument an expression a.
LineVert draws the vertical line x = a.
Input :

LineVert(1)

Output :

the line x=1

7.7.4 Tangent to a 2D graph : LineTan

LineTan takes two arguments : an expression Ex of the variable x and a value
x0 of x.
LineTan draws the tangent at x = x0 to the graph of y = Ex.
Input :

LineTan(ln(x),1)

Output :

the line y=x-1

Input :

equation(LineTan(ln(x),1))

Output :

y=(x-1)

7.7.5 Tangent to a 2D graph : tangent

tangent takes two arguments : a geometric object and a point A.
tangent draws tangent(s) to this geometric object crossing through A. If the ge-
ometric object is the graph G of a 2D function, the second argument is either, a real
number x0, or a point A on G. In that case tangent draws a tangent to this graph
G crossing through the point A or through the point of abscissa x0.
For example, define the function g

g(x):=x^2

then the graph G={(x,y)∈ R2, y=g(x)} of g and a point A on the graph G:

G:=plotfunc(g(x),x);
A:=point(1.2,g(1.2));

If we want to draw the tangent at the point A to the graph G, we will input:

T:=tangent(G, A)

or :

T:=tangent(G, 1.2)

For the equation of the tangent line, input :

equation(T)

522 CHAPTER 7. GRAPHS

7.7.6 Plot a line with a point and the slope: DrawSlp

The DrawSlp command takes three arguments, real numbers a, b and m.
DrawSlp returns and draws the line through the point (a, b) with slope m.
Input:

DrawSlp(2,1,-1)

Output:

7.7.7 Intersection of a 2D graph with the axis

• The ordinate of the intersection of the graph of f with the y-axis is returned
by :

f(0)

indeed the point of coordinates (0, f(0)) is the intersection point of the graph
of f with the y-axis,

• Finding the intersection of the graph of f with the x-axis requires solving
the equation f(x) = 0.
If the equation is polynomial-like, solve will find the exact values of the
abscissa of these points. Input:

solve(f(x),x)

Otherwise, we can find numeric approximations of these abscissa. First look
at the graph for an initial guess or a range with an intersection and refine
with fsolve.

7.8 Graph of inequalities with 2 variables : plotinequation
inequationplot

plotinequation([f1(x,y)<a1,...fk(x,y)<ak],[x=x1..x2,y=y1..y2])
draws the points of the plane whose coordinates satisfy the inequalities of 2 vari-
ables : 

f1(x, y) < a1
...

fk(x, y) < ak
, x1 ≤ x ≤ x2, y1 ≤ y ≤ y2

Input :

7.9. THE AREA UNDER A CURVE: AREA 523

plotinequation(x^2-y^2<3,
[x=-2..2,y=-2..2],xstep=0.1,ystep=0.1)

Output :

the filled portion enclosing the origin and limited by
the hyperbola x^2-y^2=3

Input :

plotinequation([x+y>3,x^2<y],
[x-2..2,y=-1..10],xstep=0.2,ystep=0.2)

Output :

the filled portion of the plane defined by
-2<x<2,y<10,x+y>3,y>x^2

Note that if the ranges for x and y are not specified, Xcas takes the default values
of X-,X+,Y-,Y+ defined in the general graphic configuration (CfgIGraphic
configuration).

7.9 The area under a curve: area

The area command takes four arguments; an expression f(x), a range for the
variable x = a..b, an integer n, and the name of the approximation method. The
approximation method can be one of

• trapezoid

• left_rectangle

• right_rectangle

• middle_point

• simpson

• rombergt (Romberg with the trapezoid method)

• rombergm (Romberg with the midpoint method)

• gauss15 (The 15 point Gaussian quadrature)

area returns an approximation to the area under the graph over the given interval,
using the specified method with n subdivisions (or 2n subdivisions for rombert,
rombergm and gauss15).
Input:

area(xˆ2,x=0..1,8,trapezoid)

Output:

0.3359375

524 CHAPTER 7. GRAPHS

Input:

area(xˆ2,x=0..1,8,rombergm)

Output:

0.333333333333

Input:

area(xˆ2,x=0..1,3,gauss15)

Output:

0.333333333333

Input:

area(xˆ2,x=0..1)

Output:

1/3

7.10 Graph of the area below a curve : plotarea areaplot

• With two arguments, plotarea shades the area below a curve.
plotarea(f(x),x=a..b) draws the area below the curve y = f(x) for
a < x < b, i.e. the portion of the plane defined by the inequalities a < x < b
and 0 < y < f(x) or 0 > y > f(x) according to the sign of f(x) .
Input :

plotarea(sin(x),x=0..2*pi)

Output :

the portion of plane locates in the two arches of
sin(x)

• With four arguments, plotarea represents a numeric approximation of the
area below a curve, according to a quadrature method from the following list:
trapezoid,rectangle_left,rectangle_right,middle_point.
For example plotarea(f(x),x=a..b,n,trapezoid) draws the area
of n trapezoids : the third argument is an integer n, and the fourth argument
is the name of the numeric method of integration when [a, b] is cut into n
equal parts.
Input :

plotarea((x^2,x=0..1,5,trapezoid)

If you want to display the graph of the curve in contrast (e.g. in bold red),
input :

7.11. CONTOUR LINES: PLOTCONTOUR CONTOURPLOT DRWCTOUR 525

plotarea(x^2,x=0..1,5,trapezoid);
plot(x^2,x=0..1,display=red+line_width_3)

Output :

the 5 trapezoids used in the trapezoid method to
approach the integral

Input :

plotarea((x^2,x=0..1,5,middle_point)

Or with the graph of the curve in bold red, input :

plotarea(x^2,x=0..1,5,middle_point);
plot(x^2,x=0..1,display=red+line_width_3)

Output :

the 5 rectangles used in the middle_point method
to approach the integral

7.11 Contour lines: plotcontour contourplot DrwCtour

plotcontour(f(x,y),[x,y]) (or DrwCtour(f(x,y),[x,y]) or
contourplot(f(x,y),[x,y])) draws the contour lines of the surface de-
fined by z = f(x, y) for z = −10, z = −8, .., z = 0, z = 2, .., z = 10. You may
specify the desired contour lines by a list of values of z given as third argument.
Input :

plotcontour(x^2+y^2,[x=-3..3,y=-3..3],[1,2,3],
display=[green,red,black]+[filled$3])

Output :

the graph of the three ellipses x^2-y^2=n for n=1,2,3;
the zones between these ellipses are filled with the

color green,red or black

Input :

plotcontour(x^2-y^2,[x,y])

Output :

the graph of 11 hyperbolas x^2-y^2=n for n=-10,-8,..10

If you want to draw the surface in 3-d representation, input plotfunc(f(x,y),[x,y]),
see 7.4.2):

plotfunc(x^2-y^2,[x,y])

Output :

A 3D representation of z=x^2+y^2

526 CHAPTER 7. GRAPHS

7.12 2-d graph of a 2-d function with colors : plotdensity
densityplot

plotdensity(f(x,y),[x,y]) or densityplot(f(x,y),[x,y]) draws
the graph of z = f(x, y) in the plane where the values of z are represented by the
rainbow colors. The optional argument z=zmin..zmax specifies the range of z
corresponding to the full rainbow, if it is not specified, it is deduced from the min-
imum and maximum value of f on the discretization. The discretization may be
specified by optional xstep=... and ystep=... or nstep=... arguments.
Input :

plotdensity(x^2-y^2,[x=-2..2,y=-2..2],
xstep=0.1,ystep=0.1)

Output :

A 2D graph where each hyperbola defined by x^2-y^2=z
has a color from the rainbow

Remark : A rectangle representing the scale of colors is displayed below the graph.

7.13 Implicit graph: plotimplicit implicitplot

plotimplicit or implicitplot draws curves or surfaces defined by an im-
plicit expression or equation. If the option unfactored is given as last argument,
the original expression is taken unmodified. Otherwise, the expression is normal-
ized, then replaced by the factorization of the numerator of its normalization.

Each factor of the expression corresponds to a component of the implicit curve
or surface. For each factor, Xcas tests if it is of total degree less or equal to 2, in
that case conic or quadric is called. Otherwise the numeric implicit solver is
called.

Optional step and ranges arguments may be passed to the numeric implicit
solver, note that they are dismissed for each component that is a conic or a quadric.

7.13.1 2D implicit curve

• plotimplicit(f(x,y),x,y) draws the graphic representation of the
curve defined by the implicit equation f(x, y) = 0 when x (resp. y) is in
WX-, WX+ (resp. in WY-, WY+) defined by cfg,

• plotimplicit(f(x,y),x=0..1,y=-1..1) draws the graphic rep-
resentation of the curve defined by the implicit equation f(x, y) = 0 when
0 ≤ x ≤ 1 and −1 ≤ y ≤ 1

It is possible to add two arguments to specify the discretization steps for x and y
with xstep=... and ystep=....
Input :

plotimplicit(x^2+y^2-1,x,y)

or :

7.13. IMPLICIT GRAPH: PLOTIMPLICIT IMPLICITPLOT 527

plotimplicit(x^2+y^2-1,x,y,unfactored)

Output :

The unit circle

Input :

plotimplicit(x^2+y^2-1,x,y,xstep=0.2,ystep=0.3)

or :

plotimplicit(x^2+y^2-1,[x,y],xstep=0.2,ystep=0.3)

or :

plotimplicit(x^2+y^2-1,[x,y],
xstep=0.2,ystep=0.3,unfactored)

Output :

The unit circle

Input :

plotimplicit(x^2+y^2-1,x=-2..2,y=-2..2,
xstep=0.2,ystep=0.3)

Output :

The unit circle

7.13.2 3D implicit surface

• plotimplicit(f(x,y,z),x,y,z) draws the graphic representation
of the surface defined by the implicit equation f(x, y, z) = 0,

• plotimplicit(f(x,y,z),x=0..1,y=-1..1,z=-1..1) draws the
surface defined by the implicit equation f(x, y, z) = 0, where 0 ≤ x ≤ 1,
−1 ≤ y ≤ 1 and −1 ≤ z ≤ 1.

It is possible to add three arguments to specify the discretization steps used for x,
y and z with xstep=..., ystep=... and zstep=....
Input :

plotimplicit(x^2+y^2+z^2-1,x,y,z,
xstep=0.2,ystep=0.1,zstep=0.3)

Input :

plotimplicit(x^2+y^2+z^2-1,x,y,z,
xstep=0.2,ystep=0.1,zstep=0.3,unfactored)

Output :

The unit sphere

Input :

plotimplicit(x^2+y^2+z^2-1,x=-1..1,y=-1..1,z=-1..1)

Output :

The unit sphere

528 CHAPTER 7. GRAPHS

7.14 Parametric curves and surfaces : plotparam paramplot
DrawParm

7.14.1 2D parametric curve

plotparam([f(t),g(t)],t) or plotparam(f(t)+i*g(t),t) (resp.
plotparam(f(t)+i*g(t),t=t1..t2)) draws the parametric representa-
tion of the curve defined by x = f(t), y = g(t) with the default range of values of
t (resp. for t1 ≤ t ≤ t2).
The default range of values is taken as specified in the graphic configuration (t-
and t+, cf. 3.5.8). plotparam accepts an optional argument to specify the dis-
cretization step for t with tstep=.
Input :

plotparam(cos(x)+i*sin(x),x)

or :

plotparam([cos(x),sin(x)],x)

Output :

The unit circle

If in the graphic configuration t goes from -4 to 1, input :

plotparam(sin(t)+i*cos(t))

or :

plotparam(sin(t)+i*cos(t),t=-4..1)

or :

plotparam(sin(x)+i*cos(x),x=-4..1)

Output :

the arc (sin(-4)+i*cos(-4),sin(1)+i*cos(1)) of the
unit circle

If in the graphic configuration t goes from -4 to 1, input :

plotparam(sin(t)+i*cos(t),t,tstep=0.5)

or :

plotparam(sin(t)+i*cos(t),t=-4..1,tstep=0.5)

Output :

A polygon approaching the arc
(sin(-4)+i*cos(-4),sin(1)+i*cos(1)) of the unit circle

7.15. BEZIER CURVES: BEZIER 529

7.14.2 3D parametric surface : plotparam paramplot DrawParm

plotparam takes two main arguments, a list of three expressions of two vari-
ables and the list of these variable names where each variable name may be re-
placed by variable=interval to specify the range of the parameters. It accepts an
optional argument to specify the discretization steps of the parameters u and v
with ustep=... and vstep=....
plotparam([f(u,v),g(u,v),h(u,v)],[u,v]) draws the surface de-
fined by the first argument : x = f(u, v), y = g(u, v), z = h(u, v), where u
and v ranges default to the graphic configuration.
Input :

plotparam([v*cos(u),v*sin(u),v],[u,v])

Output :

The cone x = v ∗ cos(u), y = v ∗ sin(u), z = v

To specify the range of each parameters, replace each variable by an equation vari-
able=range, like this:

plotparam([v*cos(u),v*sin(u),v],[u=0..pi,v=0..3])

Output :

A portion of the cone x = v ∗ cos(u), y = v ∗ sin(u), z = v

Input :

plotparam([v*cos(u),v*sin(u),v],[u=0..pi,v=0..3],ustep=0.5,vstep=0.5)

Output :

A portion of the cone x = v ∗ cos(u), y = v ∗ sin(u), z = v

7.15 Bezier curves: bezier

The bezier command takes as argument a sequence L of points.
bezier(L,plot) plots the Bezier curve with the given control points.

If the points are P0, P1, . . . , Pn, the Bezier curve is the curve parameterized by∑n
j=0

(
n,j
t

)j
(1− t)n−jPj .

Input:

bezier(1,1+i,2+i,3-i,plot)

Output:

530 CHAPTER 7. GRAPHS

Input:

bezier(point(0,0,0),point(1,1,0),point(0,1,1),plot)

Output:

To get the parameterization of the curve, you can use parameq.
Input:

parameq(bezier(1,1+i,2+i,3-i))

Output:

(1-t)ˆ3+3*t*(1-t)ˆ2*(1+i)+3*tˆ2*(1-t)*(2+i)+tˆ3*(3-i)

Input:

parameq(bezier(point([0,0,0]),point([1,1,0]),point([0,1,1])))

Output:

point[2*t*(1-t),2*t*(1-t)+tˆ2,tˆ2]

7.16 Curve defined in polar coordinates : plotpolar
polarplot DrawPol courbe_polaire

Let Et be an expression depending on the variable t.
plotpolar(Et,t) draws the polar representation of the curve defined by ρ =
Et for θ = t, that is in cartesian coordinates the curve (Et cos(t), Et sin(t)). The
range of the parameter may be specified by replacing the second argument by
t=tmin..tmax. The discretization parameter may be specified by an optional
tstep=... argument.
Input

plotpolar(t,t)

Output :

The spiral ρ=t is plotted

Input

7.17. GRAPH OF A RECURRENT SEQUENCE : PLOTSEQ SEQPLOT GRAPHE_SUITE531

plotpolar(t,t,tstep=1)

or :

plotpolar(t,t=0..10,tstep=1)

Output :

A polygon line approaching the spiral ρ=t is plotted

7.17 Graph of a recurrent sequence : plotseq seqplot
graphe_suite

Let f(x) be an expression depending on the variable x (resp. f(t) an expression
depending on the variable t).
plotseq(f(x),a,n) (resp. plotseq(f(t),t=a,n)) draws the line y = x,
the graph of y = f(x) (resp. y = f(t)) and the n first terms of the recurrent
sequence defined by : u0 = a, un = f(un−1). The a value may be replaced by
a list of 3 elements, [a, x−, x+] where x−..x+ will be passed as x range for the
graph computation.
Input :

plotseq(sqrt(1+x),x=[3,0,5],5)

Output :

the graph of y=sqrt(1+x), of y=x and of the 5 first
terms of the sequence u_0=3 and u_n=sqrt(1+u_(n-1))

7.18 Tangent field : plotfield fieldplot

• Let f(t, y) be an expression depending on two variables t and y, then :

plotfield(f(t,y),[t,y])

draws the tangent field of the differential equation y′ = f(t, y) where y is a
real variable and where t is the abscissa,

• Let V be a vector of two expressions depending on 2 variables x, y but inde-
pendent of the time t, then

plotfield(V,[x,y])

draws the vector field V ,

• The range of values of t, y or of x, y can be specified with
t=tmin..tmax, x=xmin..xmax, y=ymin..ymax
in place of the variable name.

• The discretization may be specified with optional arguments xstep=...,
ystep=....

532 CHAPTER 7. GRAPHS

Input :

plotfield(4*sin(t*y),[t=0..2,y=-3..7])

Output :

Segments with slope 4*sin(t*y), representing tangents,
are plotting in different points

With two variables x, y, input :

plotfield(5*[-y,x],[x=-1..1,y=-1..1])

7.19 Plotting a solution of a differential equation : plotode
odeplot

Let f(t, y) be an expression depending on two variables t and y.

• plotode(f(t, y),[t,y],[t0,y0]) draws the solution of the differen-
tial equation y′ = f(t, y) crossing through the point (t0,y0) (i.e. such
that y(t0) = y0)

• By default, t goes in both directions. The range of value of tmay be specified
by the optional argument t=tmin..tmax.

• We can also represent, in the space or in the plane, the solution of a differ-
ential equation y′ = f(t, y) where y = (X,Y) is a vector of size 2. Just
replace y by the variable names X,Y and the initial value y0 by the two
initial values of the variables at time t0.

Input :

plotode(sin(t*y),[t,y],[0,1])

Output :

The graph of the solution of y’=sin(t,y) crossing through the point (0,1)

Input :

S:=odeplot([h-0.3*h*p, 0.3*h*p-p],
[t,h,p],[0,0.3,0.7])

Output, the graph in the space of the solution of :

[h, p]′ = [h− 0.3h ∗ p, 0.3h ∗ p− p] [h, p](0) = [0.3, 0.7]

To have a 2-d graph (in the plane), use the option plane

S:=odeplot([h-0.3*h*p, 0.3*h*p-p],
[t,h,p],[0,0.3,0.7],plane)

To compute the values of the solution, see the subsection 9.3.5.

7.20. INTERACTIVE PLOTTING OF SOLUTIONS OF A DIFFERENTIAL EQUATION : INTERACTIVE_PLOTODE INTERACTIVE_ODEPLOT533

7.20 Interactive plotting of solutions of a differential equa-
tion : interactive_plotode interactive_odeplot

Let f(t, y) be an expression depending on two variables t and y.
interactive_plotode(f(t,y),[t,y]) draws the tangent field of the dif-
ferential equation y′ = f(t, y) in a new window. In this window, one can click on
a point to get the plot of the solution of y′ = f(t, y) crossing through this point.
You can further click to display several solutions. To stop press the Esc key.
Input :

interactive_plotode(sin(t*y),[t,y])

Output :

The tangent field is plotted with the solutions of
y’=sin(t,y) crossing through the points defined by

mouse clicks

7.21 Animated graphs (2D, 3D or "4D")

Xcas can display animated 2D, 3D or "4D" graphs. This is done first by computing
a sequence of graphic objects, then after completion, by displaying the sequence in
a loop.

• To stop or start again the animation, click on the button I| (at the left of
Menu).

• The display time of each graphic object is specified in animate of the graph
configuration (cfg button). Put a small time, to have a fast animation.

• If animate is 0, the animation is frozen, you can move in the sequence of
objects one by one by clicking on the mouse in the graphic scene.

7.21.1 Animation of a 2D graph : animate

animate can create a 2-d animation with graphs of functions depending on a pa-
rameter. The parameter is specified as the third argument of animate, the number
of pictures as fourth argument with frames=number, the remaining arguments are
the same as those of the plot command, see section 7.5, p. 516.
Input :

animate(sin(a*x),x=-pi..pi,a=-2..2,frames=10,color=red)

Output :

a sequence of graphic representations of y=sin(ax) for
11 values of a between -2 and 2

534 CHAPTER 7. GRAPHS

7.21.2 Animation of a 3D graph : animate3d

animate3d can create a 3-d animation with function graphs depending on a pa-
rameter. The parameter is specified as the third argument of animate3d, the
number of pictures as fourth argument with frames=number, the remaining ar-
guments are the same as those of the plotfunc command, see section 7.4.2, p.
514.
Input :

animate3d(x^2+a*y^2,[x=-2..2,y=-2..2],a=-2..2,
frames=10,display=red+filled)

Output :

a sequence of graphic representations of z=x^2+a*y^2
for 11 values of a between -2 and 2

7.21.3 Animation of a sequence of graphic objects : animation

animation animates the representation of a sequence of graphic objects with
a given display time. The sequence of objects depends most of the time on a
parameter and is defined using the seq command but it is not mandatory.
animation takes as argument the sequence of graphic objects.
To define a sequence of graphic objects with seq, enter the definition of the graphic
object (depending on the parameter), the parameter name, its minimum value, its
maximum value maximum and optionally a step value.
Input :

animation(seq(plotfunc(cos(a*x),x),a,0,10))

Output :

The sequence of the curves defined by y = cos(ax), for
a = 0, 1, 2..10

Input :

animation(seq(plotfunc(cos(a*x),x),a,0,10,0.5))

or :

animation(seq(plotfunc(cos(a*x),x),a=0..10,0.5))

Output :

The sequence of the curves defined by y = cos(ax), for
a = 0, 0.5, 1, 1.5..10

Input :

animation(seq(plotfunc([cos(a*x),sin(a*x)],x=0..2*pi/a),
a,1,10))

Output :

7.21. ANIMATED GRAPHS (2D, 3D OR "4D") 535

The sequence of two curves defined by y = cos(ax) and
y = sin(ax), for a = 1..10 and for x = 0..2π/a

Input :

animation(seq(plotparam([cos(a*t),sin(a*t)],
t=0..2*pi),a,1,10))

Output :

The sequence of the parametric curves defined by
x = cos(at) and y = sin(at), for a = 1..10 and for t = 0..2π

Input :

animation(seq(plotparam([sin(t),sin(a*t)],
t,0,2*pi,tstep=0.01),a,1,10))

Output :

The sequence of the parametric curves defined by
x = sin(t), y = sin(at), for a = 0..10 and t = 0..2π

Input :

animation(seq(plotpolar(1-a*0.01*t^2,
t,0,5*pi,tstep=0.01),a,1,10))

Output :

The sequence of the polar curves defined by
ρ = 1− a ∗ 0.01 ∗ t2, for a = 0..10 and t = 0..5π

Input :

plotfield(sin(x*y),[x,y]);
animation(seq(plotode(sin(x*y),[x,y],[0,a]),a,-4,4,0.5))

Output :

The tangent field of y’=sin(xy) and the sequence of
the integral curves crossing through the point (0, a) for

a=-4,-3.5...3.5,4

Input :

animation(seq(display(square(0,1+i*a),filled),a,-5,5))

Output :

The sequence of the squares defined by the points 0
and 1+i*a for a = −5..5

Input :

animation(seq(droite([0,0,0],[1,1,a]),a,-5,5))

536 CHAPTER 7. GRAPHS

Output :

The sequence of the lines defined by the points
[0,0,0] and [1,1,a] for a = −5..5

Input :

animation(seq(plotfunc(x^2-y^a,[x,y]),a=1..3))

Output :

The sequence of the "3D" surface defined by x2 − ya, for
a = 1..3 with rainbow colors

Input :

animation(seq(plotfunc((x+i*y)^a,[x,y],
display=filled),a=1..10)

Output :

The sequence of the "4D" surfaces defined by (x+ i ∗ y)a,
for a = 0..10 with rainbow colors

Remark We may also define the sequence with a program, for example if we
want to draw the segments of length 1,

√
2...
√

20 constructed with a right triangle
of side 1 and the previous segment (note that there is a c:=evalf(..) statement
to force approx. evaluation otherwise the computing time would be too long) :

seg(n):={
local a,b,c,j,aa,bb,L;
a:=1;
b:=1;
L:=[point(1)];
for(j:=1;j<=n;j++){
L:=append(L,point(a+i*b));
c:=evalf(sqrt(a^2+b^2));
aa:=a;
bb:=b;
a:=aa-bb/c;
b:=bb+aa/c;
}
L;

}

Then input :

animation(seg(20))

We see, each point, one to one with a display time that depends of the animate
value in cfg.
or :

L:=seg(20); s:=segment(0,L[k])$(k=0..20)

7.21. ANIMATED GRAPHS (2D, 3D OR "4D") 537

We see 21 segments.
Then, input :

animation(s)

We see, each segment, one to one with a display time that depends of the animate
value in cfg.

538 CHAPTER 7. GRAPHS

Chapter 8

Statistics

8.1 One variable statistics

Xcas has several functions to perform statistics; the data is typically given as a list
of numbers, such as A := [0,1,2,3,4,5,6,7,8,9,10,11]. We will use
this particular list in several examples. Section 5.49.32 will discuss statistics on
matrices.

8.1.1 The mean: mean

Recall that the mean of a list x1, . . . , xn is simply their numeric average (x1 +
· · · + xn)/n. Xcas can calculate the mean of a list of numbers with the mean
command. If you enter

mean([1,2,3,4])

then you will get

5/2

since (1 + 2 + 3 + 4)/4 = 5/2. If you give mean a matrix as an argument, then it
will return a list with the numeric average of each column;

mean([[1,2,3],[5,6,7]])

will return

[3,4,5]

since (1 + 5)/2 = 3, (2 + 6)/2 = 4 and (3 + 7)/2 = 5.
To get the weighted average of a list of numbers you can give mean a second

argument, which should be a list of the weights. For example,

mean([2,4,6,8],[2,2,3,3])

will return

27/5

since (2 ·2+4 ·2+6 ·3+8 ·3)/(2+2+3+3) = 27/5. Similarly, you can find the
weighted average of the columns of a matrix by giving mean a second argument
of a matrix of weights. If you enter

539

540 CHAPTER 8. STATISTICS

mean([[1,2],[3,4]],[[1,2],[2,1]])

then you will get

[7/3,8/3]

since (1 · 1 + 3 · 2)/(1 + 2) = 7/3 and (2 · 2 + 4 · 1)/(2 + 1) = 8/3.

8.1.2 Variance and standard deviation: variance stdev

The variance of a list of numbers measures how close the numbers are to their
mean by finding the average of the squares of the differences between the numbers
and the mean; specifically, given a list of numbers [x1, . . . , xn] with mean µ =
(x1 + · · ·+ xn)/n, the variance is

(x1 − µ)2 + · · ·+ (xn − µ)2

n
.

The squares help ensure that the numbers above the mean and those below the mean
don’t cancel out. The variance can be computed with the command variance,

A potentially better way to measure how close numbers are to their mean is the
standard deviation, which is the square root of the variance;. Note that if the list
of numbers have units, then the standard deviation will have the same unit. The
stddev function will compute the standard deviation of a list of numbers. For
example, the list [1, 2, 3, 4] has mean 5/2, and so stddev([1,2,3,4]) will
return

2*sqrt(5)/4

since √
(1− 5/2)2 + (2− 5/2)2 + (3− 5/2)2 + (4− 5/2)2

4
=

2
√

5

4

Like the mean, given a matrix, stddev will compute the standard deviation of
each column separately;

stddev([[1,2],[3,6]])

will compute

[1,2]

Also, a second list (or matrix) as an argument will provide weights when finding
the standard deviation;

stddev([1,2,3],[2,1,1])

will return

4*sqrt(11)/16

8.1. ONE VARIABLE STATISTICS 541

8.1.3 The population standard deviation: stddevp stdDev

Given a large population, rather than collecting all of the numbers it might be more
feasible to get a smaller collection of numbers and try to extrapolate from that. For
example, to get information about the ages of a large population, you might get the
ages of a sample of 100 of the people and work with that.

If a list of numbers is a sample of data from a larger population, then the mean
function will find the mean of the sample, which can be used to estimate the mean
of the population. The standard deviation uses the mean to find the standard devia-
tion of the sample, but since the mean of the sample is only an approximation to the
mean of the entire population, the standard deviation of the sample doesn’t provide
an optimal estimate of the standard deviation of the population. An unbiased esti-
mate of the standard deviation of the entire population is given by the population
standard deviation stddevp function; given a list L = [x1, . . . , xn] with mean µ,
the population standard deviation is

σ =

√
(x1 − µ)2 + · · ·+ (xn − µ)2

n− 1
.

Note that
stddevp(L)2 =

n

n− 1
stddev(L)2.

For example,

stddev([1,2,3,4])

will return

sqrt(5)/2

while

stddevp([1,2,3,4])

will return

sqrt(15)/3

Like stddev, the stddevp command can take a second argument for weights.
If you enter

A := [0,1,2,3,4,5,6,7,8,9,10,11]
stddevp(A,A)

then you will get

sqrt(66)/3

The stdDev function is equivalent to stddevp, for TI compatibility. There
is no population variance function; if needed, it can be computed by squaring the
stddevp function.

542 CHAPTER 8. STATISTICS

8.1.4 The median: median

Although the average of a list of numbers typically means the mean, there are other
notions of “average”. Another one is the median; the median of a list of numbers is
the middle number when they are listed in numeric order. For example, the median
of the list [1, 2, 5, 7, 20] is simply 5. If the length of a list of numbers is even,
so there isn’t a middle number, the median is then the mean of the two middle
numbers; for example, the median of [1, 2, 5, 7, 20, 21] is (5 + 7)/2 = 6.

The median function finds the median of a list. The command

median([1,2,5,7,20])

will return

5

The median function can take weights with a second argument, where the weight
of number represents how many times it is counted in a list. For example,

median([1,2,5,7,20],[5,3,2,1,2])

will return

2

since the median of 1, 1, 1, 1, 1, 2, 2, 2, 5, 5, 7, 20, 20 is 2.

8.1.5 Quartiles: quartiles quartile1 quartile3

Recall that the quartiles of a list of numbers divide it into four equal parts; the first
quartile is the number q1 such that one-fourth of the list numbers fall below q1;
i.e., the median of that part of the list which fall at or below the list median. The
second quartiles is the number q2 such that half of the list numbers fall at or below
q2; more specifically, the median of the list. And of course the third quartile is the
number q3 such that three-fourths of the list numbers fall at or below q3.

The function quartiles takes a list and returns a column vector consisting
of the minimum of the list, the first quartile, the second quartile, the third quartile
and the maximum. If you enter

A := [0,1,2,3,4,5,6,7,8,9,10,11];
quartiles(A)

you will get

[[0.0],[2.0],[5.0],[8.0],[11.0]]

You can get the individual entries of this vector with the commands min,
quartile1, median, quartile2 and max.

Just as with median, the quartiles function can take a second argument
consisting of weights for the first argument; for example,

quartiles(A,A)

would return

[0,6,8,10,11]

8.1. ONE VARIABLE STATISTICS 543

8.1.6 Quantiles: quantile

Similar to quartiles, a quantile of a list is the number q such that a given fraction of
the list numbers fall at or below q. The first quartile, for example, is the quantile
with the fraction 0.25.

The command quantile takes a list of numbers and a value p between 0 and
1 as arguments and returns the pth quantile. For example,

A := [0,1,2,3,4,5,6,7,8,9,10,11]
quantile(A,0.1)

returns the quantile with p = 0.1 (the first decile):

1.0

Like quartile, the quantile command can take an argument representing
weights of the list; the weights can be given as a second argument and then the
value p will be the third. The command

quantile(A,A,0.25)

will return

6

8.1.7 The boxwhisker: boxwhisker mustache

A boxwhisker is a graphical view of the quartiles of a list of numbers. The boxwhisker
consists of a line segment from the the minimum of the list to the first quartile,
leading to a rectangle from the first quartile to the third quartile, followed by a
line segment from the third quartile to the maximum of the list. The rectangle will
contain a vertical segment indicating the median, and the two line segments will
contain vertical lines indicating the first and ninth decile.

The boxwhisker (or mustache) command will create a boxwhisker for a
list. For example, if you enter

boxwhisker([-1,1,2,2.2,3,4,-2,5])

a graphic window will appear showing the boxwhisker,

544 CHAPTER 8. STATISTICS

8.1.8 Classes: classes

The classes command can be used to groups a collection of numbers into inter-
vals; the result will be a list where each element is an interval a..b followed by
how many of the numbers are in the interval [a, b). The collection of numbers can
be given as a list or matrix.

If L is a collection of numbers, a and b are numbers, then classes(L,a,b)
will return the list [[a..a + b,n1],[a + b..a + 2b,n2],...] where each
number in L is in one of the intervals [a + kb, a + (k + 1)b) and nk is how many
numbers from L are in the corresponding interval. For example,

classes([0,0.5,1,1.5,2,2.5,3,3.5,4],0,2)

will return

[[0.0 .. 2.0,4],[2.0 .. 4.0,4],[4.0 .. 6.0,1]]

while

classes([0,0.5,1,1.5,2,2.5,3,3.5,4],-1,2)

will return

[[(-1.0) .. 1.0,2],[1.0 .. 3.0,4],[3.0 .. 5.0,3]]

If the numbers a and b are omitted, they will default to the configurable values of
class_min and class_size, which default to 0 and 1.

Another way to split the list L into intervals is by making the third argument
the midpoints of the desired intervals. For example, if you enter

classes([0,0.5,1,1.5,2,2.5,3,3.5,4],1,[1,3,5])

you will get

[[0.0..2.0,4],[2.0..4.0,4],[4.0..6.0,1]]

Finally, you can simply state the intervals that you want to use by giving them
as a list for the second argument. In this case, not every number in the list is
necessarily in one of the intervals. If you enter

classes([0,0.5,1,1.5,2,2.5,3,3.5,4],[1..3,3..6])

you will get

[[1 .. 3,4],[3 .. 6,3]]

8.1.9 Histograms: histogram histogramme

Given a list of intervals and a number of points in each interval, such as is given
by the output of the classes command, the histogram (or histogramme)
command will draw a box over each interval so that the height of each box is
proportional to the number of points and the total area of the boxes is 1. For
example, if you enter

8.1. ONE VARIABLE STATISTICS 545

histogram([[1.5..1.65,50],[1.65..1.7,20],[1.7..1.8,30]])

you will get

If you just give the histogram a list of numbers, or a list with values a and
b, then you will get the histogram of the result of applying classes to the list.
For example, if you enter

histogram([1,2,2.5,2.5,3],0.5,0.75)

you will get

8.1.10 Accumulating terms: accumulate_head_tail

The first terms and last terms of a list can be accumulated by replacing them with
their sum using the accumulate_head_tail command. This command takes
the list, the number of initial terms to sum, and the number of end terms to add,
and returns the list with the initial terms and end terms replaced by their sums. For
example, the command

accumulate_head_tail([1,2,3,4,5,6,7,8,9,10],3,4)

will return

[6,4,5,6,34]

8.1.11 Frequencies: frequencies frequences

Given a list of numbers, the frequencies (or frequences) command will
return the numbers in the list with their frequencies; i.e., the fraction of list items
equal to the number. For example,

frequencies([1,2,1,1,2,1,2,4,3,3])

546 CHAPTER 8. STATISTICS

will return

[[1,0.4],[2,0.3],[3,0.2],[4,0.1]]

You can use this, for example, to simulate flipping a fair coin and seeing how
many times each side appears; to flip a coin 1000 times, for example, you can enter

frequencies([rand(2) $ (k=1..1000)])

and you might get

[[0,0.513],[1,0.487]]

8.1.12 Cumulative frequencies: cumulated_frequencies frequences_cumulees

Given a list, the cumulated_frequencies command will plot the cumulated
frequency of the numbers in the list; i.e., the area under the resulting graph at a
value x will be the fraction of numbers less than x. For example, if you enter

cumulated_frequencies([1,2,1,1,2,1,2,4,3,3])

then you will get

The cumulated_frequencies command can also take a matrix with two
columns as an argument. In this case, the first column will represent values while
the second column will represent the number of times the values occur. For exam-
ple, the above graph can be drawn with the command

cumulated_frequencies([[1,4],[2,3], [3,2], [4,1]])

If the first column of the input matrix contains intervals a..b instead of num-
bers, then the second column values will be normalized to add up to one, and will
represent the frequencies of the intervals. If the matrix has the form

[[a0..a1, f1], ..., [an−1..an, fn]]

then the plot will consist of the polygonal path starting at (a0, 0) and moving to
(a1, f1) to (a2, f1 + f2) and so on until (an, f1 + · · ·+ fn). For example, both

cumulated_frequencies([[1..2,30],[2..4,40],[4..5,30]])

and

cumulated_frequencies([[1..2,03],[2..4,0.4],[4..5,0.3]])

8.1. ONE VARIABLE STATISTICS 547

will give you

If the matrix given to cumulated_frequencies has more than two columns,
then each additional column will represent a different distribution of the numbers
in the first column, and each distribution will be graphed. For example, if you enter

cumulated_frequencies([[1,4,1],[2,3,4], [3,2,1],
[4,1,2]])

then both the distributions given by [[1,4],[2,3], [3,2], [4,1]] and
[[1,1],[2,4], [3,1], [4,2]] will be drawn on the same axes; the result
will be

8.1.13 Bar graphs: bar_plot

You can draw bar graphs with the bar_plot command. You give it a list, whose
elements are pairs of labels and values, and the result will be a bar graph with a bar
for each label, whose height is given by the corresponding value. For example, if
you enter

bar_plot([["France", 6],["Germany", 12],
["Switzerland", 5]])

you will get

548 CHAPTER 8. STATISTICS

If you have more than one set of values for each label, you can use bar_plot
to draw several bar graphs at the same time by including all values for each label,
with a list of identifiers for the bar graphs given by the first argument. If you enter

bar_plot([[2,"xyz","abc"],["A",2,5],["B",5,6],["C",6,6]])

you will get

8.1.14 Pie charts: camembert

You can draw pie charts using the same structure as bar graphs, but with the com-
mand camembert. If you enter

camembert([["France", 6],["Germany", 12],
["Switzerland", 5]])

you will get

and if you enter

camembert([[2,"xyz","abc"],["A",2,5],["B",5,6],["C",6,6]])

you will get

8.2. TWO VARIABLE STATISTICS 549

8.2 Two variable statistics

8.2.1 Covariance and correlation: covariance correlation covariance_correlation

The covariance of two random variables measures their connectedness; i.e., whether
they tend to change with each other. IfX and Y are two random variables, then the
covariance is the expected value of (X−X̄)(Y −Ȳ), where X̄ and Ȳ are the means
of X and Y , respectively. You can calculate covariances with the covariance
command.

If X and Y are given by lists of the same size, then covariance(X,Y)
will return their covariance. For example, if you enter

covariance([1,2,3,4],[1,4,9,16])

then you will get

25/4

Alternatively, you could use a matrix with two columns instead of two lists to enter
X and Y ; the command

covariance([[1,1],[2,4],[3,9],[4,16]])

is another way to enter the above calculation.
If the entries in the lists X = [a0, . . . , an−1] and Y = [b0, . . . , bn−1] have

different weights, say aj and bj have weight wj , then covariance can be given
a third listW = [w0, . . . , wn−1] (or alternatively, you could use a matrix with three
columns). For example, if you enter

covariance([1,2,3,4],[1,4,9,16],[3,1,5,2])

then you will get

662/121

If each pair of entries in the lists X = [a0, . . . , am−1] and Y = [b0, . . . , b0]
have different weights, say aj and bk have weight wjk, then covariance can be
given a third argument of an m × n matrix W = (wjk). (Note that in this case
the lists X and Y don’t have to be the same length.) For example, the covariance
computed above could also have been computed by entering

covariance([1,2,3,4],[1,4,9,16],
[[3,0,0,0],[0,1,0,0],[0,0,5,0],[0,0,0,2]])

which would of course return

662/121

In this case, to make it simpler to enter the data in a spreadsheet, the lists X and
Y and the matrix W can be combined into a single matrix, by augmenting W with
the list Y on the top and the transpose of the list X on the left, with a filler in the
upper left hand corner; (

”XY ” Y
XT W

)
When you use this method, you need to give covariance a second argument of
-1. The above covariance can then be computed with the command

550 CHAPTER 8. STATISTICS

covariance([["XY",
1,4,9,16],[1,3,0,5,0],[2,0,1,0,0],[3,0,0,5,0],[4,0,0,0,2]],-1)

The linear correlation coefficient of two random variables is another way to
measure their connectedness. Given random variables X and Y , their correla-
tion is defined as cov(X,Y)/(σ(X)σ(Y)), where σ(X) and σ(Y) are the stan-
dard deviations of X and Y , respectively. The correlation can be computed with
the correlation command, which takes the same types of arguments as the
covariance command. If you enter

correlation([1,2,3,4],[1,4,9,16])

you will get

100/(4*sqrt(645))

The covariance_correlation command will compute both the covari-
ance and correlation simultaneously, and return a list with both values. This com-
mand takes the same type of arguments as the covariance and correlation
commands. For example, if you enter

covariance_correlation([1,2,3,4],[1,4,9,16])

you will get

[25/4,100/(4*sqrt(645))]

8.2.2 Scatterplots: scatterplot nuaged_points batons

A scatter plot is simply a set of points plotted on axes. You can draw a scatter plot
with the scatterplot or nuage_points command.

You can call scatterplot with a matrix with two columns (essentially, a
list of points) or a list of x-coordinates followed by a list of y-coordinates. If you
enter

scatterplot([[0,0],[1,1],[2,4],[3,9],[4,16]])

or

scatterplot([0,1,2,3,4],[0,1,4,9,16])

you will get

8.2. TWO VARIABLE STATISTICS 551

If you want the points connected to the x-axis, the batons command will
take the same arguments at scatterplot and plot the points with a vertical line
segment connecting them to the x-axis. If you enter

batons([[0,0],[1,1],[2,4],[3,9],[4,16]])

you will get

8.2.3 Polygonal paths: polygonplot ligne_polygonale linear_interpolate
listplot plotlist

You can draw a polygonal path with either polygonplot or listplot.
Given a list of points (a two-column matrix) or two lists (the x coordinates and

the y-coordinates), the polygonplot (or polygonscatterplot) command
will draw the polygonal path through the points, from left to right (so the points
are automatically ordered by increasing x-coordinates). If you enter

polygonplot([0,1,2,3,4],[0,1,4,9,16])

or

polygonplot([[0,0],[1,1],[2,4],[3,9],[4,16]])

or even

polygonplot([[2,4],[0,0],[3,9],[1,1],[4,16]])

you will get

If you give polygonplot a single list of numbers, then they will be taken to
be the y-coordinates and the x-coordinates will be assumed to be integers starting
at 0. If you enter

polygonplot([0,1,4,9,16])

552 CHAPTER 8. STATISTICS

If you want to get coordinates on the polygonal path, you can use the linear_interpolate
command. This command takes four arguments; a two-row matrix consisting of
the x-coordinates and the y-coordinates, xmin, the minimum value of x that you
are interested in, xmax, the maximum value of x, and xstep, the step size you
want. (The values of xmin and xmax must be between the smallest and largest x-
coordinates of the points.) You will get a matrix with two rows, the first row will
be [xmin, xmin + xstep, xmin + 2xstep, ..., xmax] and the second row will be the
corresponding y-coordinates of the points on the polygonal path. For example, if
you enter

linear_interpolate([[1,2,6,9],[3,4,6,12]],2,7,1)

you will get

[[2.0,3.0,4.0,5.0,6.0,7.0],[4.0,4.5,5.0,5.5,6.0,8.0]]

If you want to draw a polygonal path through points in an order determined
by you, you can use the listplot (or plotlist) command. If you give
listplot a list of points, then you will get a polygonal path through the points
in the order given by the list. If you enter

listplot([[2,4],[0,0],[3,9],[1,1],[4,16]])

you will get

As with polygonplot, if you give listplot a single list of numbers, then
they will be taken to be the y-coordinates and the x-coordinates will be assumed to
be integers starting at 0. If you enter

listplot([0,1,4,9,16])

you will get the same graph that you got with polygonplot. However, unlike
polygonplot, the listplot command can’t be given two lists of numbers as
arguments.

8.2.4 Linear regression: linear_regression linear_regression_plot

Given a set of points (x0, y0), . . . , (xn−1, yn−1), linear regression finds the line
y = mx + b that comes closest to passing through all of the points; i.e., that
makes

√
(y0 − (mx0 + b))2 + · · ·+ (yn−1 − (mxn−1 + b))2 as small as possi-

ble. Given a set of points (a two-column matrix) or two lists of numbers (the
x- and y-coordinates), the linear_regression command will find the values
of m and b which determine the line. For example, if you enter

8.2. TWO VARIABLE STATISTICS 553

linear_regression([[0,0],[1,1],[2,4],[3,9],[4,16]])

or

linear_regression([0,1,2,3,4],[0,1,4,9,16])

you will get

4, -2

which means that the line y = 4x− 2 is the best fit line.
The best fit line can be drawn with the linear_regression_plot com-

mand; if you enter

linear_regression_plot([0,1,2,3,4],[0,1,4,9,16])

you will get

This will draw the line (in this case y = 4x − 2) and give you the equation at the
top, as well as the R2 value, which is

R2 =

∑n−1
j=0 (mxj + b− ȳ)2∑n−1

j=0 (yj − ȳ)2

(The R2 value will be between 0 and 1 and is one measure of how good the line
fits the data; a value close to 1 indicates a good fit, a value close to 0 indicates a
bad fit.)

8.2.5 Exponential regression: exponential_regression exponential_regression_plot

A set of points might be expected to lie on an exponential curve y = bax. Given a
set of points, either as a list of x-coordinates followed by a list of y-coordinates, or
simply by a list of points, the exponential_regression command will find
the values of a and b which give the best fit exponential. For example, if you enter

evalf(exponential_regression([[1,1],[2,4],[3,9],[4,16]]))

or

evalf(exponential_regression([1,2,3,4],[1,4,9,16]))

(where the evalf is used to get a numeric approximation to an exact expression)
you will get

554 CHAPTER 8. STATISTICS

2.49146187923,0.5

so the best fit exponential curve will be y = 0.5 ∗ (2.49146187923)x.
To plot the curve, you can use the command exponential_regression_plot;

if you enter

exponential_regression_plot([1,2,3,4],[1,4,9,16])

you will get

which plots the graph, and has the equation and R2 value above the graph.

8.2.6 Logarithmic regression: logarithmic_regression logarithmic_regression_plot

A set of points might be expected to lie on a logarithmic curve y = m ln(x) +
b. Given a set of points, either as a list of x-coordinates followed by a list of
y-coordinates, or simply by a list of points, the logarithmic_regression
command will find the values of m and b which give the best fit exponential. For
example, if you enter

evalf(logarithmic_regression([[1,1],[2,4],[3,9],[4,16]]))

or

evalf(logarithmic_regression([1,2,3,4],[1,4,9,16]))

(where the evalf is used to get a numeric approximation to an exact expression)
you will get

10.1506450002,-0.564824055818

so the best fit exponential curve will be y = 10.1506450002 ln(x)−0.564824055818.
To plot the curve, you can use the command exponential_regression_plot;

if you enter

logarithmic_regression_plot([1,2,3,4],[1,4,9,16])

you will get

8.2. TWO VARIABLE STATISTICS 555

which plots the graph, and has the equation and R2 value above the graph.

8.2.7 Power regression: power_regression power_regression_plot

To find the graph y = bxm which best fits a set of data points, you can use the
power_regression command. Given a set of points, either as a list of x-
coordinates followed by a list of y-coordinates, or simply by a list of points, the
power_regression command will find the values of m and b which give the
best fit curve. For example, if you enter

power_regression([[1,1],[2,4],[3,9],[4,16]])

or

power_regression([1,2,3,4],[1,4,9,16])

you will get

2.0, 1.0

so the best fit (in this case, exact fit) power curve will be y = 1.0x2.
To plot the curve, you can use the command power_regression_plot;

if you enter

power_regression_plot([1,2,3,4],[1,4,9,16])

you will get

which plots the graph, and has the equation and R2 value above the graph. Note
that in this case the R2 value is 1, indicating that the data points fall directly on the
curve.

556 CHAPTER 8. STATISTICS

8.2.8 Polynomial regression: polynomial_regression polynomial_regression_plot

If you want to find a more general polynomial y = a0x
n + · · · + an which best

fits a set of data points, you can use the polynomial_regression command.
Given a set of points, either as a list of x-coordinates followed by a list of y-
coordinates, or simply by a list of points, as well as a power n, the polynomial_regression
command will return the list [an, . . . , a0] of coefficients of the polynomial. For ex-
ample, if you enter

polynomial_regression([[1,1],[2,2],[3,10],[4,20]],3)

or

polynomial_regression([1,2,3,4],[1,2,10,20],3)

you will get

[-5/6,17/2,-56/3,12]

so the best fit polynomial will be y = (−5/6)x3 + (17/2)x2 − (56/3)x+ 12.
To plot the curve, you can use the command polynomial_regression_plot;

if you enter

polynomial_regression_plot([1,2,3,4],[1,2,10,20],3)

you will get

8.2.9 Logistic regression: logistic_regression logistic_regression_plot

Differential equations of the form y′ = y(a ∗ y + b) come up often, particularly
when studying bounded population growth. With the initial condition y(x0) = y0,
the solution is the logistic equation

y =
−b ∗ y0

a ∗ y0− (a ∗ y0 + b) exp(b(x0− x))

However, you often don’t know the values of a and b. You can still get a “best fit”
logisitic equation with the following information: The initial value of x, the initial
value of y, and several values of y′; namely, y′(x0), y′(x0+1), . . . , y′(x0+n−1)
where x0 is the initial value of x. Xcas will then take the initial value y(x0) = y0
and the approximation y(t + 1) ≈ y(t) + y′(t) to get the approximations y(x0 +
1) ≈ y0 + y′(x0), y(x0 + 2) ≈ y0 + y′(x0) + y′(x0 + 1), . . . y(x0 + n) ≈
y0 + y′(x0) + . . . y′(x0 + n − 1), . . . Since y′/y = a + by, Xcas will take the

8.3. RANDOM NUMBERS 557

approximate values of y′(x0 + j)/y(x0 + j) and use linear interpolation to get the
best fit values of a and b, and then solve the differential equation.

The logistic_regression command will take as input a list and two
numbers; the list will be [y10, y11, . . . , y1(n−1)], where y1j represents the value of
y′(x0 +j), the first number is x0 and the last number is y0 = y(x0). The command
will return the function y(x), the derivative y′(x), the number C = −b/a, y′(xM)
which is the maximum value of y′, xM which is where y′ has its maximum, and the
linear correlation coefficient R of Y = y′/y as a function of y with Y = a ∗ y+ b.
For example, if you enter

logistic_regression([0.0,1.0,2.5],0,1)

you will get

Pinstant=0.132478632479*Pcumul+0.0206552706553
Correlation 0.780548607383, Estimated total P=-0.155913978495
Returning estimated Pcumul, Pinstant, Ptotal, Pinstantmax, tmax, R
[-0.155913978495/(1+exp(-0.0554152581707*x+0.140088513344+3.14159265359*i)),
-0.00161022271237/(1+cos((-i)*(-0.0554152581707*x+0.140088513344+3.14159265359*i))),
-0.155913978495,-0.000805111356186,2.52797727501+56.6918346552*i,0.780548607383]

You can plot the logistic equation with the command logistic_regression_plot;
if you enter

logistic_regression_plot([1,2,4,6,8,7,5],0,2.0)

you will get

8.3 Random numbers

8.3.1 Producing uniformly distributed random numbers: rand random
alea hasard

The rand (or random) command will produce a number in [0, 1) randomly and
with equal probability. If you enter

rand()

you might get, for example,

0.93233498279

558 CHAPTER 8. STATISTICS

If you want a random number in a different interval, you can give rand two
real arguments; rand(a,b) will return a random number from the interval [a, b).
If you enter

rand(1,1.5)

for example, you might get

1.27419309644

If you give rand an interval, then you will get function which will generate a
random number in the interval. If you enter

r:=rand(1.0..2.5)

you will get

// Success (NULL)->rand(1.0,2.5)

and you can get a random number in the interval by calling the function;

r()

might return

1.76314622024

If you want to generate a random integer, then rand(n) (for integer n) will
return a random integer in [0, n) (or (n, 0] if n is negative). If you enter

rand(5)

for example, you might get

2

You can then use rand to find a random integer in a specified interval; if you
want an random integer between 6 and 10, inclusive, for example, you can enter

6 + rand(11-6)

You might get

7

Alternatively, the randint will give you a random integer in a given interval;
randint(n1,n2) will return a random integer between n1 and n2, inclusive; to
get a random integer from 6 to 10, you could enter

randint(6,10)

The rand command can also choose elements without replacement. If you
give rand three integer arguments, rand(p,n1,n2) then it will return p distinct
random integers from n1 to n2. If you enter

rand(2,1,10)

8.3. RANDOM NUMBERS 559

for example, you will get 2 distinct random numbers from 1 to 10; perhaps

[2,9]

You can also choose (without replacement) random elements of a given list.
For this, you give rand, a postive integer n and a list L; rand(n,L) will then
return n random elements from the list. If you enter

rand(3,["a","b","c","d","e","f","g","h"])

you might get

["c","b","e"]

The list can have repeated elements; if you enter

rand(4,["r","r","r","r","v","v","v"])

you might get

["v","v","r","v"]

The sample command will also randomly select items from a list without replace-
ment. With the sample command, the list comes first and then the integer. If you
enter

sample(["r","r","r","r","v","v","v"],4)

you might get

["v","r","r","r"]

8.3.2 Initializing the random number generator: srand randseed
RandSeed

The srand (or randseed) and RandSeed commands will initialize (or re-
initialize) the random numbers given by rand. The RandSeed requires an in-
teger argument, and srand can either take an integer argument or no argument. If
you don’t give srand an argument, then it will use the system clock to initialize
the random numbers.

8.3.3 Producing random numbers with the binomial distribution: randbinomial

The command randbinomial will take parameters an integer n and a number p
between 0 and 1, and return an integer from 0 to n chosen according to the binomial
distribution; i.e., the number of successes you might get if you did an experiment
n times, where the probability of success each time is p. If you enter

randbinomial(100,0.4)

for example, you might get

34

560 CHAPTER 8. STATISTICS

8.3.4 Producing random numbers with a multinomial distribution:
randmultinomial

Given a list P=[p0,...,pn−1] of n probabilities which add to 1 (representing the
probability that one of several mutually exclusive events occurs), the randmultinomial
command will return an index whose probability is determined by the correspond-
ing multinomial distribution. If you enter

randmultinomial([1/2, 1/3, 1/6])

you might get

0

IfK is a list of length n, then randmultinomial(P,K)will return an element
of the list, whose index is chosen according to the multinomial distribution. If you
enter

randmultinomial([1/2, 1/3, 1/6],["R","V","B"])

you might get

"R"

8.3.5 Producing random numbers with a Poisson distribution: randpoisson

Recall that given a number λ, the corresponding Poisson distribution P (λ) satisfies

Prob(X ≤ k) = exp(−λ)λk/k!

It will have mean λ and standard deviation
√
λ.

The randpoisson command will take a parameter λ and return an integer
chosen at random using the Poisson distribution. If you enter

randpoisson(10.6)

you might get

16

8.3.6 Producing random numbers with a normal distribution: randnorm
randNorm

The randnorm (or randNorm) command will choose a random number ac-
cording to a normal distribution. Given the mean µ and standard deviation σ,
randnorm(µ,σ) will return a number chosen according the normal distribution.
If you enter

randnorm(2,1)

you might get

2.45598713143

8.3. RANDOM NUMBERS 561

8.3.7 Producing random numbers with an exponential distribution:
randexp

Recall that given a positive number a, the corresponding exponential distribution
satisfies

Prob(X ≤ t) = a

∫ t

0
exp(−a ∗ u)du

Given a parameter a, the command randexp(a) will return a number chosen
randomly according to the corresponding exponential distribution. For example, if
you enter

randexp(1)

you might get

0.193354391918

8.3.8 Producing random matrices: randmatrix ranm randMat

You can produce a random vector or matrix with the randmatrix (or ranm or
randMat) command. (See also sections 5.29.28 and 5.47.3.) The randmatrix
command has the following possible arguments.

An integer n With an integer n, randmatrix(n) will return a vector of length
nwhose elements are integers chosen randomly from [−99,−98, . . . , 98, 99]
with equal probability. If you enter

randmatrix(5)

you might get

[86,-97,-82,7,-27]

Two integers n and p Given two integers n and p, randmatrix(n,p) will re-
turn an n × p matrix whose elements are integers chosen randomly from
[−99, 99] with equal probability. If you enter

randmatrix(2,3)

you might get

[[26,-89,63],[-49,-86,-64]]

Three integers n, p and a Given three integers n, p and a, randmatrix(n,p,a)
will return an n × p matrix whose elements are integers chosen randomly
from [0, a) (or (a, 0] is a is negative) with equal probability. If you enter

randmatrix(2,3,10)

you might get

562 CHAPTER 8. STATISTICS

[[4,7,6],[7,4,5]]

Two integers n and p, and an interval a..b. Given two integers n, p and an a..b,
randmatrix(n,p,a..b) will return an n × p matrix whose elements are
real numbers chosen randomly from [a, b) with equal probability. If you
enter

randmatrix(2,3,0..1)

you might get

[[0.90923402831,0.594602484722,0.250897713937],[0.332611694932,0.145975249354,0.543010003399]]

Two integers n and p and a function (which must be quoted) to produce random numbers
In this case, the third argument must be one of ’rand(n)’, ’binomial(n,p)’,
’binomial,n,p’, ’randbinomial(n,p)’, ’multinomial(P,K)’,
’multinomial,P,K’, ’randmultinomial(P,K)’, ’poisson(λ)’,
’poisson, λ’, ’randpoisson(λ)’, ’normald(µ,σ)’, ’normald,µ,σ’,
’randnorm(µ,σ)’, ’exp(a)’, ’exp,a’, ’randexp(a)’, ’fisher(n,m)’,
’fisher,n,m’, or ’randfisher(n,m)’.

Given such an R, the command randmatrix(n,p,R) will return an n× p ma-
trix whose elements are numbers chosen randomly according to the rule determined
by R. If you enter

randmatrix(2,3,’randnorm(2,1)’)

you might get

[[2.6324726358,0.539273367446,0.793750476229],[2.24729803442,1.28189228187,2.25750809791]]

8.3.9 Random variables : random_variable randvar

randvar (alias: random_variable) takes a probability distribution specifi-
cation as its argument and returns an object representing a random variable. Its
value(s) can be generated subsequently by calling sample, rand, randvector
or randmatrix.

The probability distribution is specified as a sequence of arguments. The sup-
ported types are : uniform, normal, binomial, multinomial, negbinomial, Poisson,
Student, Fisher-Snedecor, Cauchy, Weibull, beta, gamma, chi-square, geometric,
exponential and discrete.

Continuous distributions. The usual way to specify a continuous distribution is
to pass the probability density function as the first argument, followed by one or
more (numeric) parameters. However, it can also be defined by specifying its type
and first and/or second moment (the mean and/or the standard deviation/variance);
the supported types are : normal, uniform, binomial, Poisson, geometric, exponen-
tial, gamma, beta and Weibull. Additionally, a uniform distribution can be defined
by specifying its range as an interval. The arguments are entered in form:

8.3. RANDOM NUMBERS 563

• mean=µ

• stddev=σ

• variance=σ2

• [range=]a..b or range=[a,b]

Discrete distributions. To create a discrete random variable one can pass either

• a list W = [w1, w2, . . . , wn] of nonnegative weights as the first argument,
optionally followed by a list of values V = [v1, v2, . . . , vn],

• a list of of object-weight pairs : [[v1, w1], [v2, w2], . . . , [vn, wn]], or

• a nonnegative function f followed by a range specification [range=]a..b
and optionally either a positive integer N (with a, b ∈ R) or a list of values
V = [v0, v1, v2, . . . , vn] where n = b− a, a < b and a, b ∈ Z.

The weights are automatically scaled by the inverse of their sum to obtain the
values of the probability mass function. If a function f is given instead of a list
of weights, then wk = f(a + k) for k = 0, 1, . . . , b − a unless N is given, in
which case wk = f(xk) where xk = a + (k − 1) b−aN and k = 1, 2, . . . , N . The
resulting random variable X has values in {0, 1, . . . , n − 1} for 0-based modes
(e.g. Xcas) resp. in {1, 2 . . . , n} for 1-based modes (e.g. Maple). If the list V of
custom objects is given, then V [X] is returned instead of X . If N is given, then
vk = xk for k = 1, 2, . . . , N .

Examples. To define a random variable with a Fisher-Snedecor distribution (two
degrees of freedom), input :

X:=random_variable(fisher,2,3)

Output :

fisherd(2,3)

To generate some values of X , input :

rand(X) // alternative : sample(X)

Output :

2.0457

Input :

randvector(5,X) // alternative : sample(X,5)

Output :

[3.9823,0.50771,0.44836,0.79225,0.088813]

To define a random variable with multinomial distribution, input :

564 CHAPTER 8. STATISTICS

M:=randvar(multinomial,[1/2,1/3,1/6],[a,b,c])

Output :

’multinomial’,[1/2,1/3,1/6],[a,b,c]

Input :

randvector(10,M)

Output :

[a,c,b,a,b,b,a,b,b,b]

Some continuous distributions can be defined by specifying its first and/or second
moment. Input :

randvector(10,randvar(poisson,mean=5))

Output :

[5,4,4,8,3,8,3,3,5,9]

Input :

randvector(5,randvar(weibull,mean=5.0,stddev=1.5))

Output :

[3.6483,3.4194,6.8166,4.3778,2.4178]

Input :

X:=randvar(binomial,mean=18,stddev=4)

Output :

binomial(162,1/9)

Input :

X:=randvar(weibull,mean=12.5,variance=1)

Output :

weibulld(3.0857,13.98)

Input :

mean(randvector(1000,X))

Output :

12.582

Input :

G:=randvar(geometric,stddev=2.5)

8.3. RANDOM NUMBERS 565

Output :

geometric(0.32792)

Input :

evalf(stddev(randvector(1000,G)))

Output :

2.4245

Input :

randvar(gammad,mean=12,variance=4)

Output :

gammad(36,3)

Uniformly distributed random variables can be defined by specifying the support
as an interval. Input :

randvector(5,randvar(uniform,range=15..81))

Output :

[61.97,76.427,37.939,69.639,40.325]

Input :

rand(randvar(uniform,e..pi))

Output :

3.0434

The following examples demonstrate various ways to define a discrete random vari-
able. Input :

X:=randvar([["apple",1/3],["orange",1/4],
["pear",1/5],["plum",13/60]]):;

randvector(5,X)

Output :

["apple","plum","pear","orange","apple","pear"]

Input :

W:=[1,4,5,3,1,1,1,2]:; X:=randvar(W):;
approx(W/sum(W))

Output :

[0.055556,0.22222,0.27778,0.16667,
0.055556,0.055556,0.055556,0.11111]

566 CHAPTER 8. STATISTICS

Input :

frequencies(randvector(10000,X))

Output :

[[0,0.0566],[1,0.2152],[2,0.2798],[3,0.1683],
[4,0.0594],[5,0.0564],[6,0.0568],[7,0.1075]]

Input :

X:=randvar(k->1-(k/10)^2,range=-10..10):;
histogram(randvector(10000,X),-10,0.33,display=filled)

Output :

Input :

X:=randvar([3,1,2,5],[alpha,beta,gamma,delta]):;
randmatrix(5,4,X)

Output : ∣∣∣∣∣∣∣∣∣∣
α β δ δ
δ α α α
δ γ α δ
δ α δ α
α β δ δ

∣∣∣∣∣∣∣∣∣∣
Discrete random variables can be used to approximate custom continuous random
variables. For example, consider a probability density function f as a mixture of
two normal distributions on the support S = [−10, 10]. We sample f in N =
10000 points in S. Input :

F:=normald(3,2,x)+normald(-5,1,x):;
c:=integrate(F,x=-10..10):;

f:=unapply(1/c*F,x):;
X:=randvar(f,range=-10..10,10000):;

Now we generate 25000 values of X and plot a histogram :

R:=sample(X,25000):;
hist:=histogram(R,-10,0.1):;

PDF:=plot(f(x),display=red+line_width_2):; hist,PDF

Output :

8.3. RANDOM NUMBERS 567

Sampling from discrete distributions is fast : generating 25 million samples from
the distribution of X which has about 10000 outcomes takes only couple of sec-
onds. In fact, the sampling complexity is constant. Also observe that the process
isn’t slowed down by spreading it across 1000 calls of randvector. Input :

for k from 1 to 1000 do randvector(25000,X); od:;

Evaluation time: 2.12
Independent random variables can be combined in an expression, yielding a

new random variable. In the example below, we define a log-normally distributed
variable Y from a variable X with standard normal distribution. Input :

X:=randvar(normal):; mu,sigma:=1.0,0.5:;
Y:=exp(mu+sigma*X):;

L:=randvector(10000,Y):; histogram(L,0,0.33)

Output :

It is known that E[Y] = eµ+σ
2/2. The mean of L should be close to that number.

Input :

mean(L); exp(mu+sigma^2/2)

Output:

3.0789,3.0802

In case a compound random variable is defined as an expression containing
several independent random variables X,Y, . . . of the same type, it is sometimes
needed to prevent its evaluation when passing it to randvector or randmatrix.
Input :

Y:=randvar(normal):;

X/Y is wrapped by eval because otherwise it would automatically reduce to 1 as
X and Y are both normald(0, 1). Input :

568 CHAPTER 8. STATISTICS

randvector(5,eval(X/Y,0))

Output :

[0.2608,-0.056913,-4.7966,-1.2622,-1.2997]

To save typing, one can define Z with eval(∗, 0) and pass eval(Z, 1) to randvector
or randmatrix. Input :

Z:=eval(X/Y,0):; randvector(5,eval(Z,1))

Output :

[0.19015,-2.4509,-1.4277,-1.1452,1.2935]

Parameters of a distribution can be entered as symbols to allow (re)assigning them
at any time. Input :

purge(lambda):; X:=randvar(exp,lambda):;
lambda:=1:;

Now execute the following command line several times in a row. The parameter λ
is updated in each iteration :

r:=rand(X); lambda:=sqrt(r)

Output (by executing the above command line three times) :

8.5682,2.9272
1.5702,1.2531

0.53244,0.72968

8.4 Density and distribution functions

8.4.1 The binomial distribution

The probability density function for the binomial distribution : binomial

If you perform an experiment n times, where the probability of success each time
is p, then the probability of exactly k successes is

binomial(n,k,p) = (nk) pk(1− p)n−k

This determines the binomial distribution, and so this is called the binomial
command. If you enter

binomial(10,2,0.4)

you will get

0.120932352

If no third argument p is given, then binomialwill just compute (nk), which recall
is called the binomial coefficient and is also computed by comb. If you enter

binomial(10,2)

or

comb(10,2)

then you will get

45

8.4. DENSITY AND DISTRIBUTION FUNCTIONS 569

The cumulative distribution function for the binomial distribution: binomial_cdf

Recall that the cumulative distribution function (cdf) for a distribution is cdf(x) =
Prob(X ≤ x). For the binomial distribution, this is given by the binomial_cdf
command; binomial_cdf(n,p,x), which in this case will equal binomial(n,0,p)
+ ...+ binomial(n,floor(x,p). If you enter

binomial_cdf(4,0.5,2)

you will get

0.6875

You can give binomial_cdf an additional argument; binomial_cdf(n,p,x,y)
= Prob(x ≤ X ≤ y), which in this case would be binomial(n,ceil(x),p)
+ · · · + binomial(n,floor(y),p). If you enter

binomial_cdf(2,0.3,1,2)

you will get

0.51

The inverse distribution function for the binomial distribution: binomial_icdf

Given a value h, the inverse distribution function gives the value of x so that
Prob(X ≤ x) = h; or for discrete distributions, the smallest x so that Prob(X ≤ x)
≥ h. For the binomial distribution with n and p, the binomial_icdf gives the
inverse distribution function. If you enter

binomial_icdf(4,0.5,0.9)

you will get

3

Note that binomial_cdf(4,0.5,3) is 0.9375, bigger than 0.9, while binomial_cdf(4,0.5,2)
is 0.6875, smaller than 0.9.

8.4.2 The negative binomial distribution

The probability density function for the negative binomial distribution: negbinomial

If you repeatedly perform an experiment with probability of success p, then, given
an integer n, the probability of k failures that occur before you have n successes is
given by the negative binomial distribution, and can be computed with negbinomial(n,k,p).
It is given by the formula

(
n+k−1
k

)
pn(1− p)k. If you enter

negbinomial(4,2,0.5)

you will get

0.15625

570 CHAPTER 8. STATISTICS

Note that

(nk) =
n!

k!(n− k)!
=
n(n− 1) . . . (n− k + 1)

k!

The second formula makes sense even if n is negative, and you can write negbinomial(n, k, p) =(−n
k

)
pn(p−1)k, from which the name negative binomial distribution comes from.

This also makes it simple to determine the mean (n(1− p)/p) and variance (n(1−
p)/p2). The negative binomial is also called the Pascal distribution (after Blaise
Pascal) or the Pólya distribution (after George Pólya).

The cumulative distribution function for the negative binomial distribution:
negbinomial_cdf

The cumulative distribution function for the negative binomial distribution is given
by the negbinomial_cdf command. Given parameters n and p, as above, then
negbinomial_cdf(n,p,x) = Prob(X ≤ x) = negbinomial(n,0,p)
+ ...+ negbinomial(n,floor(x),p), and negbinomial_cdf(n,p,x,y)
= Prob(x ≤ X ≤ y) = negbinomial(n,ceil(x),p) + · · · + negbinomial(n,floor(y),p).
If you enter

negbinomial_cdf(4,0.5,2)

for example, you will get

0.34375

The inverse distribution function for the negative binomial distribution: negbinomial_icdf

Given a value h, the inverse distribution function gives the smallest value of x so
that Prob(X ≤ x) ≥ h. The negbinomial_icdf gives the inverse distribution
function for the negative binomial distribution. If you enter

negbinomial_icdf(4,0.5,0.9)

for example, you will get

8

8.4.3 The multinomial probability function: multinomial

If X follows a multinomial probability distribution with P = [p0, p1, . . . , pj]
(where p0 + · · ·+ pj = 1), then for K = [k0, . . . , kj] with k0 + · · ·+ kj = n, the
probability that X = K is given by the multinomial command;

multinomial(n, P,K) =
n!

k0!k1! . . . kj !
(pk00 p

k1
1 . . . p

kj
j .

You will get an error if k0 + · · ·+ kj is not equal to n, although you won’t get one
if p0 + · · ·+ pj is not equal to 1.

For example, if you make 10 choices, where each choice is one of three items;
the first has a 0.2 probability of being chosen, the second a 0.3 probability and the
third a 0.5 probability, the probability that you end up with 3 of the first item, 2 of
the second and 5 of the third will be

8.4. DENSITY AND DISTRIBUTION FUNCTIONS 571

multinomial(10,[0.2,0.3,0.5],[3,2,5])

or

0.0567

8.4.4 The Poisson distribution

The probability density function for the Poisson distribution: poisson

Recall that for the Poisson distribution with parameter µ, the probability of a non-
negative integer k is e−µµk/k!. It will mean µ and variance µ. The poisson
command will find this value, given µ and k. For example,

poisson(10.0,9)

is

0.125110035721

The cumulative distribution function for the Poisson distribution: poisson_cdf

The cumulative distribution function for the Poisson distribution is given by the
poisson_cdf command with arguments µ and x; poisson_cdf(µ,x) =
Prob(X ≤ x). If you enter

poisson_cdf(10.0,3)

you will get

0.0103360506759

With another argument, poisson_cdf will find the probability of falling
between two values; poisson_cdf(µ,x,y) = Prob(x ≤ X ≤ y). If you
enter

poisson_cdf(10.0,3,10)

you will get

0.580270354477

The inverse distribution function for the Poisson distribution: poisson_icdf

Given a value h, the inverse distribution function gives the smallest value of x so
that Prob(X ≤ x) ≥ h. Given arguments of a parameter µ and a value x, the
poisson_icdf gives the inverse distribution function for the poisson distribu-
tion. If you enter

poisson_icdf(10.0,0.975)

you will get

17

572 CHAPTER 8. STATISTICS

8.4.5 Normal distributions

The probability density function for a normal distribution: normald loi_normal

The normald (or loi_normal) command returns the value of the normal prob-
ability density function. You can give it arguments of the mean µ, standard devia-
tion σ and a value x then

normald(µ, σ, x) =
1√
2πσ

e(x−µ)
2/2

If you enter

normald(2,1,3)

you will get

exp(-1/2)/sqrt(2*pi)

If you don’t give the command values for µ and σ, then normald will use the
values µ = 0 and σ = 1, and so compute the standard normal density function. If
you enter

normald(2)

you will get

1/(sqrt(2*pi)*exp(2))

The cumulative distribution function for normal distributions: normal_cdf
normald_cdf

The command normal_cdf (or normald_cdf) computes the cumulative dis-
tribution function for the normal distribution. Like normald, you can give it the
mean and standard deviation of the distribution; if you enter

normal_cdf(1,2,1.96)

you will get

0.684386303484

You can also leave off the mean and standard deviation, in which case normal_cdf
will compute the cumulative distribution function for the standard normal distribu-
tion;

normal_cdf(1,2.1,1.2)

you will get

0.537937144066

If you give normal_cdf an extra argument (with or without the mean and
standard deviation), you will get the probability that the random variable lies be-
tween two values; normal_cdf(x,y) = Prob(x ≤ X ≤ y). If you enter

normal_cdf(1,2.1,1.2,9)

you will get

0.461993238584

8.4. DENSITY AND DISTRIBUTION FUNCTIONS 573

The inverse distribution function for normal distributions: normal_icdf
normald_icdf

Given a value h, the inverse distribution function gives the value of xwith Prob(X ≤
x) ≤ h. The normal_icdf (or normald_icdf) will compute the inverse dis-
tribution for the normal distribution. If no mean or standard deviation are given,
the standard normal distribution will be used. If you enter

normal_icdf(0.975)

you will get

1.95996398454

You can, of course, also give the mean and standard deviation. If you enter

normal_icdf(1,2,0.495)

you will get

0.974933060984

The upper tail cumulative function for normal distributions: UTPN

The UTPN (the Upper Tail Probability - Normal distribution) will compute Prob(X >
x). If you don’t give it a mean and variance, then it will compute the probability
for the standard normal distribution. If you enter

UTPN(1.96)

you will get

0.0249978951482

You can also specify a mean and a variance, but note that unlike normald and
normal_cdf, the UTPN requires the variance and not the standard deviation. If
you enter

UTPN(1,4,1.96)

you will get

0.315613696516

8.4.6 Student’s distribution

The probability density function for Student’s distribution: student studentd

Student’s distribution (also called Student’s t-distribution or just the t-distribution)
with n degrees of freedom has density function given by

student(n, x) =
Γ((n+ 1)/2)

Γ(n/2)
√
nπ

(
1 +

x2

n

)−n−1/2
where recall the Gamma function is defined for x > 0 by Γ(x) =

∫∞
0 e−ttx−1dx.

If you enter

574 CHAPTER 8. STATISTICS

student(2,3)

you will get

sqrt(pi)/(11*sqrt(2*pi)*sqrt(11/2))

which can be numerically approximated by

evalf(student(2,3))

which is

0.0274101222343

The cumulative distribution function for Student’s distribution: student_cdf

The cumulative distribution function for Student’s distribution with n degrees of
freedom at a value x is student_cdf(n, x) = Prob(X ≤ x); if you enter

student_cdf(5,2)

you will get

0.949030260585

If you give student_cdf an extra argument, you will get the probability
that the random variable lies between two values; student_cdf(n,x,y) =
Prob(x ≤ X ≤ y). If you enter

student_cdf(5,-2,2)

you will get

0.89806052117

The inverse distribution function for Student’s distribution: student_icdf

The inverse distribution function for Student’s distribution with n degrees of free-
dom is computed with student_icdf(n,h); recall that this will return the
value x with student_cdf(n, x) = h. If you enter

student_icdf(5,0.95)

you will get

2.01504837333

The upper tail cumulative function for Student’s distribution: UTPT

The UTPT (the Upper Tail Probability - T distribution) will compute Prob(X > x).
If you enter

UTPT(5,2)

you will get

0.0509697394149

8.4. DENSITY AND DISTRIBUTION FUNCTIONS 575

8.4.7 The χ2 distribution

The probability density function for the χ2 distribution: chisquare

The χ2 distribution with n degrees of freedom has density function given by

chisquare(n, x) =
xn/2−1e−x/2

2n/2Γ(n/2)

If you enter

chisquare(5,2)

you will get

2*sqrt(2)/(exp(1)*sqrt(2)*3*sqrt(pi))

which can be numerically approximated by

evalf(chisquare(5,2))

which is

0.138369165807

The cumulative distribution function for the χ2 distribution: chisquare_cdf

The cumulative distribution function for the χ2 distribution with n degrees of free-
dom at a value x is chisquare_cdf(n, x) = Prob(X ≤ x); if you enter

chisquare_cdf(5,11)

you will get

0.948620016517

If you give chisquare_cdf an extra argument, you will get the probability
that the random variable lies between two values; chisquare_cdf(n,x,y) =
Prob(x ≤ X ≤ y). If you enter

chisquare_cdf(3,1,2)

you will get

0.22884525243

The inverse distribution function for the χ2 distribution: chisquare_icdf

The inverse distribution function for the χ2 distribution with n degrees of freedom
is computed with chisquare_icdf(n,h); recall that this will return the value
x with chisquare_cdf(n, x) = h. If you enter

chisquare_icdf(5,0.95)

you will get

11.0704976935

576 CHAPTER 8. STATISTICS

The upper tail cumulative function for the χ2 distribution: UTPC

The UTPC (the Upper Tail Probability - Chi-square distribution) will compute
Prob(X > x). If you enter

UTPC(5,11)

you will get

0.0513799834831

8.4.8 The Fisher-Snédécor distribution

The probability density function for the Fisher-Snédécor distribution: fisher
fisherd snedecor snedecord

The Fisher-Snédécor distribution (also called the F-distribution) with n1 and n2
degrees of freedom has density function given by for x ≥ 0,

fisher(n1, n2, x) =
(n1/n2)

n1/2Γ((n1 + n2)/2)

Γ(n1/2)Γ(n2/2)

x(n1−2)/2

(1 + (n1/n2)x)(n1+n2)/2

(The snecedor command is the same as the fisher command.) If you enter

fisher(5,3,2.5)

you will get

0.10131184472

The cumulative distribution function for the Fisher-Snédécor distribution:
fisher_cdf snedecor_cdf

The cumulative distribution function for the Fisher-Snédécor distribution with n1
and n2 degrees of freedom at a value x is fisher_cdf(n1, n2, x) = snedecor(n1, n2, x) =
Prob(X ≤ x); if you enter

fisher_cdf(5,3,9)

you will get

Beta(5/2,3/2,15/16,1)

which can be numerically approximated with

evalf(fisher_cdf(5,3,9,10))

which is

0.949898927032

8.4. DENSITY AND DISTRIBUTION FUNCTIONS 577

The inverse distribution function for the Fisher-Snédécor distribution: fisher_icdf
snedecor_icdf

The inverse distribution function for the Fisher-Snédécor distribution with n1 and
n2 degrees of freedom is computed with fisher_icdf(n1,n2,h); recall that
this will return the value x with fisher_cdf(n1, n2, x) = h. If you enter

fisher_icdf(5,3,0.95)

you will get

9.01345516752

The upper tail cumulative function for the Fisher-Snédécor distribution: UTPF

The UTPF (the Upper Tail Probability - Fisher-Snédécor distribution) will compute
Prob(X > x). If you enter

UTPF(5,3,9)

you will get

0.050101072968

8.4.9 The gamma distribution

The probability density function for the gamma distribution: gammad

The gamma distribution depends on two parameters, a > 0 and b > 0; the value
of the density function at x ≥ 0 is gammad(a, b, x) = xa−1e−bxba/Γ(a). If you
enter

gammad(2,1,3)

for example, you will get

3/exp(3)

The cumulative distribution function for the gamma distribution: gammad_cdf

The cumulative distribution function for the gamma distribution with parameters
a and b at a value x is gammad_cdf(n, x) = Prob(X ≤ x). It turns out
that gammad_cdf(n, x) = igamma(a, bx, 1) where igamma is the incomplete
gamma function; igamma(a, x, 1) =

∫ x
0 e
−tta−1dt/Γ(a). If you enter

gammad_cdf(2,1,0.5)

you will get

0.090204010431

If you give gammad_cdf an extra argument, you will get the probability
that the random variable lies between two values; gammad_cdf(a,b,x,y) =
Prob(x ≤ X ≤ y). If you enter

gammad_cdf(2,1,0.5,1.5)

you will get

0.351970589198

578 CHAPTER 8. STATISTICS

The inverse distribution function for the gamma distribution: gammad_icdf

The inverse distribution function for the gamma distribution with parameters a and
b is computed with gammad_icdf(a,b,h); recall that this will return the value
x with gammad_cdf(a, b, x) = h. If you enter

gammad_icdf(2,1,0.5)

you will get

1.67834699002

8.4.10 The beta distribution

The probability density function for the beta distribution: betad

The beta distribution depends on two parameters, a > 0 and b > 0; the value
of the density function at x in [0, 1] is betad(a, b, x) = Γ(a + b)xa−1(1 −
x)b−1/(Γ(a)Γ(b)). If you enter

betad(2,1,0.3)

for example, you will get

0.6

The cumulative distribution function for the beta distribution: betad_cdf

The cumulative distribution function for the beta distribution with parameters a
and b at a value x in [0, 1] is betad_cdf(a, b, x) = Prob(X ≤ x). It turns out
that betad_cdf(a, b, x) = β(a, b, x)Γ(a + b)/(Γ(a)Γ(b)) where β(a, b, x) =∫ x
0 t

a−1(1− t)b−1dt. If you enter

betad_cdf(2,3,0.2)

for example, you will get

0.1808

If you give betad_cdf an extra argument y, also in [0, 1], you will get the
probability that the random variable lies between the two values; betad_cdf(a,b,x,y) =
Prob(x ≤ X ≤ y). If you enter

betad_cdf(2,3,0.25,.5)

you will get

0.42578125

The inverse distribution function for the beta distribution: betad_icdf

The inverse distribution function for the beta distribution with parameters a and b
is computed with betad_icdf(a,b,h); recall that this will return the value x
with betad_cdf(a, b, x) = h. If you enter

betad_icdf(2,3,0.2)

you will get

0.212317128278

8.4. DENSITY AND DISTRIBUTION FUNCTIONS 579

8.4.11 The geometric distribution

The probability density function for the geometric distribution: geometric

If an experiment with probability of success p is iterated, the probability that the
first success occurs on the kth trial is (1− p)k−1p. This gives the geometric distri-
bution (with parameter p) on the natural numbers. Given such a p, the geometric
density function at n is given by geometric(p, n) = (1− p)n−1p. If you enter

geometric(0.2,3)

for example, you will get

0.128

The cumulative distribution function of the geometric distribution: geometric_cdf

The cumulative distribution function for the geometric distribution with parameter
p at a natural number n is geometric_cdf(p, n) = Prob(X ≤ n), which in
this case turns out to be geometric_cdf(p, n) = 1− (1− p)n. If you enter

geometric_cdf(0.2,3)

for example, you will get

0.488

If you give geometric_cdf an extra argument k, also a natural number,
you will get the probability that the random variable lies between the two values;
geometric_cdf(p,n,k) = Prob(n ≤ X ≤ k). If you enter

geometric_cdf(0.2,3,5)

you will get

0.31232

The inverse distribution function for the geometric distribution: geometric_icdf

The inverse distribution function for the geometric distribution with parameter p is
computed with geometric_icdf(p,h); recall that this will return the smallest
natural number n with geometric_cdf(p, n) ≥ h. If you enter

geometric_icdf(0.2,0.5)

you will get

4

580 CHAPTER 8. STATISTICS

8.4.12 The Cauchy distribution

The probability density function for the Cauchy distribution: cauchy cauchyd

The probability density function of the Cauchy distribution (sometimes called the
Lorentz distribution) is given by the cauchy (or cauchyd) command. The
Cauchy distribution depends on two parameters a and b, and the value of the den-
sity function at x is cauchy(a, b, x) = b/(π((x− a)2 + b2)). If you enter

cauchy(2.2,1.5,0.8)

you will get

0.113412073462

If you leave out the parameters a and b, they will default to 0 and 1, respec-
tively; cauchy(x) = 1/(π(x2 + 1)). If you enter

cauchy(0.3)

you will get

0.292027418517

The cumulative distribution function for the Cauchy distribution: cauchy_cdf
cauchyd_cdf

The command cauchy_cdf (or cauchyd_cdf) computes the cumulative dis-
tribution function for the Cauchy distribution. Like cauchy, you can give it the
parameters a and b, or let them default to 0 and 1. The Cauchy cumulative distribu-
tion function is given by the formula cauchy_cdf(a, b, x) = 1/2 + arctan((x−
a)/b)/π. If you enter

cauchy_cdf(2,3,1.4)

you will get

0.437167041811

and if you enter

cauchy_cdf(1.4)

you will get

0.802568456711

If you give cauchy_cdf an extra argument (with or without the parame-
ters), you will get the probability that the random variable lies between two values;
cauchy_cdf(a,b,x,y) = Prob(x ≤ X ≤ y). If you enter

cauchy_cdf(2,3,-1.9,1.4)

you will get

0.228452641651

8.4. DENSITY AND DISTRIBUTION FUNCTIONS 581

The inverse distribution function for the Cauchy distribution: cauchy_icdf
cauchyd_icdf

Given a value h, the inverse distribution function gives the value of xwith Prob(X ≤
x) = h. The cauchy_icdf will compute the inverse distribution for the Cauchy
distribution. (If no parameters are given, they will be assumed to be 0 and 1.) If
you enter

cauchy_icdf(2,3,0.23)

you will get

-1.40283204777

8.4.13 The uniform distribution

The probability density function for the uniform distribution: uniform uniformd

Given two values a and b with a < b, the uniform distribution on [a, b] has density
function 1/(b − a) for x in [a, b]. The uniform (or uniformd) command will
compute this; uniform(a, b, x) = 1/(b− a). If you enter

uniform(2.2,3.5,2.8)

you will get

0.769230769231

The cumulative distribution function for the uniform distribution: uniform_cdf
uniformd_cdf

Given two values a and b with a < b, the cumulative distribution function for
the uniform distribution on [a, b] is (for x in [a, b]) uniform_cdf(a, b, x) =
Prob(X ≤ x) = (x− a)/(b− a). If you enter

uniform_cdf(2,4,3.2)

you will get

0.6

With an extra argument y in [a, b], uniform_cdfwill compute uniform_cdf(a, b, x, y) =
Prob(x ≤ X ≤ y) = (y − x)/(b− a). If you enter

uniform_cdf(2,4,3,3.2)

you will get

0.1

582 CHAPTER 8. STATISTICS

The inverse distribution function for the uniform distribution: uniform_icdf
uniformd_icdf

Given a value h, the inverse distribution function for a uniform distribution is the
value of x with Prob(X ≤ x) = uniform_cdf(a, b, x) = h. This value is
computed with the uniform_icdf command. If you enter

uniform_icdf(2,3,.6)

you will get

2.6

8.4.14 The exponential distribution

The probability density function for the exponential distribution: exponential
exponentiald

The exponential distribution depends on one parameters, λ > 0; the value of the
density function at x ≥ 0 is exponential(λ, x) = λe−λx. If you enter

exponential(2.1,3.5)

for example, you will get

0.00134944395675

The cumulative distribution function for the exponential distribution: exponential_cdf
exponentiald_cdf

The cumulative distribution function for the exponential distribution with parame-
ter λ > 0 at a value x ≥ 0 is exponential_cdf(λ, x) = Prob(X ≤ x). If
you enter

exponential_cdf(2.3,3.2)

for example, you will get

0.99936380154

If you give exponential_cdf an extra argument y > x, you will get the
probability that the random variable lies between the two values; exponential_cdf(λ,x,y) =
Prob(x ≤ X ≤ y). If you enter

exponential_cdf(2.3,0.9,3.2)

you will get

0.125549583246

8.4. DENSITY AND DISTRIBUTION FUNCTIONS 583

The inverse distribution function for the exponential distribution: exponential_icdf
exponentiald_icdf

The inverse distribution function for the exponential distribution with parameter
λ > 0 is computed with exponential_icdf(λ,h); recall that this will return
the value x with exponential_cdf(λ, x) = h. If you enter

exponential_icdf(2.3,0.87)

you will get

0.887052534142

8.4.15 The Weibull distribution

The probability density function for the Weibull distribution: weibull weibulld

The Weibull distribution depends on three parameters; k > 0, λ > 0 and a real
number θ. The probability density at x is given by k

λ(x−θλ)2e−((x−θ)λ)
2
. The

weibull (or weibulld) command computes this, where it can take arguments
k,λ,θ and x, where the θ can be left out and will default to 0. If you enter

weibull(2,1,3)

or

weibull(2,1,0,3)

you will get

6/exp(9)

The cumulative distribution function for the Weibull distribution: weibull_cdf
weibulld_cdf

The command weibull_cdf computes the cumulative distribution function for
the Weibull distribution. Like weibull, it takes parameters k, λ and θ, where θ
will default to 1 if it is omitted. The Weibull cumulative distribution function is
given by the formula weibull_cdf(k, λ, θ, x) = 1− e−((x−θ)/λ)2 . If you enter

weibull_cdf(2,3,5)

or

weibull_cdf(2,3,0,5)

you will get

1-exp(-25/9)

and if you enter

weibull_cdf(2.2,1.5,0.4,1.9)

you will get

584 CHAPTER 8. STATISTICS

0.632120558829

If you give weibull_cdf an extra argument (which will require that θ be
explicitly included), you will get the probability that the random variable lies be-
tween two values; weibull_cdf(k,λ,θ,x,y) = Prob(x ≤ X ≤ y). If you
enter

weibull_cdf(2.2,1.5,0.4,1.2,1.9)

for example you will get

0.410267239944

The inverse distribution function for the Weibull distribution: weibull_icdf
weibulld_icdf

Given a value h, the inverse distribution function gives the value of xwith Prob(X ≤
x) = h. The weibull_icdf command will compute the inverse distribution for
the Weibull distribution. This uses the arguments k, λ and θ as well as h, although
θ can be omitted and will default to 0. If you enter

weibull_icdf(2.2,1.5,0.4,0.632)

you will get

1.89977657604

8.4.16 The Kolmogorov-Smirnov distribution: kolmogorovd

For real x, the kolmogorovd command computes the density function for the
Kolmogorov-Smirnov distribution.

kolmogorovd(x) = 1− 2
∞∑
k=1

(−1)k−1e−k
2x2

If you enter

kolmogorovd(1.36)

for example, you will get

0.950514123245

8.4.17 The Wilconon or Mann-Whitney distribution

8.4.18 The Wilconon test polynomial: wilcoxonp

The wilcoxonp command will compute the polynomial for the Wilcoxon or
Mann-Whitney test; it can take one or two parameters. If you enter

wilcoxonp(4)

you will get

8.4. DENSITY AND DISTRIBUTION FUNCTIONS 585

poly1[1/16,1/16,1/16,1/8,1/8,1/8,1/8,1/8,1/16,1/16,1/16]

and if you enter

wilcoxonp(4,3)

you will get

poly1[1/35,1/35,2/35,3/35,4/35,4/35,1/7,4/35,4/35,3/35,2/35,1/35,1/35]

The Wilcoxon/Mann-Whitney statistic: wilcoxons

Given two lists, or one list and a real number (a median), the wilcoxons com-
mand will return the Wilcoxon or Mann-Whitney statistic. If you enter

wilcoxons([1,3,4,5,7,8,8,12,15,17],10)

you will get

18

and if you enter

wilcoxons([1,3,4,5,7,8,8,12,15,17],[2,6,10,11,13,14,15,18,19,20])

you will get

128.5

The Wilcoxon or Mann-Whitney test: wilcoxont

The wilcoxont command will perform the Wilcoxon or Mann-Whitney test,
given two samples or one sample and a number (a median). It can additionally take
an optional third argument of a function and an optional fourth argument of a real
number. If you enter

wilcoxont([1,2,3,4,5,7,8,8,12,15,17],[2,6,10,11,13,14,15,18,19,20])

you will get

Mann-Whitney 2-sample test, H0 same Median, H1 <>
ranksum 93.0, shifted ranksum 27.0
u1=83 ,u2=27, u=min(u1,u2)=27
Limit value to reject H0 26
P-value 9055/176358 (0.0513444244094), alpha=0.05 H0 not rejected
1

\end{center}
If you enter
\begin{center}

\tt

586 CHAPTER 8. STATISTICS

wilcoxont([1,3,4,5,7,8,8,12,15,17],[2,6,10,11,13,14,15,18,19,20],0.3)
\end{center}
you will get
\begin{verbatim}

Mann-Whitney 2-sample test, H0 same Median, H1 <>
ranksum 81.5, shifted ranksum 26.5
u1=73.5 ,u2=26.5, u=min(u1,u2)=26.5
Limit value to reject H0 35
P-value 316/4199 (0.0752560133365), alpha=0.3 H0 rejected
0

and if you enter

wilcoxont([1,3,4,5,7,8,8,12,15,17] ,10,‘>‘,0.05)

you will get

Wilcoxon 1-sample test, H0 Median=10, H1 M<>10
Wilcoxon statistic: 18, p-value: 0.375, confidence level: 0.05
1

8.4.19 Moment generating functions for probability distributions: mgf

The mgf command will compute the moment generating function for a proba-
bility distribution (such as normal, binomial, poisson, beta, gamma). It takes as
arguments the name of the distribution and any necessary parameters. To find the
moment generating function for the standard normal distribution, you can enter

mgf(normald,1,0)

and get

exp(t)

If you enter

mgf(binomial,n,p)

you will get

(1-p+p*exp(t))ˆn

8.4.20 Cumulative distribution functions: cdf

The cdf command will take as arguments the name of a probability distribution,
along with any needed parameters, and return an expression for the cumulative
distribution function. If you enter

cdf(normald,0,1)

you will get

(erf(x*sqrt(2)/2)+1)/2

8.4. DENSITY AND DISTRIBUTION FUNCTIONS 587

You can evaluate the cumulative distribution function at a value by adding the
value as an argument; if you enter

cdf(binomial,10,0.5,4)

you will get

0.376953125

8.4.21 Inverse distribution functions: icdf

The icdf command will take as arguments the name of a probability distribution,
along with any needed parameters, and return an expression for the inverse cumu-
lative distribution function. This is typically most useful if you evaluate the inverse
cumulative function at a specific value by adding it as an argument. If you enter

icdf(normald,0,0.5,0.975)

you will get

0.97998199227

8.4.22 Kernel density estimation : kernel_density, kde

kernel_density (alias : kde) accepts a list of samples L = [X1, X2, . . . , Xn]
and optionally a sequence of options. It performs kernel density estimation1 (KDE),
optionally restricted to an interval [a, b], to obtain an estimate f̂ of the (unknown)
probability density function f from which the samples are drawn, defined by :

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (8.1)

where K is the Gaussian kernel K(u) = 1√
2π

exp
(
−1

2 u
2
)

and h is the positive
real parameter called the bandwidth.

The supported options are listed below.

• output=<type> or Output=<type> : specifies the form of the return
value f̂ , where <type> may be

– exact : f̂ is returned as the sum of Gaussian kernels, i.e. as the right
side of (8.1), which is usable only when the number of samples is rela-
tively small (up to few hundreds),

– piecewise : f̂ is returned as a piecewise expression obtained by the
spline interpolation of the specified degree (by default, the interpolation
is linear) on the interval [a, b] segmented to the specified number of
bins,

– list (the default) : f̂ is returned in discrete form, as a list of values
f̂
(
a+ k b−a

M−1

)
for k = 0, 1, . . . ,M , where M is the number of bins.

1For the details on kernel density estimation and its implementation see : Artur Gramacki, Non-
parametric Kernel Density Estimation and Its Computational Aspects, Springer, 2018.

588 CHAPTER 8. STATISTICS

• bandwidth=<value> : specifies the bandwidth. <value> may be

– a positive real number h,

– select (the default) : bandwidth is selected using a direct plug-in
method,

– gauss or normal or normald : the Silverman’s rule of thumb is
used for selecting bandwidth (this method is fast but the results are
close to optimal ones only when f is approximately normal).

• bins=<posint> (by default 100) : the number of bins for simplifying the
input data. Only the number if samples in each bin is stored. Bins represent
the elements of an equidistant segmentation of the interval S on which KDE
is performed. This allows evaluating kernel summations using convolution
when output is set to piecewise or list, which significantly lowers
the computational burden for large values of n (say, few hundreds or more).
If output is set to exact, this option is ignored.

• [range=]a..b or range=[a,b] or x=a..b : the interval [a, b] on
which KDE is performed. If an identifier x is specified, it is used as the
variable of the output. If the range endpoints are not specified, they are set
to a = min1≤i≤nXi − 3h and b = max1≤i≤nXi + 3h (unless output is
set to exact, in which case this option is ignored).

• interp=<posint> (by default 1) : the degree of the spline interpolation,
ignored unless output is set to piecewise.

• spline=<posint> : sets option to piecewise and interp to <posint>.

• eval=x0 : only the value f̂(x0) is returned (this cannot be used with
output set to list).

• an unassigned identifier x (by default x) : the variable of the output.

• exact : the same as output=exact.

• piecewise : the same as output=piecewise.

Examples. Input :

kernel_density([1,2,3,2],bandwidth=1/4,exact)

Output :

0.4*(exp(-8*(x-3)^2)+2*exp(-8*(x-2)^2)+exp(-8*(x-1)^2))

Input :

f:=unapply(normald(4,1,x)/2+normald(7,1/2,x)/2,x);
plot(f(x),x=0..10)

Output :

8.4. DENSITY AND DISTRIBUTION FUNCTIONS 589

Input :

X:=randvar(f,range=0..10,1000):; S:=sample(X,1000):;
F:=kernel_density(S,piecewise):;

plot([F,f(x)],x=0..10,
display=[line_width_2+blue,line_width_1+black])

Output :

Input :

kernel_density(S,bins=50,spline=3,eval=4.75)

Output :

0.14655478136

Input :

time(kernel_density(sample(X,1e5),piecewise))

Output :

"Done",[0.17,0.1653323]

Input :

S:=sample(X,5000):;
sqrt(int((f(x)-kde(S,piecewise))^,x=0..10))

Output :

0.0269841239243

Input :

S:=sample(X,25000):;
sqrt(int((f(x)-kde(S,bins=150,piecewise))^2,x=0..10))

Output :

0.0144212781377

590 CHAPTER 8. STATISTICS

8.4.23 Distribution fitting by maximum likelihood : fitdistr

fitdistr takes two arguments, a list L of presumably independent and identi-
cally distributed samples and a distribution type, which may be normal, exponen-
tial, Poisson, geometric, gamma, beta, Cauchy or Weibull. The type is specified
as normal (normald), exp (exponential or exponentiald), poisson,
geometric, gammad, betad, cauchy (cauchyd) or weibull (weibulld),
respectively. The command returns the distribution of the specified type with pa-
rameters that fit the given samples most closely according to the method of maxi-
mum likelihood.

For example, input :

S:=:;
fitdistr(randvector(1000,weibulld,1/2,1),weibull)

Output :

weibulld(0.498920254339,0.971148738409)

Input :

X:=randvar(normal,stddev=9.5):;
Y:=randvar(normal,stddev=1.5):;

S:=sample(eval(X/Y,0),1000):; Z:=fitdistr(S,cauchy)

Output :

cauchyd(-0.13160176167,6.2569300393)

Input :

histogram(select(x->(x>-100 and x<100),S));
plot(Z(x),x=-100..100,display=red+line_width_2)

Output :

Input :

kolmogorovt(S,Z)

Output :

["D=",0.0125864995943,"K=", 0.398020064869,
"1-kolmogorovd(K)=",0.997387219452]

8.4. DENSITY AND DISTRIBUTION FUNCTIONS 591

The Kolmogorov-Smirnov test indicates that the samples from S are drawn from
Z with high probability.

Fitting a lognormal distribution to samples x1, x2, . . . , xn can be done by fit-
ting a normal distribution to the sample logarithms log x1, log x2, . . . , log xn be-
cause log-likelihood functions are the same. For example, generate some samples
according to the lognormal rule with parameters µ = 5 and σ2 = 2 :

X:=randvar(normal,mean=5,variance=2):;
S:=sample(exp(X),1000):;

Now fit normal distribution to logS :

Y:=fitdistr(log(S),normal)

Output :

normald(5.04754808715,1.42751619912)

The mean of Y is about 5.05 and the variance is about 2.04. Now the variable
Z = exp(Y) has the sought lognormal distribution.

8.4.24 Markov chains: markov

Given the transition matrix of a Markov chain, the markov command will com-
pute characteristic features of the chain. IfM is a transition matrix, then markov(M)
will return the list of the positive recurrent states, the list of corresponding invariant
probabilities, the list of other strong connected components, the list of probabilities
of ending up in the sequence of recurrent states. For example, if you enter

markov([[0,0,1/2,0,1/2],[0,0,1,0,0],[1/4,1/4,0,1/4,1/4],[0,0,1/2,0,1/2],[0,0,0,0,1]])

you will get

[[4]],[[0,0,0,0,1]],[[3,1,2,0]],[[1],[1],[1],[1],[1]]

8.4.25 Generating a random walks: randmarkov

Given the transition matrix M for a Markov chain and an initial state i0, the com-
mand randmarkov(M,i0,n) will generate a random walk (given as a vector)
starting at i0 and taking n random steps, where each step is a transition with prob-
abilities given by M . For example, if you enter

randmarkov([[0,1/2,0,1/2],[0,1,0,0],[1/4,1/4,1/4,1/4],[0,0,1/2,1/2]],2,10)

you might get

[2,3,2,0,3,2,2,0,3,2,0]

Alternatively, given a vector v = [n1, . . . , np], the command randmatrix(v,i0)
will create a stochastic matrix with p recurrent loops (given by v) and i0 transient
states. If you enter

592 CHAPTER 8. STATISTICS

randmarkov([1,2],2)

you might get

[[1.0,0.0,0.0,0.0,0.0],
[0.0,0.289031975209,0.710968024791,0.0,0.0],
[0.0,0.46230383289,0.53769616711,0.0,0.0],

[0.259262238137,0.149948861946,0.143448150524,0.242132758802,0.205207990592],
[0.231568633749,0.145429586345,0.155664673778,0.282556511895,0.184780594232]]

8.5 Hypothesis testing

8.5.1 General

Given a random variable X , you may want to know whether some effective pa-
rameter p is the same as some expected value p0. You will then want to test the
hypothesis p = p0, which will be the null hypothesis H0. The alternative hypothe-
sis will be H1. The tests are:

Two-tailed test This test will reject the hypothesis H0 if the relevant statistic is
outside of a determined interval. This can be denoted ’!=’.

Left-tailed test This test will reject the hypothesis H0 if the relevant statistic is
less than a specific value. This can be denoted ’<’.

Right-tailed test This test will reject the hypothesis H0 if the relevant statistic is
greater than a specific value. This can be denoted ’>’.

8.5.2 Testing the mean with the Z test: normalt

The normalt command will use the Z test to test the mean of data. You need to
provide the command with the following arguments:

1. The sample data information can be given as a list [ns, ne] consisting of the
number of successes ns and the number of trials ne, or a list [m, t] consisting
of the mean m and the sample size t, or a data list of the sample.

2. The mean of the population to or a data list from a control sample.

3. The standard deviation of the population. If the data list from a control
sample is provided, then this item is unnecessary.

4. The type of test; "!=","<" or ">".

5. The confidence level. This is optional; the default value is 0.05.

The normalt command will return the result of a Z test. It will return 0 if the test
fails, 1 if the test succeeds, and it will display a summary of the test.

If you enter

normalt([10,30], 0.5, 0.02, ’!=’, 0.1)

you will get

8.5. HYPOTHESIS TESTING 593

*** TEST RESULT 0 ***
Summary Z-Test null hypothesis H0 mu1=mu2, alt. hyp. H1 mu1!=mu2.
Test returns 0 if probability to observe data is less than 0.1
(null hyp. mu1=mu2 rejected with less than alpha probability error)
Test returns 1 otherwise (can not reject null hypothesis)
Data mean mu1=10, population mean mu2=0.5
alpha level 0.1, multiplier*stddev/sqrt(sample size)= 1.64485*0.02/5.47723
0

If you enter

normalt([0.48,50],0.5,0.1,’<’)

you will get

*** TEST RESULT 1 ***
Summary Z-Test null hypothesis H0 mu1=mu2, alt. hyp. H1 mu1<mu2.
Test returns 0 if probability to observe data is less than 0.05
(null hyp. mu1=mu2 rejected with less than alpha probability error)
Test returns 1 otherwise (can not reject null hypothesis)
Data mean mu1=0.48, population mean mu2=0.5
alpha level 0.05, multiplier*stddev/sqrt(sample size)= 1.64485*0.1/7.07107
1

8.5.3 Testing the mean with the T test: studentt

The studentt command will examine whether data conforms to Student’s dis-
tribution. For small sample sizes, the studentt test is preferable to normalt.
You need to provide the studentt command with the following arguments:

1. The sample data information can be given as a list [ns, ne] consisting of the
number of successes ns and the number of trials ne, or a list [m, t] consisting
of the mean m and the sample size t, or a data list of the sample.

2. The mean of the population to or a data list from a control sample.

3. The standard deviation of the population. If the data list from a control
sample is provided, then this item is unnecessary.

4. The type of test; "!=","<" or ">".

5. The confidence level. This is optional; the default value is 0.05.

The studentt command will return the result of a T test. It will return 0 if the
test fails, 1 if the test succeeds, and it will display a summary of the test.

If you enter

studentt([10,20], 0.5, 0.02, ’!=’, 0.1)

you will get

594 CHAPTER 8. STATISTICS

*** TEST RESULT 0 ***
Summary T-Test null hypothesis H0 mu1=mu2, alt. hyp. H1 mu1!=mu2.
Test returns 0 if probability to observe data is less than 0.1
(null hyp. mu1=mu2 rejected with less than alpha probability error)
Test returns 1 otherwise (can not reject null hypothesis)
Data mean mu1=10, population mean mu2=0.5, degrees of freedom 20
alpha level 0.1, multiplier*stddev/sqrt(sample size)= 1.32534*0.02/4.47214
0

If you enter

studentt([0.48,20],0.5,0.1,’<’)

you will get

*** TEST RESULT 1 ***
Summary T-Test null hypothesis H0 mu1=mu2, alt. hyp. H1 mu1<mu2.
Test returns 0 if probability to observe data is less than 0.05
(null hyp. mu1=mu2 rejected with less than alpha probability error)
Test returns 1 otherwise (can not reject null hypothesis)
Data mean mu1=0.48, population mean mu2=0.5, degrees of freedom 20
alpha level 0.05, multiplier*stddev/sqrt(sample size)= 1.72472*0.1/4.47214
1

8.5.4 Testing a distribution with the χ2 distribution: chisquaret

The chisquaret command will use the χ2 test to compare sample data to a
specified distribution. You need to provide chisquaret with the following ar-
guments:

1. A list of sample data.

2. The name of a distribution, or another list of sample data. If this is omitted,
a uniform distribution will be used.

3. The parameters of the distribution, if a name is given as the previous argu-
ment, or the parameter class followed by class_min and class_dim
(or the default values will be used).

The chisquaret command will return the result of the χ2 test between the sam-
ple data and the named distribution or the two sample data.

For example, if you enter

chisquaret([57,54])

you will get

Guessing data is the list of number of elements in each class,
adequation to uniform distribution

Sample adequation to a finite discrete probability distribution
Chi2 test result 0.0810810810811,
reject adequation if superior to chisquare_icdf(1,0.95)=3.84145882069 or chisquare_icdf(1,1-alpha) if alpha!=5%
0.0810810810811

8.5. HYPOTHESIS TESTING 595

If you enter

chisquaret([1,1,1,1,1,0,0,1,0,1,1],[.4,.6])

you will get

Sample adequation to a finite discrete probability distribution
Chi2 test result 0.742424242424,
reject adequation if superior to chisquare_icdf(1,0.95)=3.84145882069

or chisquare_icdf(1,1-alpha) if alpha!=5%
0.742424242424

If you enter

chisquaret(ranv(1000,binomial,10,.5),binomial)

you will get

Binomial: estimating n and p from data 10 0.5055
Sample adequation to binomial(10,0.5055,.), Chi2 test result 7.77825189838,
reject adequation if superior to chisquare_icdf(7,0.95)=14.0671404493

or chisquare_icdf(7,1-alpha) if alpha!=5%
7.77825189838

and if you enter

chisquaret(ranv(1000,binomial,10,.5),binomial,11,.5)

you will get

Sample adequation to binomial(11,0.5,.), Chi2 test result 125.617374161,
reject adequation if superior to chisquare_icdf(10,0.95)=18.3070380533

or chisquare_icdf(10,1-alpha) if alpha!=5%
125.617374161

For an example using class_min and class_dim, let

L := ranv(1000,normald,0,.2)

If you then enter

chisquaret(L,normald,classes,-2,.25)

or equivalently set class_min to−2 and class_dim to−0.25 in the graphical
configuration and enter

chisquaret(L,normald,classes)

you will get

Normal density,
estimating mean and stddev from data -0.00345919752912 0.201708100832

Sample adequation to normald_cdf(-0.00345919752912,0.201708100832,.),
Chi2 test result 2.11405080381,

reject adequation if superior to chisquare_icdf(4,0.95)=9.48772903678
or chisquare_icdf(4,1-alpha) if alpha!=5%

2.11405080381

596 CHAPTER 8. STATISTICS

In this last case, you are given the value of d2 of the statistic D2 =
∑k

j=1(nj −
ej)/ej , where k is the number of sample classes for classes(L,-2,0.25) (or
classes(L)), nj is the size of the jth class, and ej = npj where n is the size of
L and pj is the probability of the jth class interval assuming a normal distribution
with the mean and population standard deviation of L.

8.5.5 Testing a distribution with the Kolmogorov-Smirnov distribu-
tion: kolmogorovt

The kolmogorovt command will use the Kolmogorov test to compare sample
data to a specified continuous distribution. You need to provide kolmogorovt
with either two lists of data or a list of data followed by the name of a distribution
with the parameters. The kolmogorovt command will return three values:

• The D statistic, which is the maximum distance between the cumulative
distribution functions of the samples or the sample and the given distribution.

• The K value, where K = D
√
n (for a single data set, where n is the size

of the data set) or K = D
√
n1n2/(n1 + n2) (when there are two data sets,

with sizes n1 and n2). The K value will tend towards the Kolmogorov-
Smirnov distribution as the size of the data set goes to infinity.

• 1 - kolmogorovd(K), which will be close to 1 when the distributions
look like they match.

For example, if you enter

kolmogorovt(randvector(100,normald,0,1),normald(0,1))

you might get

["D=",0.112592987625,"K=",1.12592987625,"1-kolmogorovd(K)=",0.158375510292]

and if you enter

kolmogorovt(randvector(100,normald,0,1),student(2))

you might get

["D=",0.0996114067923,"K=",0.996114067923,"1-kolmogorovd(K)=",0.27418851907]

Chapter 9

Numerical computations

Real numbers may have an exact representation (e.g. rationals, symbolic expres-
sions involving square roots or constants like π, ...) or approximate representation,
which means that the real is represented by a rational (with a denominator that
is a power of the basis of the representation) close to the real. Inside Xcas, the
standard scientific notation is used for approximate representation, that is a man-
tissa (with a point as decimal separator) optionally followed by the letter e and an
integer exponent.

Note that the real number 10−4 is an exact number but 1e−4 is an approximate
representation of this number.

9.1 Floating point representation.

In this section, we explain how real numbers are represented.

9.1.1 Digits

The Digits variable is used to control how real numbers are represented and also
how they are displayed. When the specified number of digits is less or equal to 14
(for example Digits:=14), then hardware floating point numbers are used and
they are displayed using the specified number of digits. When Digits is larger
than 14, Xcas uses the MPFR library, the representation is similar to hardware
floats (cf. infra) but the number of bits of the mantissa is not fixed and the range of
exponents is much larger. More precisely, the number of bits of the mantissa of a
created MPFR float is ceil(Digits*log(10)/log(2)).

Note that if you change the value of Digits, this will affect the creation of
new real numbers compiled from command lines or programs or by instructions
like approx, but it will not affect existing real numbers. Hence hardware floats
may coexist with MPFR floats, and even in MPFR floats, some may have 100 bits
of mantissa and some may have 150 bits of mantissa. If operations mix different
kinds of floats, the most precise kind of floats are coerced to the less precise kind
of floats.

597

598 CHAPTER 9. NUMERICAL COMPUTATIONS

9.1.2 Representation by hardware floats

A real is represented by a floating number d, that is

d = 2α ∗ (1 +m), 0 < m < 1,−210 < α < 210

If α > 1 − 210, then m ≥ 1/2, and d is a normalized floating point number,
otherwise d is denormalized (α = 1 − 210). The special exponent 210 is used to
represent plus or minus infinity and NaN (Not a Number). A hardware float is
made of 64 bits:

• the first bit is for the sign of d (0 for ’+’ and 1 for ’-’)

• the 11 following bits represents the exponent, more precisely if α denotes
the integer from the 11 bits, the exponent is α+ 210 − 1,

• the 52 last bits codes the mantissam, more precisely ifM denotes the integer
from the 52 bits, then m = 1/2 + M/253 for normalized floats and m =
M/253 for denormalized floats.

Examples of representations of the exponent:

• α = 0 is coded by 011 1111 1111

• α = 1 is coded by 100 0000 0000

• α = 4 is coded by 100 0000 0011

• α = 5 is coded by 100 0000 0100

• α = −1 is coded by 011 1111 1110

• α = −4 is coded by 011 1111 1011

• α = −5 is coded by 011 1111 1010

• α = 210 is coded by 111 1111 1111

• α = 2−10 − 1 is coded by 000 0000 000

Remark: 2−52 = 0.2220446049250313e− 15

9.1.3 Examples of representations of normalized floats

• 3.1 :
We have :

3.1 = 2 ∗ (1 +
1

2
+

1

25
+

1

26
+

1

29
+

1

210
+)

= 2 ∗ (1 +
1

2
+

∞∑
k=1

(
1

24∗k+1
+

1

24∗k+2
))

hence α = 1 and m = 1
2 +

∑∞
k=1(

1
24∗k+1 + 1

24∗k+2). Hence the hexadecimal
and binary representation of 3.1 is:

9.1. FLOATING POINT REPRESENTATION. 599

40 (01000000), 8 (00001000), cc (11001100), cc (11001100),
cc (11001100), cc (11001100), cc (11001100), cd (11001101),

the last octet is 1101, the last bit is 1, because the following digit is 1 (upper
rounding).

• 3. :
We have 3 = 2∗(1+1/2). Hence the hexadecimal and binary representation
of 3 is:

40 (01000000), 8 (00001000), 0 (00000000), 0 (00000000),
0 (00000000), 0 (00000000), 0 (00000000), 0 (00000000)

9.1.4 Difference between the representation of (3.1-3) and of 0.1

• representation of 0.1 :
We have :

0.1 = 2−4 ∗ (1+
1

2
+

1

24
+

1

25
+

1

28
+

1

29
+ ...) = 2−4 ∗

∞∑
k=0

(
1

24∗k
+

1

24∗k+1
)

hence α = 1 andm = 1
2 +
∑∞

k=1(
1

24∗k
+ 1

24∗k+1), therefore the representation
of 0.1 is

3f (00111111), b9 (10111001), 99 (10011001), 99 (10011001),
99 (10011001), 99 (10011001), 99 (10011001), 9a (10011010),

the last octet is 1010, indeed the 2 last bits 01 became 10 because the fol-
lowing digit is 1 (upper rounding).

• representation of a:=3.1-3 :
Computing a is done by adjusting exponents (here nothing to do), then sub-
tract the mantissa, and adjust the exponent of the result to have a normalized
float. The exponent is α = −4 (that corresponds at 2 ∗ 2−5) and the bits cor-
responding to the mantissa begin at 1/2 = 2 ∗ 2−6 : the bits of the mantissa
are shifted to the left of 5 positions and we have :

3f (00111111), b9 (10111001), 99 (10011001), 99 (10011001),
99 (10011001), 99 (10011001), 99 (10011001), 9a (10100000),

Therefore a > 0.1 and a− 0.1 = 1/250 + 1/251 (since 100000-11010=110)

Remark
This is the reason why

floor(1/(3.1-3))

returns 9 and not 10 when Digits:=14.

600 CHAPTER 9. NUMERICAL COMPUTATIONS

9.2 Approx. evaluation : evalf approx and Digits

evalf or approx evaluates to a numeric approximation (if possible).
Input :

evalf(sqrt(2))

Output, if in the cas configuration (Cfg menu) Digits=7 (that is hardware
floats are used, and 7 digits are displayed) :

1.414214

You can change the number of digits in a command line by assigning the variable
DIGITS or Digits. Input :

DIGITS:=20

evalf(sqrt(2))

Output :

1.4142135623730950488

Input :

evalf(10^-5)

Output :

1e-05

Input :

evalf(10^15)

Output :

1e+15

Input :

evalf(sqrt(2))*10^-5

Output :

1.41421356237e-05

9.3. NUMERICAL ALGORITHMS 601

9.3 Numerical algorithms

9.3.1 Approximate solution of an equation : newton

newton takes as arguments : an expression ex, the variable name of this ex-
pression (by default x), and three values a (by default a=0), eps (by default
eps=1e-8) and nbiter (by default nbiter=12).
newton(ex,x,a,eps,nbiter) computes an approximate solution x of the
equation ex=0 using the Newton algorithm with starting point x=a. The maxi-
mum number of iterations is nbiter and the precision is eps.
Input :

newton(x^2-2,x,1)

Output :

1.41421356237

Input :

newton(x^2-2,x,-1)

Output :

-1.41421356237

Input :

newton(cos(x)-x,x,0)

Output :

0.739085133215

9.3.2 Approximate computation of the derivative number : nDeriv

nDeriv takes as arguments : an expression ex, the variable name of this expres-
sion (by default x), and h (by default h=0.001).
nDeriv(ex,x,h) computes an approximated value of the derivative of the ex-
pression ex at the point x and returns :

(f(x+h)-f(x+h))/2*h

Input :

nDeriv(x^2,x)

Output :

((x+0.001)^2-(x+-0.001)^2)*500.0

Input :

subst(nDeriv(x^2,x),x=1)

Output :

602 CHAPTER 9. NUMERICAL COMPUTATIONS

2

Input :

nDeriv(exp(x^ 2),x,0.00001)

Output :

(exp((x+1e-05)^2)-exp((x+-1e-05)^2))*50000

Input :

subst(exp(nDeriv(x^ 2),x,0.00001),x=1)

Output :

5.43656365783

which is an approximate value of 2e=5.43656365692.

9.3.3 Approximate computation of integrals : romberg nInt

romberg or nInt takes as arguments : an expression ex, the variable name of
this expression (by default x), and two real values a,b.
romberg(ex,x,a,b) or nInt(ex,x,a,b) computes an approximated value
of the integral

∫ b
a ex dx using the Romberg method. The integrand must be suffi-

ciently regular for the approximation to be accurate. Otherwise, romberg returns
a list of real values, that comes from the application of the Romberg algorithm (the
first list element is the trapezoid rule approximation, the next ones come from the
application of the Euler-MacLaurin formula to remove successive even powers of
the step of the trapezoid rule).
Input :

romberg(exp(x^2),x,0,1)

Output :

1.46265174591

9.3.4 Approximate integral with an adaptive Gaussian quadrature at
15 points: gaussquad

The gaussquad command takes four arguments; an expression, the variable used
by the expression, and two numbers.
gaussquad returns an approximation to the definite integral of the expression
over the limits given by the two numbers. The approximation is calculated by an
adaptive method by Ernst Hairer which uses a 15-point Gaussian quadrature.
Input:

gaussquad(exp(xˆ2),x,0,1)

Output:

1.46265174591

Input:

gaussquad(exp(-xˆ2),x,-1,1)

Output:

1.49364826562

9.3. NUMERICAL ALGORITHMS 603

9.3.5 Approximate solution of y’=f(t,y) : odesolve

• Let f be a function from R2 to R.
odesolve(f(t,y),[t,y],[t0,y0],t1) or
odesolve(f(t,y),t=t0..t1,y,y0) or
odesolve(t0..t1,f,y0) or
odesolve(t0..t1,(t,y)->f(t,y),y0)
returns an approximate value of y(t1) where y(t) is the solution of:

y′(t) = f(t, y(t)), y(t0) = y0

• odesolve accepts an optional argument for the discretization of t (tstep=value).
This value is passed as initial tstep value to the numeric solver from the GSL
(Gnu Scientific Library), it may be modified by the solver. It is also used to
control the number of iterations of the solver by 2*(t1-t0)/tstep (if
the number of iterations exceeds this value, the solver will stops at a time
t < t1).

• odesolve accepts curve as an optional argument. In that case, odesolve
returns the list of all the [t, [y(t)]] values that were computed.

Input :

odesolve(sin(t*y),[t,y],[0,1],2)

or :

odesolve(sin(t*y),t=0..2,y,1)

or :

odesolve(0..2,(t,y)->sin(t*y),1)

or define the function :

f(t,y):=sin(t*y)

and input :

odesolve(0..2,f,1)

Output :

[1.82241255675]

Input :

odesolve(0..2,f,1,tstep=0.3)

Output :

[1.82241255675]

Input :

odesolve(sin(t*y),t=0..2,y,1,tstep=0.5)

604 CHAPTER 9. NUMERICAL COMPUTATIONS

Output :

[1.82241255675]

Input :

odesolve(sin(t*y),t=0..2,y,1,tstep=0.5,curve)

Output :

[[0.760963063136,[1.30972370515]],[1.39334557388,[1.86417104853]]]

9.3.6 Approximate solution of the system v’=f(t,v) : odesolve

• If v is a vector of variables [x1, .., xn] and if f is given by a vector of expres-
sions [e1,...,en] depending on t and of [x1, .., xn], if the initial value
of v at t0 is the vector [x10, ..., xn0] then the instruction

odesolve([e1,..,en],t=t0..t1,[x1,...,xn],
[x10,...,xn0])

returns an approximated value of v at t = t1. With the optional argument
curve, odesolve returns the list of the intermediate values of [t, v(t)]
computed by the solver.

Example, to solve the system

x′(t) = −y(t)

y′(t) = x(t)

Input :

odesolve([-y,x],t=0..pi,[x,y],[0,1])

Output :

[-1.79045146764e-15,-1]

• If f is a function from R× Rn to Rn.
odesolve(t0..t1,(t,v)->f(t,v),v0) or
odesolve(t0..t1,f,v0)
computes an approximate value of v(t1) where the vector v(t) in Rn is the
solution of

v′(t) = f(t, v(t)), v(t0) = v0

With the optional argument curve, odesolve returns the list of the inter-
mediate value [t, v(t)] computed by the solver.

Example, to solve the system :

x′(t) = −y(t)

y′(t) = x(t)

Input :

9.3. NUMERICAL ALGORITHMS 605

odesolve(0..pi,(t,v)->[-v[1],v[0]],[0,1])

Or define the function:

f(t,v):=[-v[1],v[0]]

then input :

odesolve(0..pi,f,[0,1])

Output :

[-1.79045146764e-15,-1]

Alternative input :

odesolve(0..pi/4,f,[0,1],curve)

Output :

[[0.1781,[-0.177159948386,0.984182072936]],
[0.3781,[-0.369155338156,0.929367707805]],
[0.5781,[-0.54643366953,0.837502384954]],
[0.7781,[-0.701927414872,0.712248484906]]]

9.3.7 Approximate solution of a nonlinear second-order boundary value
problem : bvpsolve

bvpsolve finds an approximate solution of a boundary value problem

y′′ = f(x, y, y′), y(a) = α, y(b) = β

on the interval [a, b]. It takes the following mandatory arguments :

• expression f(x, y, y′),

• list [x=a..b,y], specifying the independent variable x, its range [a, b] and
the sought function y,

• list containing α, β and optionally an initial guess for y′(a) as the third
element.

One or more of the additional arguments below can optionally follow (in no par-
ticular order) :

• integer N ≥ 2 (by default 100),

• output=<type> or Output=<type> : the type of the output, which
can be list (the default), diff, piecewise or spline,

• limit=M : the procedure will be stopped if the number of iterations exceeds
M , which must be a positive integer (by default there is no limit).

606 CHAPTER 9. NUMERICAL COMPUTATIONS

The procedure uses the method of nonlinear shooting which is based on New-
ton and Runge-Kutta methods. Values of y and its first derivative y′ are approx-
imated at points xk = a + k δ, where δ = b−a

N and k = 0, 1, . . . , N . For the
numeric tolerance (precision) threshold, the algorithm uses epsilon specified in
the session settings in Xcas. If the output type is

• list, a list of pairs [xk, yk] is returned where yk ≈ y(xk),

• diff, a list of lists [xk, yk, y
′
k] is returned, where y′k ≈ y′(xk),

• piecewise, a piecewise linear interpolation of the points (xk, yk) is re-
turned,

• spline, a piecewise spline interpolation of the points (xk, yk) is returned,
based on the values y′k computed in the process.

Note that the shooting method is sensitive to roundoff errors and may fail to
converge in some cases, especially when y is a rapidly increasing function. In
the absence of convergence or if the maximum number of iterations is exceeded,
bvpsolve returns undef. However, if output type is list or piecewise and
if N > 2, a slower but more stable finite-difference method (which approximates
only the function y) is tried first.

Sometimes setting an initial guess for y′(a) to a suitable value may help the
shooting algorithm to converge or to converge faster. The default initial guess y′0
for the value y′(a) is

y′0 =
β − α
b− a

.

Examples. In the first example we solve the problem

y′′ =
1

8
(32 + 2x3 − y y′), 1 ≤ x ≤ 3

with boundary conditions y(1) = 17 and y(3) = 43
3 . We use N = 20, which gives

x-step of 0.01. Input :

bvpsolve((32+2x^3-y*y’)/8,[x=1..3,y],[17,43/3],20)

The output is shown in Table 9.1 (the middle two columns) alongside with the
values y(xk) of the exact solution y = x2 + 16/x (the fourth column).

In the next example we solve the problem

y′′ =
x2 (y′)2 − 9 y2 + 4x6

x5
, 1 ≤ x ≤ 2,

with the boundary conditions y(1) = 0 and y(2) = ln 256. We obtain the solution
as a piecewise spline interpolation for N = 10 and estimate the absolute error
err of the approximation using the exact solution y = x3 lnx and romberg
command for numerical integration. We also need to explicitly set an initial guess
y′0 for the value y′(1) because the algorithm fails to converge with the default guess
y′0 = ln 256 ≈ 5.545. Therefore let y′0 = 1 instead. Input :

9.4. SOLVE EQUATIONS WITH FSOLVE NSOLVE 607

k xk yk y(xk)
0 1.0 17.0 17.0
1 1.1 15.7554961579 15.7554545455
2 1.2 14.7733911821 14.7733333333
3 1.3 13.9977543159 13.9976923077
4 1.4 13.388631813 13.3885714286
5 1.5 12.9167227424 12.9166666667
6 1.6 12.5600506483 12.56
7 1.7 12.3018096101 12.3017647059
8 1.8 12.1289281414 12.1288888889
9 1.9 12.0310865274 12.0310526316

10 2.0 12.0000289268 12.0
11 2.1 12.0290719981 12.029047619
12 2.2 12.1127475278 12.1127272727
13 2.3 12.2465382803 12.2465217391
14 2.4 12.4266798825 12.4266666667
15 2.5 12.650010254 12.65
16 2.6 12.9138537834 12.9138461538
17 2.7 13.2159312426 13.2159259259
18 2.8 13.5542890043 13.5542857143
19 2.9 13.9272429048 13.9272413793
20 3.0 14.3333333333 14.3333333333

Table 9.1: approximate and true values of the function y = x2 + 16/x on [1, 3]

f:=(x^2*diff(y(x),x)^2-9*y(x)^2+4*x^6)/x^5:;
vars:=[x=1..2,y]:; yinit:=[0,ln(256),1]:;

p:=bvpsolve(f,vars,yinit,10,output=spline):;
err:=sqrt(romberg((p-x^3*ln(x))^2,x=1..2))

Output :

3.27720911686e-06

Note that, if the output type was set to list or piecewise, the solution would
have been found even without specifying an initial guess for y′(1) because the al-
gorithm would automatically apply the alternative finite-difference method, which
converges.

9.4 Solve equations with fsolve nSolve

fsolve or nSolve solves numeric equations (unlike solve or proot, it is not
limited to polynomial equations) of the form:

f(x) = 0, x ∈]a, b[

fsolve or nSolve accepts a last optional argument, the name of an iterative
algorithm to be used by the GSL solver. The different methods are explained in the
following section.

608 CHAPTER 9. NUMERICAL COMPUTATIONS

9.4.1 fsolve or nSolve with the option bisection_solver

This algorithm of dichotomy is the simplest but also generically the slowest. It
encloses the zero of a function on an interval. Each iteration, cuts the interval into
two parts. We compute the middle point value. The function sign at this point,
gives us the half-interval on which the next iteration will be performed.
Input :

fsolve((cos(x))=x,x,-1..1,bisection_solver)

Output :

[0.739085078239,0.739085137844]

9.4.2 fsolve or nSolve with the option brent_solver

The Brent method interpolates of f at three points, finds the intersection of the
interpolation with the x axis, computes the sign of f at this point and chooses the
interval where the sign changes. It is generically faster than bisection.
Input :

fsolve((cos(x))=x,x,-1..1,brent_solver)

Output :

[0.73908513321 5,0.739085133215]

9.4.3 fsolve or nSolve with the option falsepos_solver

The "false position" algorithm is an iterative algorithm based on linear interpolation
: we compute the value of f at the intersection of the line (a, f(a)), (b, f(b)) with
the x axis. This value gives us the part of the interval containing the root, and on
which a new iteration is performed.
The convergence is linear but generically faster than bisection.
Input :

fsolve((cos(x))=x,x,-1..1,falsepos_solver)

Output :

[0.739085133215,0.739085133215]

9.4.4 fsolve or nSolve with the option newton_solver

newton_solver is the standard Newton method. The algorithm starts at an
initial value x0, then we search the intersection x1 of the tangent at x0 to the graph
of f , with the x axis, the next iteration is done with x1 instead of x0. The xi
sequence is defined by

x0 = x0, xn+1 = xn −
f(xn)

f ′(xn)

If the Newton method converges, it is a quadratic convergence for roots of multi-
plicity 1.
Input :

9.4. SOLVE EQUATIONS WITH FSOLVE NSOLVE 609

fsolve((cos(x))=x,x,0,newton_solver)

Output :

0.739085133215

9.4.5 fsolve or nSolve with the option secant_solver

The secant method is a simplified version of the Newton method. The computation
of x1 is done using the Newton method. The computation of f ′(xn), n > 1 is
done approximately. This method is used when the computation of the derivative
is expensive:

xi+1 = xi −
f(xi)

f ′est
, f ′est =

f(xi)− f(xi−1)

(xi − xi−1)

The convergence for roots of multiplicity 1 is of order (1 +
√

5)/2 ≈ 1.62....
Input :

fsolve((cos(x))=x,x,-1..1,secant_solver)

Output :

[0.739085078239,0.739085137844]

Input :

fsolve((cos(x))=x,x,0,secant_solver)

Output :

0.739085133215

9.4.6 fsolve or nSolve with the option steffenson_solver

The Steffenson method is generically the fastest method.
It combines the Newton method with a "delta-two" Aitken acceleration : with the
Newton method, we obtain the sequence xi and the convergence acceleration gives
the Steffenson sequence

Ri = xi −
(xi+1 − xi)2

(xi+2 − 2xi+1 + xi)

Input :

fsolve(cos(x)=x,x,0,steffenson_solver)

Output :

0.739085133215

610 CHAPTER 9. NUMERICAL COMPUTATIONS

9.5 Solve systems with fsolve

Xcas provides six methods (inherited from the GSL) to solve numeric systems of
equations of the form f(x) = 0:

• Three methods use the jacobian matrix f ′(x) and their names are terminated
with j_solver.

• The three other methods use approximation for f ′(x) and use only f .

All methods use an iteration of Newton kind

xn+1 = xn − f ′(xn)
−1 ∗ f(xn)

The four methods hybrid*_solver use also a method of gradient descent when
the Newton iteration would make a too large step. The length of the step is com-
puted without scaling for hybrid_solver and hybridj_solver or with
scaling (computed from f ′(xn)) for hybrids_solver and hybridsj_solver.

9.5.1 fsolve with the option dnewton_solver

Input :

fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],dnewton_solver)

Output :

[1.0,1.0]

9.5.2 fsolve with the option hybrid_solver

Input :

fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],

cos(x)=x,x,0,hybrid_solver)

Output :

[1.0,1.0]

9.5.3 fsolve with the option hybrids_solver

Input :

fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrids_solver)

Output :

[1.0,1.0]

9.6. SOLVING EQUATIONS OR SYSTEMS OVER C: CFSOLVE 611

9.5.4 fsolve with the option newtonj_solver

Input :

fsolve([x^2+y-2,x+y^2-2],[x,y],[0,0],newtonj_solver)

Output :

[1.0,1.0]

9.5.5 fsolve with the option hybridj_solver

Input :

fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridj_solver)

Output :

[1.0,1.0]

9.5.6 fsolve with the option hybridsj_solver

Input :

fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridsj_solver)

Output :

[1.0,1.0]

9.6 Solving equations or systems over C: cfsolve

The cfsolve command gives numeric solutions to an equation or system over the
complex numbers, even if Complex is not checked in the configuration screen.
(The fsolve command will return complex roots, but Complex needs to be
checked in the configuration screen.)
Input:

cfsolve(sin(x)=2)

Output:

[1.57079632679-1.31695789692*i,1.57079632679+1.31695789692*i]

Input:

cfsolve([xˆ2+y+2,x+yˆ2+2],[x,y])

Output:

[[0.5+1.65831239518*i,0.5-1.65831239518*i],[0.5-1.65831239518*i,0.5+1.65831239518*i],
[-0.5+1.32287565553*i,-0.5+1.32287565553*i],[-0.5-1.32287565553*i,-0.5-1.32287565553*i]]

612 CHAPTER 9. NUMERICAL COMPUTATIONS

9.7 Numeric roots of a polynomial : proot

proot takes as argument a squarefree polynomial, either in symbolic form or as a
list of polynomial coefficients (written by decreasing order).
proot returns a list of the numeric roots of this polynomial.
To find the numeric roots of P (x) = x3 + 1, input :

proot([1,0,0,1])

or :

proot(x^3+1)

Output :

[0.5+0.866025403784*i,0.5-0.866025403784*i,-1.0]

To find the numeric roots of x2 − 3, input :

proot([1,0,-3])

or :

proot(x^2-3)

Output :

[1.73205080757,-1.73205080757]

9.8 Numeric factorization of a matrix : cholesky qr
lu svd

Matrix numeric factorizations of

• Cholesky,

• QR,

• LU,

• svd,

are described in section 5.57.

Chapter 10

Unit objects and physical
constants

The Phys menu contains:

• the physical constants (Constant sub-menu),

• the unit conversion functions (Unit_convert sub-menu),

• the unit prefixes (Unit_prefix sub-menu)

• the unit objects organized by subject

10.1 Unit objects

10.1.1 Notation of unit objects

A unit object has two parts : a real number and a unit expression (a single unit or
a multiplicative combination of units). The two parts are linked by the character _
("underscore"). For example 2_m for 2 meters. For composite units, parenthesis
must be used, e.g. 1_(m*s).
If a prefix is put before the unit then the unit is multiplied by a power of 10. For
example k or K for kilo (indicate a multiplication by 103), D for deca (indicate a
multiplication by 10), d for deci (indicate a multiplication by 10−1) etc...
Input :

10.5_m

Output :

a unit object of value 10.5 meters

Input :

10.5_km

Output :

a unit object of value 10.5 kilometers

613

614 CHAPTER 10. UNIT OBJECTS AND PHYSICAL CONSTANTS

10.1.2 Computing with units

Xcas performs usual arithmetic operations (+, -, *, /, ^) on unit objects. Different
units may be used, but they must be compatible for + and -. The result is an unit
object

• for the multiplication and the division of two unit objects _u1 and _u2 the
unit of the result is written _(u1*u2) or _(u1/u2).

• for an addition or a subtraction of compatible unit objects, the result is ex-
pressed with the same unit as the first term of the operation.

Input :

1_m+100_cm

Output :

2_m

Input :

100_cm+1_m

Output :

200_cm

Input :

1_m*100_cm

Output :

1_m^2

10.1.3 Convert units into MKSA units : mksa

mksa converts a unit object into a unit object written with the compatible MKSA
base unit.
Input :

mksa(15_C)

Output :

15_(s*A)

10.1. UNIT OBJECTS 615

10.1.4 Convert units : convert, =>

convert convert units : the first argument is an unit object and the second argu-
ment is the new unit (which must be compatible). (The => operator is the infixed
version of convert.)
Input :

convert(1_h,_s)

Output :

3600_s

Input :

convert(3600_s,_h)

Output :

1_h

10.1.5 Convert between Celsius and Fahrenheit: Celsius2Fahrenheit,
Fahrenheit2Celsius

The Celsius2Fahrenheit command takes a number as an argument, repre-
senting a temperature in degrees Celsius.
Celsius2Fahrenheit returns the number representing the temperature in Fahren-
heit.
Input:

Celsius2Fahrenheit(a)

Output:

a*9/5+32

Input:

Celsius2Fahrenheit(0)

Output:

32

The Fahrenheit2Celsius command converts Fahrenheit temperatures to
Celsius.
Input:

Fahrenheit2Celsius(212)

Output:

100

616 CHAPTER 10. UNIT OBJECTS AND PHYSICAL CONSTANTS

10.1.6 Factorize a unit : ufactor

ufactor factorizes a unit in a unit object : the first argument is a unit object and
the second argument is the unit to factorize.
The result is an unit object multiplied by the remaining MKSA units.
Input :

ufactor(3_J,_W)

Output :

3_(W*s)

Input :

ufactor(3_W,_J)

Output :

3_(J/s)

10.1.7 Simplify a unit : usimplify

usimplify simplifies a unit in an unit object.
Input :

usimplify(3_(W*s))

Output :

3_J

10.1.8 Unit prefixes

You can insert a unit prefix in front of a unit to indicate a power of ten.
The following table gives the available prefixes:

Prefix Name (*10^) n Prefix Name (*10^) n
Y yota 24 d deci -1
Z zeta 21 c cent -2
E exa 18 m mili -3
P peta 15 mu micro -6
T tera 12 n nano -9
G giga 9 p pico -12
M mega 6 f femto -15
k or K kilo 3 a atto -18
h or H hecto 2 z zepto -21
D deca 1 y yocto -24

Remark
You cannot use a prefix with a built-in unit if the result gives another built-in unit.
For example, 1_a is one are, but 1_Pa is one pascal and not 10^15_a.

10.2. CONSTANTS 617

10.2 Constants

10.2.1 Notation of physical constants

If you want to use a physical constants inside Xcas, put its name between two char-
acters _ ("underscore"). Don’t confuse physical constants with symbolic constants,
for example, e, π are symbolic constants as _c_,_NA_ are physical constants.
Input :

c

Output speed of light in vacuum :

299792458_m*s^-1

Input :

NA

Output Avogadro’s number :

6.0221367e23_gmol^-1

10.2.2 Constants Library

The physical constants are in the Phys menu, Constant sub-menu. The follow-
ing table gives the Constants Library :

618 CHAPTER 10. UNIT OBJECTS AND PHYSICAL CONSTANTS

Name Description
NA Avogadro’s number
k Boltzmann constant
Vm Molar volume
R Universal gas constant
StdT Standard temperature
StdP Standard pressure
sigma Stefan-Boltzmann constant
c Speed of light in vacuum
epsilon0 Permitivity of vacuum
mu0 Permeability of vacuum
g Acceleration of gravity
G Gravitational constant
h Planck’s constant
hbar Dirac’s constant
q Electron charge
me Electron rest mass
qme q/me (Electron charge/mass)
mp Proton rest mass
mpme mp/me (proton mass/electron mass)
alpha Fine structure constant
phi Magnetic flux quantum
F Faraday constant
Rinfinity Rydberg constant
a0 Bohr radius
muB Bohr magneton
muN Nuclear magneton
lambda0 Photon wavelength (ch/e)
f0 Photon frequency (e/h)
lambdac Compton wavelength
rad 1 radian
twopi 2*pi radians
angl 180 degrees angle
c3 Wien displacement constant
kq k/q (Boltzmann/electron charge)
epsilon0q epsilon0/q (permitivity /electron charge)
qepsilon0 q*epsilon0 (electron charge *permitivity)
epsilonsi Silicium dielectric constant
epsilonox Bioxyd of silicium dielectric constant
I0 Reference intensity

To have the value of a constant, input the constant name in the command line of
Xcas and evaluate with enter (don’t forget to put _ at the beginning and at the
end of the constant name).

Chapter 11

Programming

11.1 Functions, programs and scripts

11.1.1 The program editor

Xcas provides a program editor, which you can open with Alt+P. This can be
useful for writing small programs, but for writing larger programs you may want
to use your usual editor. (Note that this requires an editor, such as emacs, and
not a word processor.) If you use your own editor, then you will need to save
the program to a file, such as myprog.cxx, and then load it into Xcas with the
command line command load, as in load("myprog.cxx").

11.1.2 Functions: function, endfunction, { }, local, return

You have already seen functions defined with :=. For example, to define a function
sumprod which takes two inputs and returns a list with the sum and the product
of the inputs, you can enter

sumprod(a,b) := [a+b,a*b]

Afterwards, entering

sumprod(3,5)

will return

[8,15]

You can define functions that are computed with a sequence of instructions by
putting the instructions between braces, where each command ends with a semi-
colon. If any local variables will be used, they can be declared with the local key-
word, followed by the variable names. The value returned by the function will be
indicated with the return keyword. For example, the above function sumprod
could also be defined by

sumprod(a,b) := {
local s, p;
s := a + b;
p := a*b;
return [s,p];
}

619

620 CHAPTER 11. PROGRAMMING

Another way to use a sequence of instructions to define a function is with
the function . . .endfunction construction. With this approach, the func-
tion name and parameters follow the function keyword. This is otherwise like
the previous approach. The sumprod function could be defined by

function sumprod(a,b)
local s, p;
s := a + b;
p := a*b;
return [s,p];
endfunction

11.1.3 Local variables

Local variables in a function definition can be given initial values in the line they
are declared in if you put their initialization in parentheses; for example,

local a,b;
a := 1;

is the same as

local (a := 1), b;

Local variables should be given values within the function definition. If you
want to use a local variable as a symbolic variable, then you can indicate that with
the assume command. For example, if you define a function myroots by

myroots (a) := {
local x;
return solve(x^2=a,x);
}

then calling

myroots(4)

will simply return the empty list. You could leave x undeclared, but that would
make x a global variable and could interact with other functions in unexpected
ways. You can get the behavior you probably expected by explicitly assuming x to
be a symbol;

myroots (a) := {
local x;
assume(x,symbol);
return solve(x^2=a,x);
}

(Alternatively, you could use purge(x) instead of assume(x,symbol).) Now
if you enter

myroots(4)

you will get

[−2, 2]

11.2. BASIC INSTRUCTIONS 621

11.1.4 Default values of the parameters

You can give the parameters of a function default values by putting parameter=value
in the parameter list of the function. For example, if you define a function

f(x,y=5,z) := {
return x*y*z;
}

then

f(1,2,3)

will return the product 1 ∗ 2 ∗ 3 = 6. If you give f only two values as input,

f(3,4)

then these values will be given to the parameters which don’t have default values;
in this case, y will get its default value 5 while 3 and 4 will be assigned to x and
z, respectively. The result will be x ∗ y ∗ z = 3 ∗ 5 ∗ 4 = 60.

11.1.5 Programs

A program is similar to a function, and written like a function without a return
value. Programs are used to display results or to create drawings. It is a good idea
to turn a program into a function by putting return 0 at the end; this way you
will get a response of 0 when the program executes.

11.1.6 Scripts

A script is a file containing a sequence of instructions, each ending with a semi-
colon.

11.1.7 Code blocks

A code block, such as used in defining functions, is a sequence of statements delim-
ited by braces or by begin and end. Each statement must end with a semicolon.
(If the block makes up a function, you can step through it one statement at a time
by using the debugger; see section 11.5.)

11.2 Basic instructions

11.2.1 Comments: //

The characters // indicate that you are writing a comment; any text between //
and the end of the line will be ignored by Xcas.

622 CHAPTER 11. PROGRAMMING

11.2.2 Input: input, Input, InputStr, textinput, output,
Output

You can prompt the user to enter a value for a variable with the input (or Input
command). If you enter

input(a)

the the user will be given a box where they can enter a value for the variable a.
There will be a prompt indicating the name of the variable; if you want a more
descriptive prompt, you can give input a string argument before the variable
name.

input("Set a to the value: ",a)

will prompt the user with "Set a to the value: " before the input box.
If the value that you enter for input is a string, it should be between quotes.

If you want the user to enter a string without having to use the quotes, you can use
InputStr or textinput, which will assume the input will be a string and so
the user won’t need to use quotes.

The output (or Output) command can take strings (or variables represent-
ing strings) as arguments and can be used to add information to the input window.
For example, if you enter

input(output("Calculate
p(a)"),"polynomial",p,"value",a)

then you will get a window with a box containing

Calculate p(a)

followed by the prompts for p and a.

11.2.3 Reading a single keystroke: getKey

If you want the user to enter a single key, you can use the getKey command,
which doesn’t take any arguments, to get the ASCII code of the next keystroke.
For example, if you enter

asciicode := getKey()

and then hit the A key, then the variable asciicode will have the value 65, which
is the ASCII code of capital A.

11.2.4 Checking conditions: assert

You can break out of a function with an error by using the assert command,
which takes a boolean as an argument. If the boolean is false, then the function
will return with an error. For example, if you define a function

sqofpos(x) := {assert(x > 0); return x^2;}

then if you enter

11.2. BASIC INSTRUCTIONS 623

sqofpos(4)

you will get 16, but

sqofpos(-4)

will return an error, since -4 > 0 is false.

11.2.5 Checking the type of the argument: type, subtype, compare,
getType

You can check the type of the argument of a function (or anything else, for that
matter) with the type command. For example, entering

type(4)

will return

integer

The output of a type command is actually an integer from 1 to 12. The output
of type(4) is integer, which is a constant with the value 1. Another way to
represent this type is with DOM_INT; entering

type(4) == DOM_INT

will return

true

Possible types (followed by the integer they represent) include:

• real, double or DOM_FLOAT (1).

• integer or DOM_INT (2).

• complex or DOM_COMPLEX (4).

• identifier or DOM_IDENT (6).

• vector or DOM_LIST (7).

• func or DOM_FUNC (13).

• expression or DOM_SYMBOLIC (8).

• rational or DOM_RAT (10).

• string or DOM_STRING (12).

If the item being tested is a list (in DOM_LIST), then the subtype command
can determine what type of list it is. If the object is a sequence, then subtype
returns 1;

subtype(1,2,3)

returns

624 CHAPTER 11. PROGRAMMING

1

If the object is a set, then subtype returns 2. If the object is a polynomial repre-
sented as a list (see section 5.29), then subtype will return 10. If the object isn’t
one of these types of list, then subtype returns 0.

The compare function will compare two objects taking their type into ac-
count; in other words, compare(a,b) returns 1 (true) if a and b have the same
type with a less than b, or if a and b have different types and the integer type(a)
is less than type(b). For example,

compare("a","b")

returns

1

since "a" and "b" have the same type (string) and "a" is less than "b" in the
string ordering. Also, if b is a formal variable, then

compare("a",b)

returns

0

since the type of "a" is string (the integer 12) while the type of b is identifier
(the integer 6) and 12 is not less than 6.

The getType command is similar to type in that it takes an object and re-
turns the type, but it has different possible return values. It is included for compat-
ibility reasons. For example,

getType(3.14)

returns

NUM

and

getType(x)

returns

VAR

Other possible return values include STR, EXPR, NONE, PIC, MAT and FUNC.

11.2.6 Printing: print, Disp, ClrIO

The print (or Disp) command will print its arguments in a special pane and
return the number 1. For example,

print("Hello")

will result in

11.2. BASIC INSTRUCTIONS 625

Hello

If you enter

a := 12

then

print("a =",a)

will print

"a =", 12

The ClrIO (no argument) will erase the printing that was done in the level it
was typed. For example,

print("Hello"); ClrIO()

will simply return the result (1,1).

11.2.7 Displaying exponents: printpow

The printpow command determines how the print command will print expo-
nents. By default,

print(xˆ3)

will print

xˆ3

If you use the command

printpow(1)

then

print(xˆ3)

will print as

pow(x,3)

If you use the command

printpow(-1)

then

print(xˆ3)

will print as

x**3

Finally,

printpow(0)

will restore the default form.

626 CHAPTER 11. PROGRAMMING

11.2.8 Infixed assignments: =>, :=, =<

The infixed operators =>, :=, and =< can all store a value in a variable, but their
arguments are in different order. Also, := and =< have different effects when the
first argument is an element of a list stored in a variable, since =< modifies list
elements by reference. (See section 11.2.10.)

• => is the infixed version of sto, it stores the value in the first argument in
the variable in the second argument. Both
Input:

4 => a

and:

sto(4,a)

store the value 4 in the variable a.

• := and =< both have a variable as the first argument and the value to store
in the variable as the second argument. Both
Input:

a := 4

and:

a =< 4

store the value 4 in the variable a.

However, suppose
Input:

A := [0,1,2,3,4]
B := A

and you want to change A[3].
Input:

A[3] =< 33

will change both A and B
Input:

A, B

Output:

[0,1,2,33,4], [0,1,2,33,4]

11.2. BASIC INSTRUCTIONS 627

Here, A pointed to the list [0,1,2,3,4] and setting B to A, B also pointed
to [0,1,2,3,4]. Changing an element of A by reference changes the list
that A points to, which B points to.

Note that multiple assigments can be made using sequences or lists. Both
Input:

[a, b, c] := [1, 2, 3]

and:

(a, b, c) := (1, 2, 3)

assign a the value 1, b the value 2, and c the value 3. If multiple assignments are
made this way and variables are on the right hand side, they will be replaced by
their values before the assignment. If a contains 5, then
Input:

(a,b) := (2,a)

then b will get the previous value of a, 5, and not the new value of a, 2.

11.2.9 Assignment by copying: copy

The copy command creates a copy of its argument, which is typically a list of
some type. If B is a list and A := B, then A and B point to the same list, and so
changing one will change the other. But if A := copy(B), then A and B will
point to different lists with the same values, and so can be changed individually.
Input:

B := [[4,5],[2,6]]
A := B

C := copy(B)

Output:

A, B, C

Output:

[[4,5],[2,6]],[[4,5],[2,6]],[[4,5],[2,6]]

Input:

B[1] =< [0,0]

Input:

A, B, C

Output:

[[4,5],[0,0]],[[4,5],[0,0]],[[4,5],[2,6]]

628 CHAPTER 11. PROGRAMMING

11.2.10 The difference between := and =<

The := and =< assignment operators have different effects when they are used to
modify an element of a list contained in a variable, since =< modifies the element
by reference. Otherwise, they will have the same effect.

For example, if
Input:

A := [1,2,3]

then
Input:

A[1] := 5

and
Input:

A[1] =< 5

both change A[1] to 5, so A will be [1,5,3], but they do it in different ways.
The command A[1] =< 5 changes the middle value in the list that A originally
pointed to, and so any other variable pointing to the list will be changed, but A[1]
:= 5 will create a duplicate list with the middle element of 5, and so any other
variable pointing to the original list won’t be affected.
Input:

A:=[0,1,2,3,4]
B:=A

B[3]=<33
A,B

Output:

[0,1,2,33,4],[0,1,2,33,4]

Input:

A:=[0,1,2,3,4]
B:=A

B[3]:=33
A,B

Output:

[0,1,2,3,4],[0,1,2,33,4]

If B is set equal to a copy of A instead of A, then changing B won’t affect A.
Input:

A:=[0,1,2,3,4]
B:=copy(A)
B[3]=<33

A,B

Output:

[0,1,2,3,4],[0,1,2,33,4]

11.3. CONTROL STRUCTURES 629

11.3 Control structures

11.3.1 if statements: if, then, else, end, elif

The Xcas language has different ways of writing if...then statements (see
section 4.7.2). The standard version of the if...then statement consists of the
if keyword, followed by a boolean expression (see section 5.2 in parentheses,
followed by a statement block which will be executed if the boolean is true.

As an example, if the variables a and b have the values 3 and 2, respectively,
and you enter

if (a > b) { a := a + 5; b := a - b;}

then since a > b will evaluate to true, the variable a will be reset to 8 and b will
be reset to the value 6.

An if statement can include a block of statements to execute when the boolean
is false by putting it at the end following the else keyword. For example, if the
variable val has a real value, then the statement

if (val > 0) {abs := val;} else {abs := -1*val; }

will set abs to the same value as val if val is positive and it will set abs to
negative the value of val otherwise.

An alternate way to write an if statement is to enclose the code block in then
and end instead of braces; if the variable a is equal to 3, then

if (a > 1) then a := a + 5; end

will reset a to 8. An else block can be included by putting the else statements
after else and before the end. For example, with a having the value 8 as above,

if (a > 10) then a := a + 10; else a := a - 5; end

will reset a to the value 3. This can also be written:

si (a > 10) alors a := a + 10; sinon a := a - 5; fsi

Several if statements can be nested; for example, the statement

if (a > 1) then a := 1; else if (a < 0) then a := 0;
else a := 0.5; end; end

A simpler way is to replace the else if by elif; the above statement can be
written

if (a > 1) then a := 1; elif (a < 0) then a := 0; else
a := 0.5; end

In general, such a combination can be written

if (boolean 1) then
block 1;
elif (boolean 2) then
block 2;

630 CHAPTER 11. PROGRAMMING

...
elif (boolean n) then
block n;
else
last block;
end

(where the last else is optional.) For example, if you want to define a function f
by

f(x) =



8 if x > 8

4 if 4 < x ≤ 8

2 if 2 < x ≤ 4

1 if 0 < x ≤ 2

0 if x ≤ 0

you can enter

f(x) := {
if (x > 8) then

return 8;
elif (x > 4) then

return 4;
elif (x > 2) then

return 2;
elif (x > 0) then

return 1;
else

return 0;
end;
}

11.3.2 The switch statement: switch, case, default

The switch statement can be used when you want the value of a block to de-
pend on an integer. It takes one argument, an expression which evaluates to an
integer. It should be followed by a sequence of case statements, which takes the
form case followed by an integer and then a colon, which is followed by a code
block to be executed if the expression equals the integer. At the end is an optional
default: statement, which is followed by a code block to be executed if the
expression doesn’t equal any of the given integers. For example, if you wanted to
define a function of three variables which performed an operation on the first two
variables depending on the third, you could enter

oper(a,b,c) := {
switch (c) {

case 1: {a := a + b; break;}
case 2: {a := a - b; break;}
case 3: {a := a * b; break;}
default: {a := a ^ b;}

11.3. CONTROL STRUCTURES 631

}
return a;
}

Then

oper(2,3,1)

will return 2 + 3 = 5, since the third argument is 1, and

oper(2,3,2)

will return 2− 3 = −1, since the third argument is 2.

11.3.3 The for loop: for, from, to, step, do, end_for

The for loop has three different forms, each of which uses an index variable. If
the for loop is used in a program, the index variable should be declared as a local
variable. (Recall that i represents the imaginary unit, and so cannot be used as the
index.)

The first form For the first form, the for is followed by the starting value for
the index, the end condition, and the increment step, separated by semicolons and
in parentheses. Afterwards is a block of code to be executed for each iteration. For
example, to add the even numbers less than 100, you can set the running total to 0,

S := 0

and the use an for loop to do the summing,

for (j := 0; j < 100; j := j + 2) {S := S + j}

The second form The second form of a for loop has a fixed increment for the
index. It is written out with for followed by the index, followed by from, the
initial value, to, the ending value, step, the size of the increment, and finally the
statements to be executed between do and end_for. For example, having set the
variable S equal to 0, you can again add the even numbers less than 100 with

for j from 2 to 98 step 2 do S := S + j; end_for

There is also a French version of this syntax;

pour j de 2 jusque 98 pas 2 faire S := S + j; fpour

The third form The third form of the for loop lets you iterate over the values
in a list (or a set or a range). In this form, the for is followed by the index, then
in, the list, and then the instructions between do and end_for. For example, to
add all integers from 1 to 100, you can again set the running total S to 0, then

for j in 1..100 do S:= S + j; end_for

or

pour j in 1..100 faire S:= S + j; fpour

632 CHAPTER 11. PROGRAMMING

11.3.4 The repeat loop: repeat, until

The repeat loop allows you to repeat statements until a given condition is met.
To use it, enter repeat, the statements, the keyword until followed by the
condition, a boolean. For example, if you want the user to enter a value for a
variable x which is greater than 4, you could have

repeat
input("Enter a value for x (greater than 4)",x);
until (x > 4);

This can also be written

repeter
input("Enter a value for x (greater than 4)",x);
jusqua (x > 4);

11.3.5 The while loop: while

The while loop is used to repeat a code block as long as a given condition holds.
To use it, enter while, the condition, and then a code block. For example, to add
the terms of the harmonic series 1 + 1/2 + 1/3 + 1/4 + . . . until a term is less than
0.05, you could initialize the sum S to 0 and let j be the first term 1. Then

while (1/j >= 0.05) {S := S + 1/j; j := j+1;}

will find the sum. This line is the same as

tantque (1/j >= 0.05) faire S := S + 1/j; j := j+1;
ftantque

Note that a while loop can also be written as a for loop. For example, as
long as S is set to 0 and j is set to 1 , the above loop can be written as

for (;1/j >= 0.05;) {S := S + 1/j; j := j+1;}

or, with only S set to 0,

for (j := 1; 1/j >= 0.05; j++) {S := S + 1/j;}

11.3.6 Breaking out a loop: break

If your program is running a loop and you want it to exit the loop without finishing
it, you can use the break command. For example, you can define a program

testbreak(a,b) := {
local r;
while (true) {

if (b == 0) {break;}
r := irem(a,b);
a := b;
b := r;

}
return a;
}

11.4. OTHER USEFUL INSTRUCTIONS 633

If you then enter

testbreak(4,0)

it will return

4

since the while loop is interrupted when b is 0 and a is 4.

11.3.7 Going to the next iteration of a loop: continue

The continue command will skip the rest of the current iteration of a loop and
go to the next iteration. For example, if you enter

S := 0
for (j := 1, j <= 10; j++) {

if (j == 5) {continue;}
S := S + j;

}

then S will be 50, which is the sum of the integers from 1 to 10 except for 5, since
the loop never gets to S := S + j when j is equal to 5.

11.3.8 Changing the order of execution: goto, label

The goto command will tell a program to jump to a different spot in a program,
where the spot needs to have been marked with label. They both must have
the same argument, which is simply a sequence of characters. For example, the
following program will add the terms of the harmonic series until the term is less
than some specified value eps and print the result.

harmsum(eps) := {
local S, j;
S := 0;
j := 0;
label(spot);
j := j + 1;
S := S + 1/j;
if (1/j >= eps) goto (spot);
print(S);
return 0;
}

11.4 Other useful instructions

11.4.1 Define a function with a variable number of arguments: args

The args (or args(NULL)) command returns the list of arguments of a function.
The element at index 0 is the name of the function, the remaining are the arguments

634 CHAPTER 11. PROGRAMMING

passed to the function. This allows you to define functions with a variable number
of arguments.

Note that args() will not work, the command must be called as args or
args(NULL). You can also use (args)[0] to get the name of the function
and (args)[1] to get the first argument, etc., but the parentheses about args is
mandatory.
Input:

testargs() := local y; y := args; return y[1];

then:

testargs(12,5)

Output:

12

Input:

total():={
local s,a;
a:=args;
s:=0;
for (k:=1;k<size(a);k++){
s:=s+a[k];
}
return s;
}

then:

total(1,2,3,4)

Output:

10

11.4.2 Assignments in a program

Recall that the =< operator will change the value of a single entry in a list or
matrix by reference (see subsection 4.6.4). This make it efficient when changing
many values, one at a time, in a list, as might be done by a program.

Care must be taken, since your intent might be changed when a program is
compiled. For example, if a program contains

local a;
a := [0,1,2,3,4];
...
a[3] =< 33;

then in the compiled program, a := [0,1,2,3,4] will be replaced by a :=
[0,1,2,33,4]. To avoid this, you can assign a copy of the list to a; you could
write

11.4. OTHER USEFUL INSTRUCTIONS 635

local a;
a := copy([0,1,2,3,4]);
...
a[3] =< 33;

Alternately, you could use a command which recreates a list every time the program
is run, such as makelist or $, instead of copying a list; a := makelist(n,n,0,4)
or a := [n$(n=0..4)] can also be used in place of a := [0,1,2,3,4].

11.4.3 Writing variable values to a file: write

You can save variable values to a file, to be read later, with the write command.
This command takes a string for a file name and a list of variables to save. For
example, if a has the value 3.14 and b has the value 7, then

write("foo",a,b)

will create a file named “foo” with the contents

a:=(3.14);
b:=7;

If you wanted to store the first million digits of π to a file, you could set it equal to
a variable

pidec := evalf(pi,10ˆ6):;

and then store it in a file

write("pi1million",pidec)

If you want to restore the values of variables saved this way, for example in a
different session or if you have purged the variables, then you can use the read
command, which simply takes a file name as a string. If, in a different session, you
want to use the values of a and b above, the command

read("foo")

will give them the values 3.14 and 7 again. Note that this will silently overwrite
any values that a and b might have had.

11.4.4 Writing output to a file: fopen, fclose, fprint

You can use the fopen, fprint and fclose commands to write output to a file
instead of the screen.

To begin, you need to open the file and associate it with a variable. You use
fopen for this, which takes a file name as argument. For example,

f := fopen("bar")

will create a file named “bar” (and so erase it if it already exists). You can use the
fprint command to write to the file; it takes the variable representing the file as
the first argument, followed by what you want to write to the file. For example, if
x is equal to 9, then

636 CHAPTER 11. PROGRAMMING

fprint(f,"x + 1 is ", x+1)

will put

"x + 1 is "10

in the file. Note that the quotation marks are inserted with the string. If you want
to insert strings without quotes, then you can give fprint a second argument of
Unquoted. If instead of the above printf you entered

fprint(f,Unquoted,"x + 1 is ", x+1)

then the file would contain

x + 1 is 10

Finally, after you have finished writing what you want into the file, you close the
file with the fclose command,

fclose(f)

11.4.5 Using strings as names: #

Variable and function names are symbols, namely sequences of characters, which
are different from strings. For example, you can have a variable named abc,
but not "abc". The # operator will turn a string into a symbol; for example
(#"abc") is the symbol abc.

If you enter

a := "abc"; (#a) := 3

or

(#"abc") := 3

then the variable abc will have the value 3. Entering #a will still give you abc;
you can get 3 with eval(#a).

Similarly for functions. If you enter

b := "sin"; (#b)(pi/4)

or

(#"sin")(pi/4)

you will get

1/sqrt(2)

which is sin(pi/4).

11.4. OTHER USEFUL INSTRUCTIONS 637

11.4.6 Using strings as commands: expr

The expr command will let you use a string as a command. Given a string that
expresses a valid command, expr will convert the string to the command and
evaluate it. For example, if you enter

expr("c := 1")

then the variable c will be set to 1. Similarly, if you enter

a := "ifactor(54)"

then

expr(a)

will return

2 * 3ˆ3

which is the same thing as entering ifactor(54) directly.
You can also use expr to convert a string to a number. If a string is simply

a number enclosed by quotation marks, then expr will return the number. For
example,

expr("123")

will return

123

In particular, the following strings will be converted to the appropriate number.

• A string consisting of the digits 0 through 9 which doesn’t start with 0 will
be converted to an integer. For example,

expr("2133")

will return

2133

• A string consisting of the digits 0 through 9 which contains a single decimal
point will be converted to a decimal. For example,

expr("123.4")

will return

123.4

• A string consisting of the digits 0 through 9, possibly containing a single
decimal point, followed by e and then more digits 0 through 9, will be read
as a decimal in exponential notation. For example,

638 CHAPTER 11. PROGRAMMING

expr("1.23e4")

will return

12300.0

• A string consisting of the digits 0 through 7 which starts with 0 will be read
as an integer base 8. For example,

expr("0176")

will return

126

since 176 base 8 equals 126 base 10.

• A string starting with 0x followed by digits 0 through 9 and letters a through
f will be read as an integer base 16. For example,

expr("0x2a3f")

will return

10815

since 2a3f base 16 equals 10815 base 10.

• A string starting with 0b followed by digits 0 and 1 will be read as a binary
integer. For example,

expr("0b1101")

will return

13

since 1101 base 2 equals 13 base 10.

11.4.7 Converting an expression to a string: string

The string command can be used to convert an expression to a string. If you
give it an expression as an argument, the expression will be evaluated and then
converted to a string. For example, if you enter

string(ifactor(6))

the result will be the string

"2 * 3"

This is the same thing as adding the empty string to the expression;

11.4. OTHER USEFUL INSTRUCTIONS 639

ifactor(6) + ""

If you want to convert an unevaluated expression to a string, you can quote the
expression. If you enter

string(quote(ifactor(6)))

then you will get the string

"ifactor(6)"

11.4.8 Converting a real number into a string: format

The format command takes two arguments, a real number and a string used for
formatting.
format returns the real number as a string with the requested formatting.

The formatting string can be one of the following:

• f (for floating format) followed by the number of digits to put after the dec-
imal point.
Input:

format(sqrt(2)*10ˆ10,"f13")

Output:

"14142135623.7308959960938"

• s (for scientific format) followed by the number of significant digits.
Input:

format(sqrt(2)*10ˆ10,"s13")

Output:

"14142135623.73"

• e (for engineering format) followed by the number of digits to put after the
decimal point, with one digit before the decimal points.
Input:

format(sqrt(2)*10ˆ10,"e13")

Output:

"1.4142135623731e+10"

640 CHAPTER 11. PROGRAMMING

11.4.9 Working with the graphics screen: DispG, DispHome, ClrGraph,
ClrDraw

Recall that the DispG screen contains the graphical output of Xcas. You can use
the DispG command (without parentheses) to bring it up; entering

DispG;

will open the graphics screen.
To clear the graphics screen, you can use the ClrGraph command (equiva-

lently, the ClrDraw command). If you enter

ClrGraph

or

ClrGraph()

then the DispG screen will be erased.
You can close the DispG screen with the DispHome command; entering

DispHome;

will make the graphics screen go away.

11.4.10 Pausing a program: Pause, WAIT

The Pause command (written without parentheses) will bring up a Pause infor-
mational window and pause Xcas until you click Close in the Pause window. If
you enter Pause followed by a number, then Xcas will pause for that number of
seconds; entering

Pause 10

will pause Xcas for 10 seconds.
The WAIT command will also pause Xcas; it requires an argument in paren-

theses. To pause Xcas for 10 seconds, you can enter

WAIT(10)

11.4.11 Dealing with errors: try, catch, throw, error, ERROR

Some commands produce errors, and if your program tries to run such a command
it will halt with an error. To avoid this, you can use the try and catch commands.
To use these, you put any potentially problematic statements in a block following
try, and immediately after the block put catch with an argument of an unused
symbol. If the try block doesn’t produce an error, then catch and the block
following catch will be ignored. If the try block does produce an error, then
a string describing the error is assigned to the argument to catch, and the block
following catch is evaluated. For example, the command

[[1,1]]*[[2,2]]

will produce an error saying Error: Invalid dimension. However,

11.4. OTHER USEFUL INSTRUCTIONS 641

try {[[1,1]]*[[2,2]]}
catch (err) {

print("The error is " + err)
}

will not produce an error; instead it will print

The error is Error: Invalid dimension

With the following program

test(x) := {
local y, str, err;
try { y := [[1,1]]*x; str := "This produced a product.";}
catch (err)
{y := x;
str := "This produced an error " + err + " The input is returned.";}
print(str);
return y;
}

if you enter

test([[2],[2]])

then

This produced a product.

will be printed and the result will be

[4]

. If you enter

test([[2,2]])

then

This produced an error Error: Invalid dimension The
input is returned.

will be printed and the result will be

[[2,2]]

You can use the throw command (or equivalently, the error or ERROR com-
mand) to generate an error and error string, possibly to be caught by catch. The
throw command takes as argument a string, which will be used as the error mes-
sage. For example, suppose you have the program

f(x) := {
if (type(x) != DOM_INT)

throw("Not an integer");
else

return x;
}

642 CHAPTER 11. PROGRAMMING

Then

f(12)

will simply return

12

since 12 is an integer, but

f(1.2)

will signal an error

Not an integer Error: Bad Argument Value

since 1.2 in not an integer. You can catch this error in other programs; the program

g(x) := {
try(f(x)) catch(err) {x := 0;}
return x;
}

will return x is x is an integer, but if x is not an integer, f(x) will give an error
and so g(x) will return 0.

11.5 Debugging

11.5.1 Starting the debugger: debug, sst, in, sst_in, cont,
kill, break, breakpoint, halt, rmbrk, rmbreakpoint,
watch, rmwtch

To start the debugger, you give the debug command an argument of a function
and its argument. That will bring up a debug window which contains a pane with
the program with the current line highlighted, an eval entry box, a pane with the
program including the breakpoints, a row of buttons, and a pane keeping track of
the values of variables. By default, the value of all variables in the program are in
this pane. The buttons are shortcuts for entering commands in the eval box, but
you can enter other commands in the eval box to change the values of variables
or to run a command in the context of the program.

The sst button This button will run the sst command, which takes no argu-
ments and runs the highlighted line in the program before moving to the next line.

The in button This button will run the sst_in command, which takes no ar-
gument and runs one step in the program or a user defined function used in the
program.

The cont button This button will run the cont command, which takes no ar-
guments and runs the commands from the highlighted line to a breakpoint.

11.5. DEBUGGING 643

The kill button This button will run the kill command, which exits the
debugger.

The break button This button will put the command breakpoint in the
eval box, with default arguments of the current program and the current line.
It sets a breakpoint at the given line of the given program. Alternatively, if you
click on a line in the program in the top pane, you will get the breakpoint
command with that program and the line you clicked on.

You can set a breakpoint when you write a program with the halt() com-
mand. When a program has a halt command, then running the program will
bring up the debugger. If you want to debug the program, though, it is still better
to use the debug command. Also, you should remove any halt commands when
you are done debugging.

The rmbrk button This button will put the command rmbreakpoint in the
eval box , with default arguments of the current program and the current line. It
removes a breakpoint at the given line of the given program. Alternatively, you can
click on the line in the program in the top pane with the bookmark you want to
remove.

The watch button This button will put the command watch in the eval box,
without the arguments filled in. It takes a list of variables as arguments, and will
keep track of the values of these variables in the variable pane.

The rmwtch button This button will put the command rmwatch in the eval
box without the arguments filled in. The arguments are the variables you want to
remove from the watch list.

644 CHAPTER 11. PROGRAMMING

Chapter 12

Two-dimensional Graphics

12.1 Introduction

12.1.1 Points, vectors and complex numbers

A point in the Cartesian plane is described with an ordered pair (a, b). It has x-
coordinate (abscissa) a and y-coordinate (ordinate) b.

A vector from one point (a1, b1) to another (a2, b2) has associated ordered pair
(a2 − a1, b2 − b1); so the abscissa is a2 − a1 and the ordinate is b2 − b1.

A complex number a+bi can be associated with the point (a, b) in the Cartesian
plane. The complex number is called the affix of the point.

A point in Xcas is specified with the point command (see section 12.6.2),
which takes as argument either two real numbers a, b or a complex number a+ bi.
In this chapter, when a command take a point as an argument, the point can either
be the result of the point command or simply a complex number.

An interactive graphic screen opens whenever a geometric object is drawn,
or with the command Alt+G. The objects on the screen can also be created and
manipulated with the mouse.

As an example (to be explained in more detail later), the triangle command
draws a triangle; the result will be a graphics screen containing axes, the triangle
and a control panel on the right.
Input:

triangle(0,1,1+i)

Output:

645

646 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.2 Basic commands

12.2.1 Clear the DispG screen: erase

The DispG screen records all graphic commands since the beginning of the session
or the screen was last erased. The Alt-D command (or the menu command Cfg
I Show I DispG) brings up this screen.

The erase command clears the DispG screen without restarting the session.
Entering
Input:

erase

or:

erase()

clears the DispG screen. This can be useful for commands such as graph2tex,
which only takes into account the objects on the DispG screen.

12.2.2 Toggle the axes: switch_axes

The switch_axes command shows, hides or toggles the coordinate axes on the
graphics screen depending on whether the argument is 1, 0 or empty. (This can
also be controlled by a show axes checkbox in the configuration panel brought
up with the cfg button on the graphic screen control panel.)

Entering
Input:

switch_axes()

toggles whether or not the coordinate axes are shown in subsequent graphic screens.
Rather than toggling,
Input:

switch_axes(1)

causes all later graphic screens to have the axes, and
Input:

switch_axes(0)

causes all later graphic screens to omit the axes.
When the axes are visible, they have tick marks whose separation is determined

by the X-tick and Y-tick values on the graphic configuration screen. Setting these
values to 0 removes the axes.

12.2.3 Draw unit vectors in the plane: Ox_2d_unit_vector Oy_2d_unit_vector
frame_2d

The Ox_2d_unit_vector command draws the unit vector in the x-direction
on a plane.
Input:

12.2. BASIC COMMANDS 647

Ox_2d_unit_vector()

Output:

Similarly, the Oy_2d_unit_vector command draws the unit vector in the y
direction. The frame_2d command simultaneously draws both unit vectors.

12.2.4 Draw dotted paper: dot_paper

The dot_paper command draws dotted paper. This command takes three manda-
tory arguments and two optional arguments. The first argument is the spacing in
the x direction, the second argument is the angle from the horizontal to draw the
dots, and the third argument is the spacing in the y direction. By default, the dots
extend in the x and y directions for the distances given in the graphic configura-
tion page accessible from the main menu; the optional fourth and fifth arguments
x=xmin..xmax and y=ymin..ymax change the size of the dotted paper.
Input:

dot_paper(0.6,pi/2,0.6)

Output:

Unchecking Show Axes on the cfg screen removes the axes.

12.2.5 Draw lined paper: line_paper

The line_paper command draws lined paper. This command takes two manda-
tory arguments and two optional arguments. The mandatory arguments are the
spacing in the x direction and the angle from the horizontal to draw the lines. The
optional third and fourth arguments, x=xmin..xmax and y=ymin..ymax, de-
termine the size of the lined paper.
Input:

648 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

line_paper(0.6,pi/3)

Output:

Unchecking Show Axes on the cfg screen removes the axes.

12.2.6 Draw grid paper: grid_paper

The grid_paper command draws grid paper. This command takes three manda-
tory arguments and two optional arguments. The mandatory arguments are the
spacing in the x direction, the the angle from the horizontal to draw the grid, and the
spacing in the y direction. The optional fourth and fifth arguments, x=xmin..xmax
and y=ymin..ymax, restrict the size of the grid.
Input:

grid_paper(1,pi/2,1)

Output:

Unchecking Show Axes on the cfg screen removes the axes.

12.2.7 Draw triangular paper: triangle_paper

The triangle_paper command draws triangular paper. This command takes
three mandatory and two optional arguments. The mandatory arguments are the
spacing in the x direction, the angle from the horizontal, and the spacing in the y di-
rection. The optional fourth and fifth arguments, x=xmin..xmax and y=ymin..ymax,
restrict the size of the grid.
Input:

triangle_paper(1,pi/2,1)

Output:

12.3. DISPLAY FEATURES OF GRAPHICS 649

Unchecking Show Axes on the cfg screen removes the axes.

12.3 Display features of graphics

12.3.1 Graphic features

Graphic objects and graphic screens can have features, such as labels and colors,
that are only included when requested, and other features, such as line width, which
are configurable. Some features will be global, meaning that they will apply to the
entire graphic screen, and some will be local, meaning that they will only apply to
individual objects.

12.3.2 Parameters for changing features

Graphical features are changed by giving appropriate values to certain parameters.
Several values can be given at once with an expression of the form feature =
value1 + value2 + Some values can be set using optional arguments
to graphic commands, which will set the feature locally; namely, it will only apply
to that particular graphic object. Some values can be specified at the beginning of
a line, which will set the feature globally; it will apply to all the graphic objects
created on that line. For some features, both options are available.

Parameters for local features

Commands which create graphic objects, such as triangle, can have optional
arguments to change a features of the object. For example, the argument color
= red will make an object red.
Input:

triangle(0,1,1+i,color=red)

Output:

650 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

The features and their possible values are:

display or color These two parameter names have the same effect. They con-
trol the following features.

Color The following values will change the color:

• An integer from 0 to 381.
Integers from 0 to 255 correspond to the color palette, integers
from 256 to 381 will be the spectrum of colors.
The program

rainbow() := {
local j, C;
C := [];
for (j := 256; j < 382; j++) {

C := append(C,square(j,j+1,color=j+filled));
}

}

will show the colors;
Input:

rainbow();

Output:

The number of a color is its x-coordinate. To see just one color,
say the color corresponding to n for 256 ≤ n ≤ 381, enter
Input:

rainbow()[n-256]

• The names black, white, red, blue, green, magenta,
cyan or yellow.

Fill The filled value creates a solid object.
Input:

triangle(0,1,1+i,display=filled)

Output:

12.3. DISPLAY FEATURES OF GRAPHICS 651

Point markers By default, points are drawn with a small cross. The follow-
ing (self-explanatory) values change the marker.

rhombus_point

square_point

cross_point

star_point

plus_point

point_point

triangle_point

invisible_point

Point width The values point_width_1,. . . ,point_width_8 change
the thickness of the lines in the point markers.

Line style The following (self-explanatory) values change the style of lines.

solid_line

dash_line

dashdot_line

dashdotdot_line

cap_flat_line

cap_round_line

cap_square_line

Line widths The values line_width_1,. . . ,line_width_8 change the
thickness of the lines.

thickness This controls line thickness, it can be an integer from 1 to 7.

nstep This sets the number of sampling points for three-dimensional objects.

tstep This sets the step size of the parameter when drawing a one parameter
parametric plot.

ustep This sets the step size of the first parameter when drawing a two-parameter
parametric plot.

vstep This sets the step size of the second parameter when drawing a two-
parameter parametric plot.

xstep This sets the step size of the x variable.

ystep This sets the step size of the y variable.

652 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

zstep This sets the step size of the z variable.

frames This sets the number of graphs computed when an animated graph is
created with the animate or animate3d command.

legend This adds a legend to a graphic object and should be a string. It is prob-
ably most useful when that object is a point or a polygon. If the object is
a polygon, the legend will be placed in the middle of the last side. Other
parameters for the graphic object will specify the color or position of the
legend.

gl_texture This sets an image file to be put on the graphic object; it should be
the name of the file.

Parameters for global features

Parameters set at the beginning of a line change features on the entire graphic
screen. It only takes effect when the line ends with a graphic command. For
example, starting the line with title=title string will give the graphic
screen a title.
Input:

title = "Some triangles"; triangle(0,1,1+i);
triangle(2,3,3+i);

Output:

The parameters for global features and their possible values are:

axes This determines whether axes are shown or hidden; a value of 0 or false
hides the axes, a value of 1 or true shows the axes.

labels This sets labels for the axes; it should be a list of two strings ["x axis
label","y axis label"].

label This puts labels on the graphic screen in the following ways.

• To set the units on the axes, it can be a list of two or three strings, ["x
units","y units"] or ["x units","y units","z units"].

• To place a string at a particular point, it can be a list of two integers
followed by a string. The integers determine the point, starting from
[0,0] in the top left of the screen.

12.3. DISPLAY FEATURES OF GRAPHICS 653

title This sets the title for the graphic window, it should be a string.

gl_texture This sets the wallpaper of the graphic window to be an image file,
it should be the name of the file.

gl_x_axis_name,gl_x_axis_name,gl_x_axis_name These set the names
of the axes.

gl_x_axis_unit,gl_x_axis_unit,gl_x_axis_unit These set the units
of the axes.

gl_x_axis_color,gl_x_axis_color,gl_x_axis_color These set the
colors of the axes labels; they take the same color options as the local pa-
rameter color.

gl_ortho This ensures that the graph is orthonormal when it is set to 1.

gl_x,gl_y,gl_z These define the framing of the graph; they should be intervals
min..max. (They are not compatible with interactive graphs.)

gl_xtick,gl_ytick,gl_ztick These determine the spacing of the ticks on
the axes.

gl_shownames This shows or hides object names, it can be true or false.

gl_rotation This sets the axis of rotation for three-dimensional scene anima-
tions; it should be a direction vector [x,y,z].

gl_quaternion This sets the quaternion for viewing three-dimensional scenes;
it should be a fourtuple [x,y,z,t]. (This is not compatible with interactive
graphs.)

12.3.3 Commands for global display features

Add a legend: legend

The legend command takes two arguments and an optional third. The arguments
are:

• A position to put the legend. This can either be a point or a list of two
integers giving the number of pixels from the upper left hand corner.

• The legend itself, a string or a variable.

• An optional third parameter indicating where to put the legend relative to the
point. By default, it will be to the upper right of the point (quadrant1), but
you can specify quadrant1, quadrant2, quadrant3 or quadrant4.

For example, to put "hello" to the upper left of the point (1, 1):
Input:

legend(1+i,"hello",quadrant3)

or
Input:

654 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

legend(1+i,quadrant3,"hello")

Output:

Change various features:display, color

The display command changes the properties of graphics; the same properties
that can also be changed with the display and color parameters. (See section
12.3.2.) The color command is the same as the display command.

The display command can draw objects with specified properties. In this
case, the first argument will be a command to create the object and the second
argument will be a value for the display or color parameter. Both
Input:

display(triangle(0,1,1+i),red)

and
Input:

triangle(0,1,1+i,display=red)

draw
Output:

Similarly, both
Input:

triangle(0,1,1+i,display=filled)

and
Input:

display(triangle(0,1,1+i),filled)

12.3. DISPLAY FEATURES OF GRAPHICS 655

draw
Output:

The display command can also take a second argument of hidden_name. By
default, if a geometric object is named, the drawing is labeled.
Input:

A := triangle(0,1,1+i)

Output:

Creating the object with the display command and the hidden_name argu-
ment will draw it without the label.
Input:

display(A := triangle(0,1,1+i),hidden_name)

Output:

The display command can also be used without drawing an object, such
as display(hidden_name) or display(filled). In this case it will be
a global command; the display effect will apply to all objects afterwards. Enter-
ing display(0) will reset the display parameters; afterwards, for example, the
colors will be black, the figures won’t be filled, and the objects will have labels.

656 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.4 Define geometric objects without drawing them: nodisp

The nodisp command will define an object without displaying it. Setting a vari-
able to a graphic object draws the object.
Input:

C := point(1+i)

will define the point C as well as draw it. Setting a variable to a graphic object
inside the nodisp command will not draw the object.
Input:

nodisp(C:= point(1+i))

will define the point C but not display it. This is equivalent to following the com-
mand with :;,
Input:

C := point(1+i):;

To define a point as above and display it without the label, enter the point’s
name;
Input:

C

Alternatively, define the point within an eval statement;
Input:

eval(C := point(1+i))

defines C as the point, displays the point, but doesn’t display the label. To later
display the point with a label, use the legend command.
Input:

legend(C,"C")

or:

point(affix(C),legend="C")

Output:

In this case, the string "C" can be replaced with any other string as a label. Alter-
natively, redefine the variable as itself;
Input:

C := C

prints C with its label.

12.5. GEOMETRIC DEMONSTRATIONS: ASSUME 657

12.5 Geometric demonstrations: assume

Variables should be unspecified to demonstrate a general geometric result, but need
to have specific values when drawing. There are a couple of different approaches
to deal with this.

One approach is to use the assume command. If a variable is assumed to
have a value, then that value will be used in graphics but the variable will still be
unspecified for calculations. For example,
Input:

assume(a = 2.1)

then
Input:

A := point(a + i)

will draw a point at the coordinate (2.1, 1),
Output:

but the variable a will still be treated as a variable in calculations;
Input:

distance(0,A)

Output:

sqrt((-a)ˆ2 + 1)

Another approach would be to use point or pointer mode in a geome-
try screen. If there isn’t a geometry screen showing, the command Alt-G or the
GeoINew figure 2d menu will open a screen. Clicking on the Mode but-
ton right above the graphic screen and choosing pointer or point will put the
screen in pointer or point mode. If a point is defined and displayed, such as
with A := point(2.1 + i), then clicking on the name of the point (A in this
case) with the right mouse button will bring up a configuration screen. As long as
there is a point defined with non-symbolic values, there will be a symb box on the
configuration screen. Selecting the symb box and choosing OK will be equivalent
to the commands assume(Ax=[2.1,-8.16901408451,8.16901408451])
and assume(Ay = [1, -5.0, 5.0], this will bring up two lines beneath the
arrows to the right of the screen which can be used to change the assumed values
of Ax and Ay. Also, the point A will be redefined as point(Ax,Ay).

658 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.6 Points in the plane

12.6.1 Points and complex numbers

The affix of a point (a, b) in the plane is the complex number a+bi. In this section,
when a command take points as arguments, the points can be specified by a pair or
by a complex number.

12.6.2 The point in the plane: point

See section 13.4.1 for points in space.
In the 2-d geometry screen in point mode, clicking on a point with the left

mouse button will choose that point. Points chosen this way are automatically
named, first with A, then B, etc.

Alternatively, the point command chooses a point, where the point (a, b) is
specified by either the two coordinates a,b, a list [a,b] of the coordinates, or the
affix a + b*i.
Input:

A := point(2,1)

or:

A := point([2,1])

or
Input:

A := point(2 + i)

Output:

12.6. POINTS IN THE PLANE 659

(The marker used to indicate the point can be changed; see section 12.3.2.)
If the point command has two numbers for arguments, at least one of which

is complex but not real, then it will choose two points. Entering
Input:

A := point(1,2*i)

or:

A := point([1,2*i])

will choose two points named A; one with affix 1 and one with affix 2i.

12.6.3 The difference and sum of two points in the plane:+, -

Let A and B be two points in the plane, with affixes a1+ia2 and b1+ib2 respectively.
Input:

A:= point(1 + 2*i); B := point(3+4*i)

• The difference B-A returns the affix (b1−a1)+ i(b2−a2), which represents
the vector AB.
Input:

vector(A,B); vector(point(0),point(B-A))

Output:

• The sum B+A returns the affix (b1+a1)+i(b2+a2). If D := point(B+A),
then BD = OA.
Input:

D := point(B + A);
segment(B,D); segment(point(0),A)

Output:

660 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

Note that -A is the point symmetric to A with respect to the origin.
The sum of three points A + B + C can be viewed as the translate of C by

the vector A + B. So if A or B contains parameters, you should write this as C +
(A + B) or evalc(A + B) + C.

12.6.4 Define random points in the plane: point2d

The point2d command defines a random point whose coordinates are integers
between -5 and 5. This command takes a name as an argument and assigns the
point to the name. For example,
Input:

point2d(A)

assigns A to a random point. Once assigned, the point is fixed. The command
can also take a sequence of names, and will assign separate random points to each
name. For example, to generate a random triangle, first generate three random
points
Input:

point2d(A,B,C)

and then use them for a triangle
Input:

triangle(A,B,C)

12.6.5 Points in polar coordinates: polar_point, point_polar

To specify a point in polar coordinates, enter the polar representation of complex
numbers. For example, the command
Input:

point(2*exp(i * pi/4))

draws the point with polar coordinates r = 2, θ = π/4. The polar_point
command does this in an easier way, it takes r and θ as arguments. The command
Input:

polar_point(2,pi/4)

creates the same point as before.

12.6. POINTS IN THE PLANE 661

12.6.6 Find a point of intersection of two objects in the plane: single_inter
line_inter

See section 13.4.3 for single points of intersection of objects in space.
The single_inter (or the line_inter) command takes two geometric

objects as arguments and returns one of the points of intersection of the two objects.
The single_inter command optionally takes a third argument, which can

be a point or a list of points. If the optional argument is a single point, then
single_inter returns the point of intersection closest to the optional argument.
If the optional argument is a list of points, then single_inter tries to return a
point of intersection not in the list.

For example, the unit circle circle(0,1) and line line(-1,i) intersect
at the points (−1, 0) and (0, 1). Entering
Input:

single_inter(circle(0,1),line(-1,i))

draws the point (−1, 0). To draw the other point, enter
Input:

single_inter(circle(0,1),line(-1,i),[-1])

and Xcas will draw (0, 1). Similarly, since this second point of intersection is
closest to (0, 1/2), entering
Input:

single_inter(circle(0,1),line(-1,i),i/2)

also draws the second point.

12.6.7 Find the points of intersection of two geometric objects in the
plane: inter

See section 13.4.4 for points of intersection of objects in space.
The inter command takes two geometric objects as arguments and returns a

list of the points of intersection of the two objects.
The inter command optionally takes a point as a third argument. In this case,

inter returns the point of intersection closest to this argument.
For example, entering

Input:

inter(circle(0,1),line(1,i))

draws the points at (1, 0) and (0, 1). To get just one of the points, use the usual list
indices.
Input:

inter(circle(0,1),line(1,i))[0]

draws just one of the points. To get the point closest to (0, 1/2), enter
Input:

inter(circle(0,1),line(1,i),i/2)

662 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.6.8 Find the orthocenter of a triangle in the plane: orthocenter

The orthocenter command take a triangle (or three points representing the ver-
tices of a triangle) as argument and returns the orthocenter of the triangle. Entering
Input:

orthocenter(triangle(0,1+i,-1+i))

or
Input:

orthocenter(0,1+i,-1+i)

draws the point (0, 0), the orthocenter of the triangle.

12.6.9 Find the midpoint of a segment in the plane: midpoint

See section 13.4.5 for midpoints in space.
The midpoint command takes two points (or a list of two points) as argu-

ments and draws the midpoint of the segment determined by these points.

12.6.10 The barycenter in the plane: barycenter

See section 13.4.7 for barycenters of objects in space.
The barycenter command draws the barycenter of a set of weighted points.

The points and their weights (real numbers) can be given in three different ways.

1. A sequence of lists of length two.
The first element of each list is a point and the second element is the weight
of the point.

2. A matrix with two columns.
The first column of the matrix contains the points and the second column
contains the corresponding weights.

3. A matrix with two rows and more than two columns.
The first row contains the points and the second row the corresponding
weights.

For example, the following commands will draw the barycenter of the points
(1, 1) with weight 1, (1,−1) with weight 1 and (1, 4) with weight 2.
Input:

barycenter([1 + i,1],[1 - i,1],[1 + 4*i, 2])

or:

barycenter([[1 + i,1],[1 - i,1],[1 + 4*i, 2]])

or:

barycenter([[1 + i, 1 - i, 1 + 4*i],[1,1,2]])

Output:

12.6. POINTS IN THE PLANE 663

12.6.11 The isobarycenter of n points in the plane: isobarycenter

See section 13.4.6 for isobarycenters of objects in space.
The isobarycenter command takes a list (or sequence) of points and draws

the isobarycenter, which is the barycenter when all the points are equally weighted.

12.6.12 The center of a circle in the plane: center

The center command takes as argument a circle and returns and draws the center.
Input:

C := center(circle(point(1+i),1))

Output:

12.6.13 The vertices of a polygon in the plane: vertices, vertices_abc

The vertices command (or vertices_abc) takes as argument a polygon.
vertices returns a list of the vertices of the polygon and draws them.

Input:

vertices(equilateral_triangle(0,2))

Output:

664 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

Input:

C := vertices(equilateral_triangle(0,2))[2]

Output:

12.6.14 The vertices of a polygon in the plane, closed: vertices_abca

The vertices_abca command takes as argument a polygon.
vertices_abca returns the “closed” list of vertices (it repeats the beginning

vertex) and draws them.

12.6.15 A point on a geometric object in the plane: element

The element command is most useful in a two-dimensional geometry screen; it
creates objects that are restricted to a geometric figure.

element takes different types of arguments:

• An interval a..b and an optional initial value (by default (a+ b)/2) and step
size (by default (b− a)/100).

This creates a parameter restricted to the interval, with the given initial value
and whose value can be changed in the given step sizes.

For example, the command t := element(0..pi) creates a parameter
t which can take on values between 0 and π and has initial value π/2. It
also creates a slider labeled t which can be used to change the values. The
values of any later formulas involving t will change with t.

• A curve and an optional initial value (by default 1/2).

This creates a point which will be restricted to the curve, the initial position
of the point is determined by setting the parameter (in the default parameter-
ization of the object) to the initial value. If the point can be moved by the
mouse (as it can when the geometry screen is in Pointer mode), then the
motion will be restricted to the geometric object.

For example, the command A := element(circle(0,2)) creates a
point labeled A whose position is restricted to the circle of radius 2 centered
at the origin. Since the circle has default parameterization 2 exp(it), A starts
out at 2 exp(i/2).

12.7. LINES IN PLANE GEOMETRY 665

• A polygon or polygonal line PL with n sides and [floor(t),frac(t)],
where t is a variable previously defined by t = element(0..n).

This creates a point restricted to the polygonal line. With the sides numbered
starting at 0, the value of floor(t) determines which side the point is on,
and the value of frac(t) determines how far along the side the point is.

If a point A (corresponding to the complex number a) is defined as an element
of a curveC andB is a point (corresponding to the complex number b), thenA+B
will be a point on C; it will be the projection onto C of the point corresponding to
a+ b.

Note that in this case, if B′ is another point, then A+ (B −B′) isn’t the same
as A + B − B′. The expression A + (B − B′) is interpreted as adding the point
A, defined as a point on C, to the point B −B′, and so the sum will be on C. The
expression A+B −B′ is interpreted as (A+B)−B′, and so the point B′ is not
being added to a point defined as an element of the curve C, and so this sum may
not be on C.

12.7 Lines in plane geometry

12.7.1 Lines and directed lines in the plane: line

See section 13.5.1 for lines in space.
The line command returns and draws a directed line given one of the follow-

ing types of arguments:

• Two points or a list of two points.
The direction of the line is from the first point to the second point.

• A point and a slope given by slope=value.
The direction of the line is determined by the slope.

• A point and direction vector (in the form [u1,u2]).
The direction of the line is given by the direction vector.

• An equation of the form a*x+b*y+c=0.
The direction of the line is given by [b,-a].

Input:

line(0,1+i)

or:

line(1+i,slope=1)

or:

line(1+i,[3,3])

or:

line(y - x = 0)

666 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

Output:

Warning: To draw a line with an additional argument for color (such as color
= blue), this argument must be the third argument. In particular, for a list of two
points to specify a line in this command, the list must be turned into a sequence,
such as with op. For example, given a list L of two points (possibly the result
of a different command) which determines a line, to draw the line blue enter
line(op(L),color=blue); entering line(L,color=blue) results in an
error.

12.7.2 Half-lines in the plane: half_line

See section 13.5.2 for half-lines in space.
The half_line command takes as argument two points or a list of two

points.
half_line returns and draws the ray from the first point through the second.

Input:

half_line(0,-1+i)

Output:

12.7.3 Line segments in the plane: segment Line

See section 13.5.3 for segments in space.
The segment command and the Line command draw line segments. (The

segment command can also draw vectors, see section 12.7.4.)
segment takes as argument two points or a list of two points.
segment returns the corresponding line segment and draws it.
Line takes as argument four real numbers, the first two represent the coordi-

nates of the beginning of the segment and the last two represent the end.
Line returns the line segment and draws it.

12.7. LINES IN PLANE GEOMETRY 667

Example.
Input:

segment(-1,1+i)

or:

segment(point(-1),point(1,1))

or:

Line(-1,0,1,1)

Output:

12.7.4 Vectors in the plane: segment vector

See section 13.5.4 for vectors in space.
The segment and vector commands return and draw vectors. (The segment

command can also draw line segments, see section 12.7.3.)
segment takes as arguments a point and a vector. The point indicates the

beginning of the result and the vector (given as a list of coordinates) the direction.
segment returns and draws the corresponding vector as a line segment. If the

arguments are P and V, then command draws the segment from P to P+V.
Input:

segment([-1,0],[1,1])

Output:

vector takes as arguments two points (or a list with two points) or a point
and a vector.

vector returns and draws the corresponding vector. If the arguments are two
points, the vector goes from the first to the second point; if the arguments are a
point and a vector, then the vector starts at the given point.
Input:

668 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

vector([-1,0],[1,i])

or:

vector(-1,i)

or:

V := vector(1,2+i):; vector(-1,V)

Output:

12.7.5 Parallel lines in the plane: parallel

See section 13.5.5 for parallel lines in space.
The parallel command takes as argument a point and a line.
parallel returns and draws the line parallel to the given line passing through

the given point.
Input:

parallel(0,line(1,i))

Output:

12.7.6 Perpendicular lines in the plane: perpendicular

See section 13.5.6 for perpendicular lines in space.
The perpendicular command takes as arguments either a point and a line,

or three points (the last two points determining a line).
perpendicular returns and draws the line perpendicular to the given line

passing through the given point.
Input:

perpendicular(0,line(1,i))

12.7. LINES IN PLANE GEOMETRY 669

or:

perpendicular(0,1,i)

Output:

12.7.7 Tangents to curves in the plane: tangent

See section 13.6.3 for tangents in space.
The tangent command takes as arguments either a curve and a point, or a

point defined with element (see section 12.6.15) using a curve and parameter
value.

tangent returns and draws the list of lines tangent to the curve passing
through the given point.
Input:

tangent(circle(0,1),1+i)

Output:

Input:

t := element(0..pi,pi/4):; A :=
element(circle(0,1),t):; tangent(A)

Output:

670 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

When tangent is called with an element, the tangent will change along with
the point on the element.

12.7.8 The median of a triangle in the plane: median_line

The median_line command takes as argument three points representing the
vertices of a triangle.

median_line returns and draws the median line, through the point given
by the first argument and bisecting the segment determined by the other two argu-
ments.
Input:

median_line(0,1,i)

Output:

12.7.9 The altitude of a triangle: altitude

The altitude command takes as argument three points representing the vertices
of a triangle.

altitude returns and draws the altitude line, through the point given by the
first argument and perpendicular to the line determined by the other two arguments.
Input:

altitude(0,1,i)

Output:

12.7.10 The perpendicular bisector of a segment in the plane: perpen_bisector

See section 13.6.2 for perpendicular bisectors in space.
The perpen_bisector command takes as argument a line segment or two

points representing the end points of a line segment.

12.7. LINES IN PLANE GEOMETRY 671

perpen_bisector returns and draws the perpendicular bisector of the seg-
ment.
Input:

perpen_bisector(1,i)

or:

perpen_bisector(segment(1,i))

Output:

The perpen_bisector command can also take two lines as segments, in
which case it returns and draws the perpendicular bisector of the segment from the
first point defining the first line and the second point defining the second line.

12.7.11 The angle bisector: bisector

The bisector command takes as argument three points or a list of three points.
The first point represents the vertex of an angle; the remaining two points will be
on the two sides of the angle.

bisector returns and draws the angle bisector.
Input:

bisector(0,1,i)

Output:

12.7.12 The exterior angle bisector: exbisector

The exbisector command takes as argument three points or a list of three
points.

exbisector returns the bisector of the exterior angle of the triangle deter-
mined by the points; the first point is the vertex of the angle, the opposite of the first

672 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

and second points determine one side of the angle and the first and third determine
the second side.
Input:

exbisector(0,1,i)

Output:

12.8 Triangles in the plane

See section 13.7 for triangles in space.

12.8.1 Arbitrary triangles in the plane: triangle

See section 13.7.1 for the triangle command in space.
The triangle command takes as arguments three points or a list of three

points.
triangle returns and draws the triangle with the given vertices.

Input:

triangle(-1,i,1+i)

Output:

12.8.2 Isosceles triangles in the plane: isosceles_triangle

See section 13.7.2 for isosceles triangles in space.
The isosceles_triangle command takes three arguments and an op-

tional fourth. The three mandatory arguments are two points A and B and an angle
θ.

isosceles_triangle returns and draws the isosceles triangle ABC, where
AB and AC are equal sides and θ is the angle from AB to AC.
Input:

12.8. TRIANGLES IN THE PLANE 673

isosceles_triangle(i, 1, -3*pi/4)

Output:

The optional argument needs to be a variable name, which is assigned to vertex C.
Input:

isosceles_triangle(i, 1, -3*pi/4,C)

Output:

Input:

normal(affix(C))

Output:

-sqrt(2) + i

12.8.3 Right triangles in the plane: right_triangle

See section 13.7.3 for right triangles in space.
The right_triangle command takes three arguments and an optional fourth.

The three mandatory arguments are two points A and B and a real nonzero number
k.

right_triangle returns and draws the right triangle ABC, with the right
angle at A and with AB = |k| · AC. If k > 0, then AB to AC is counterclockwise; if
k < 0 then AB to AC is clockwise.
Input:

right_triangle(i,-i,2)

Output:

674 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

Input:

right_triangle(i,-i,-2)

Output:

The optional argument needs to be a variable name which is assigned to vertex C.
Input:

right_triangle(i, -i, 2, C)

Output:

Input:

affix(C)

Output:

4 + i

12.9. QUADRILATERALS IN THE PLANE 675

12.8.4 Equilateral triangles in the plane: equilateral_triangle

See section 13.7.4 for equilateral triangles in space.
The equilateral_triangle command takes two arguments and an op-

tional third. The two mandatory arguments are points A and B.
equilateral_triangle returns and draws the equilateral triangle ABC,

where AB to AC is counterclockwise.
Input:

equilateral_triangle(0,2)

Output:

The optional argument needs to be a variable name which is assigned to vertex C.
Input:

equilateral_triangle(0, 2, C)

Output:

Input:

affix(C)

Output:

i*sqrt(3) + 1

12.9 Quadrilaterals in the plane

See section 13.8 for quadrilaterals in space.

676 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.9.1 Squares in the plane: square

See section 13.8.1 for squares in space.
The square command takes two mandatory arguments and one or two op-

tional arguments. The mandatory arguments are points A and B.
square returns and draws the square ABCD, where the square is traversed

counterclockwise.
Input:

square(0,1+i)

Output:

The optional third fourth arguments need to be variable names, which will be as-
signed to vertex C (and D).
Input:

square(0,1+i,C,D)

Output:

Input:

affix(C), affix(D)

Output:

2*i, -1 + i

12.9.2 Rhombuses in the plane: rhombus

See section 13.8.2 for rhombuses in space.
The rhombus command takes three mandatory arguments and one or two

optional arguments. The three mandatory arguments are two points A and B and a
real number a.

12.9. QUADRILATERALS IN THE PLANE 677

rhombus returns and draws the rhombus ABCD, where a is the counterclock-
wise angle from AB to AC.
Input:

rhombus(-2*i, sqrt(3) - i, pi/3)

Output:

The optional fourth and fifth arguments need to be variable names which will be
assigned to vertices C and D.
Input:

rhombus(-2*i, sqrt(3) - i, pi/3, C, D)

Output:

Input:

affix(C), affix(D)

Output:

sqrt(3) + i, 0

12.9.3 Rectangles in the plane: rectangle

See section 13.8.3 for rectangles in space.
The rectangle command takes three mandatory arguments and one or two

optional arguments. The mandatory arguments are two points A and B and a
nonzero real number k.

rectangle returns and draws the rectangle ABCD, where AD = |k| · AB and
the angle from AB to AD is counterclockwise if k > 0, clockwise if k < 0.
Input:

678 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

rectangle(0, 1+i, 1/2)

Output:

Input:

rectangle(0, 1+i, -1/2)

Output:

The optional fourth and fifth arguments need to be variable names which will be
assigned to vertices C and D.
Input:

rectangle(0, 1+i, -1/2, C, D)

Output:

Input:

affix(C), affix(D)

Output:

(3 + i)/2, (1 - i)/2

12.9. QUADRILATERALS IN THE PLANE 679

Given rectangle(A,B,k), Xcas computes D by affix(D) = affix(A)+
k exp(iπ/2)(affix(B) − affix(A)). If k is complex, then rectangle
draws a parallelogram.
Input:

rectangle(0,1,1+i)

Output:

12.9.4 Parallelograms in the plane: parallelogram

See section 13.8.4 for parallelograms in space.
The parallelogram command takes three mandatory arguments and one

optional argument. The mandatory arguments are three points A, B and C.
parallelogram returns and draws the parallelogram ABCD for the appro-

priate D.
Input:

parallelogram(0, 1, 2 + i)

Output:

The fourth optional argument will need to be a variable name which will be as-
signed to vertex D.
Input:

parallelogram(0, 1, 2 + i, D)

Output:

680 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

Input:

affix(D)

Output:

1 + i

12.9.5 Arbitrary quadrilaterals in the plane: quadrilateral

The quadrilateral command takes four arguments, points A, B, C and D.
quadrilateral returns and draws the quadrilateral ABCD.

Input:

quadrilateral(0, 1, 1 + i, -1 + 2*i)

Output:

12.10 Other polygons in the plane

See section 13.9 for polygons in space.

12.10.1 Regular hexagons in the plane: hexagon

See section 13.9.1 for hexagons in space.
The hexagon command takes two mandatory arguments and up to four op-

tional arguments. The two mandatory arguments points A and B.
hexagon returns and draws the regular hexagon ABCDEF, where the vertices

are counterclockwise.
Input:

hexagon(0,1)

12.10. OTHER POLYGONS IN THE PLANE 681

Output:

The optional arguments will need to be variable names, which will be assigned in
order to vertices C through F.
Input:

hexagon(0, 1, C, D, E, F)

Output:

Input:

affix(C), affix(D), affix(E), affix(F)

Output:

3/2 + i*sqrt(3)/2, 1 + i*sqrt(3), i*sqrt(3), -1/2 +
i*sqrt(3)/2

12.10.2 Regular polygons in the plane: isopolygon

See section 13.9.2 for regular polygons in space.
The isopolygon command takes three arguments; two points A and B and a

non-zero integer k.
isopolygon returns and draws the regular |k|-sided polygon with one side

AB. If k > 0, then the polygon will continue counterclockwise; if k < 0, then it
will be clockwise.
Input:

isopolygon(0,1,4)

Output:

682 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

Input:

isopolygon(0,1,-4)

Output:

12.10.3 General polygons in the plane: polygon

See section 13.9.3 for general polygons in space.
The polygon command takes as argument a sequence or list of points.
polygon returns and draws the polygon with the given vertices.

Input:

polygon(-1,-1+i/2,i,1+i,-i)

Output:

Input:

polygon(makelist(x->exp(i*pi*x/3),0,5,1))

Output:

12.10. OTHER POLYGONS IN THE PLANE 683

12.10.4 Polygonal lines in the plane: open_polygon

See section 13.9.4 for polygonal lines in space.
The open_polygon command takes as argument a sequence or list of points.
open_polygon returns and draws the polygon line with the given vertices.

Input:

open_polygon(-1,-1+i/2,i,1+i,-i)

Output:

Input:

open_polygon(makelist(x->exp(i*pi*x/3),0,5,1))

Output:

12.10.5 Convex hulls: convexhull

The convexhull command uses the Graham scanning algorithm to find the con-
vex hull of a set of points.

convexhull takes as argument a list of points.
convexhull returns the vertices of the convex hull of the points.

Input:

684 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

convexhull(0,1,1+i,1+2i,-1-i,1-3i,-2+i)

Output:

(1-3*i,1+2*i,-2+i,-1-i)

To draw the hull, use the polygon command with the output of convexhull.
Input:

polygon(convexhull(0,1,1+i,1+2i,-1-i,1-3i,-2+i))

Output:

12.11 Circles

12.11.1 Circles and arcs in the plane: circle

See also section 12.11.2.
See section 13.10 for circles in space.
The circle command returns and draws a circle or arc of a circle, depending

on the arguments. circle can take the following arguments:

• One argument, the equation of a circle with variables x and y (or an expres-
sion assumed to be set to 0).
circle returns and draws the circle.
Input:

circle(x2̂ + y2̂ - 2*x - 2*y)

Output:

12.11. CIRCLES 685

• Two arguments, a point and a complex number.
circle returns and draws the circle centered at the point and whose radius
is the modulus of the complex number.
Input:

circle(-1,i)

Output:

• Two arguments, both points (where the second is the value of point and
not simply the affix).
circle returns and draws the circle with a diameter given by the two
points.
Input:

circle(-1,point(i))

Output:

• Four mandatory arguments and two optional arguments. The mandatory ar-
guments are a point C, a complex number r, and two real numbers. The
arguments C and r determine a circle, as above. The two real numbers spec-
ify the central angles that determine an arc, where the angles start on the axis
defined by the points C and C + r.
circle returns and draws the arc.
Input:

circle(-1,1,0,pi/4)

Output:

686 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

The optional arguments need to be variable names which will be assigned to
the ends of the arc.

• Four mandatory arguments and two optional arguments. The mandatory ar-
guments are two points A and B and two real numbers. The points A and B
determine a circle, as above. The two real numbers specify the central an-
gles that determine an arc, where the angles start on the axis defined by the
diameter AB.
circle returns and draws the arc.
Input:

circle(-1,point(i),0,pi/4)

Output:

The optional arguments need to be variable names which will be assigned to
the ends of the arc.

12.11.2 Circular arcs: arc

See also section 12.11.1
The arc command takes three mandatory arguments and one or two optional

arguments. The mandatory arguments are two points A and B and a real number a
between −2π and 2π.

arc returns and draws the circular arc from A to B that represents and an-
gle of a. (Note that the center of the circle will be (A + B)/2 + i*(B -
A)/(2*tan(a/2)).)
Input:

arc(1,i,pi/2)

Output:

12.11. CIRCLES 687

Input:

arc(1,i,-pi/2)

Output:

The optional arguments need to be variable names which will be assigned to the
center and the radius of the circle.

12.11.3 Circles (TI compatibility): Circle

The Circle command takes three mandatory arguments and an optional argu-
ment. The first two arguments are the x and y coordinates of the center and the
third is the radius.

Circle returns and draws the circle.
Input:

Circle(-1,0,2)

Output:

The optional fourth argument is either 0 or 1. If it is 1, then Circle will draw
the circle; this is the default. If it is 0, then Circle will erase the circle.

688 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.11.4 Inscribed circles: incircle

The incircle command takes three arguments. The arguments are three points,
regarded as the vertices of a triangle.

incircle returns and draws the inscribed circle of the triangle.
Input:

incircle(-1,i,1+i)

Output:

12.11.5 Circumscribed circles: circumcircle

The circumcircle command takes three arguments. The arguments are three
points, regarded as the vertices of a triangle.

circumcircle returns and draws the circumscribed circle of the triangle.
Input:

circumcircle(-1,i,1+i)

Output:

12.11.6 Excircles: excircle

The excircle command takes three arguments. The arguments are three points,
regarded as the vertices of a triangle.

excircle returns and draws the excircle of the triangle in the interior angle
of the first vertex.
Input:

excircle(-1,i,1+i)

Output:

12.12. OTHER CONIC SECTIONS 689

12.11.7 The power of a point relative to a circle: powerpc

Given a circle C of radius r and a point A at a distance of d from the center of C,
the power of A relative to C is d2 − r2.

The powerpc command takes as arguments a circle and a point.
powerpc returns the power of the point relative to the circle.

Input:

powerpc(circle(0, 1+i), 3+i)

Output:

8

12.11.8 The radical axis of two circles: radical_axis

The radical axis of two circles is the set of points which have the same power with
respect to each circle.

The radical_axis command takes as arguments two circles.
radical_axis returns and draws the radical axis.

Input:

radical_axis(circle(0,1+i),circle(1,1+i))

Output:

12.12 Other conic sections

12.12.1 The ellipse in the plane: ellipse

See section 13.11.1 for ellipses in space.
The ellipse command draws ellipses and other conic sections.
ellipse can take parameters in different forms.

690 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

• ellipse can take one parameter, a second degree equation in the variables
x and y (or an expression which will be set to zero).

ellipse returns and draws the conic section given by the equation.
Input:

ellipse(xˆ2 + 2*yˆ2 - 1)

Output:

• ellipse can take three parameters; either three points or two points and a
real number. The first two points will be the foci of the ellipse and the third
argument will be either a point on the ellipse or the length of the semi-major
axis.

ellipse returns and draws the ellipse.
Input:

ellipse(-i,i,i+1)

Output:

Input:

ellipse(-i,i,sqrt(5) - 1)

Output:

12.12. OTHER CONIC SECTIONS 691

Note that if the third argument is a point on the real axis, the real affix of the
point won’t work, it needs to be specified with the point command.

12.12.2 The hyperbola in the plane: hyperbola

See section 13.11.2 for hyperbolas in space.
The hyperbola command draws hyperbolas and other conic sections.
hyperbola can take parameters in different forms.

• hyperbola can take one parameter, a second degree equation in the vari-
ables x and y (or an expression which will be set to zero).

hyperbola returns and draws the conic section given by the equation.
Input:

hyperbola(xˆ2 - 2*yˆ2 - 1)

Output:

• hyperbola can take three parameters; either three points or two points and
a real number. The first two points will be the foci of the hyperbola and the
third argument will be either a point on the hyperbola or the length of the
semi-major axis.

hyperbola returns and draws the hyperbola.
Input:

hyperbola(-i,i,i+1)

Output:

Input:

692 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

hyperbola(-i,i,1/2)

Output:

Note that if the third argument is a point on the real axis, the real affix of the
point won’t work, it needs to be specified with the point command.

12.12.3 The parabola in the plane: parabola

See section 13.11.3 for parabolas in space.
The parabola command draws parabolas and other conic sections.
parabola can take parameters in different forms.

• parabola can take one parameter, a second degree equation in the vari-
ables x and y (or an expression which will be set to zero).

parabola returns and draws the conic section given by the equation.
Input:

parabola(xˆ2 - y - 1)

Output:

• parabola can take two parameters, both points. The points will be the
focus and vertex of a parabola.

parabola returns and draws the parabola.
Input:

parabola(0,i)

Output:

12.12. OTHER CONIC SECTIONS 693

Note that if the second argument is a point on the real axis, the real affix of
the point won’t work, it needs to be specified with the point command.

• parabola can take two parameters, a point (a, b) and a real number c.

parabola returns and draws the parabola y = b+ c(x− a)2.
Input:

parabola(-i,1)

Output:

Input:

parabola(-i,i,1/2)

Output:

Note that if the third argument is a point on the real axis, the real affix of the
point won’t work, it needs to be specified with the point command.

694 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.13 Coordinates in the plane

12.13.1 The affix of a point or vector: affix

The affix command takes a single argument, a point or a vector.
affix returns the affix, the complex number corresponding to the point or

vector.
Input:

affix(point(2,3))

Output:

2 + 3*i

Input:

affix(vector(-1,i))

Output:

1+i

12.13.2 The abscissa of a point or vector in the plane: abscissa

See section 13.12.1 for abscissas in three-dimensional geometry.
The abscissa command takes a point as argument.
abscissa returns the abscissa (x-coordinate).

Input:

abscissa(point(1 + 2*i))

Output:

1

Input:

abscissa(point(i) - point(1 + 2*i))

Output:

-1

Input:

abscissa(1 + 2*i)

Output:

1

Input:

abscissa([1,2])

Output:

1

12.13. COORDINATES IN THE PLANE 695

12.13.3 The ordinate of a point or vector in the plane: ordinate

See section 13.12.2 for ordinates in three-dimensional geometry.
The ordinate command takes a point as argument.
ordinate returns the ordinate (y-coordinate).

Input:

ordinate(point(1 + 2*i))

Output:

2

Input:

ordinate(point(i) - point(1 + 2*i))

Output:

-1

Input:

ordinate(1 + 2*i)

Output:

2

Input:

ordinate([1,2])

Output:

2

12.13.4 The coordinates of a point, vector or line in the plane: coordinates

See section 13.12.4 for coordinates in three-dimensional geometry.
The coordinates command takes as argument a point or line.
If the argument is a point, coordinates returns a list consisting of the ab-

scissa and ordinate.
If the argument is a line, coordinates returns a list of two points on the

line, in the order determined by the direction of the line.
Input:

coordinates(1+2*i)

or:

coordinates(point(1+2*i))

or:

coordinates(vector(1+2*i))

696 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

Output:

[1,2]

Input:

coordinates(point(1+2*i) - point(i))

or:

coordinates(vector(i,1+2*i))

or:

coordinates(vector(point(i),point(1+2*i)))

or:

coordinates(vector([0,1],[1,2]))

Output:

[1,1]

Input:

d := line(-1+i,1+2*i)

or:

d := line(point(-1,1),point(1,2))

Input:

coordinates(d)

Output:

[-1+i,1+2*i]

Input:

coordinates(line(y = (1/2 * x + 3/2)))

Output:

[3*i/2, 1+2*i]

Input:

coordinates(line(x - 2*y + 3 = 0))

Output:

[3*i/2, (-4 + i)/2]

coordinates can also take a sequence or list of points as an argument; it
then returns a sequence or list of the coordinates of the points.
Input:

12.13. COORDINATES IN THE PLANE 697

coordinates(i,1+2*i)

or:

coordinates(point(i),point(1+2*i))

Output:

[0,1], [1,2]

Note that if the argument is a list of real numbers, it is interpreted as a list of points
on the real axis.
Input:

coordinates([1,2])

Output:

[[1,0],[2,0]]

12.13.5 The rectangular coordinates of a point: rectangular_coordinates

The rectangular_coordinates command takes as argument a point in po-
lar coordinates.

rectangular_coordinates returns the the rectangular coordinates of
the points.
Input:

rectangular_coordinates(2, pi/4)

or:

rectangular_coordinates(polar_point(2, pi/4))

Output:

[sqrt(2), sqrt(2)]

12.13.6 The polar coordinates of a point: polar_coordinates

The polar_coordinates command takes as argument a point.
polar_coordinates returns the the polar coordinates of the points.

Input:

polar_coordinates(1 + i)

or:

polar_coordinates(point(1 + i))

or:

polar_coordinates([1,1])

Output:

[sqrt(2), pi/4]

698 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.13.7 The Cartesian equation of a geometric object in the plane:
equation

See section 13.12.5 for Cartesian equations of three-dimensional objects.
The equation command takes as argument a geometric object.
equation returns the Cartesian equation for the object. (Note that x and

y must be formal variables, they might need to be purged with purge(x) and
purge(y)).
Input:

equation(line(-1,i))

Output:

y = x + 1

12.13.8 The parametric equation of a geometric object in the plane:
parameq

See section 13.12.6 for parametric equations in three-dimensional geometry.
The parameq command takes as argument a geometric object.
parameq returns a parametric equation of the object, in the form x(t) +

i*y(t). (Note that t must be a formal variable, it may be necessary to purge it
with purge(t).)
Input:

parameq(line(-1,i))

Output:

t + (1-t)*i

Input:

parameq(circle(-1,i))

Output:

-1 + exp(i*t)

Input:

normal(parameq(ellipse(-1,1,i)))

Output:

sqrt(2)*cos(t) + i*sin(t)

12.14. MEASUREMENTS 699

12.14 Measurements

12.14.1 Measurement and display: distanceat distanceatraw
angleat angleatraw areaat areaatraw perimeterat
perimeteratraw slopeat slopeatraw extract_measure

Many commands to find measures have a version ending in at (or atraw) which
are used to interactively find and display the appropriate measure in a two-dimensional
geometry screen. To use them, open a geometry screen with Alt-G and then se-
lect the appropriate measure from the Mode I Measure menu. Once the mode
is selected, then clicking on the names of the appropriate objects (or, if a point
is being selected, a name will be automatically generated if clicking on an open
point) with the mouse and then clicking on another point will put the measurement
at the point; if the mode is the version ending in at, then the measurement will
have a label, if the mode is the version ending in atraw, then the measurement
will appear without a label.

The commands with at and atraw versions are:

distance,distanceat,distanceatraw This finds the distance between
two points or other geometric objects. (See section 12.14.2.)

angle,angleat,angleatraw This finds the measure of an angle BAC given
points A, B and C. (See section 12.14.4.)

area,areaat,areaatraw This finds the area of a circle or a polygon which is
star-shaped with respect to its first vertex. (See section 12.14.6.)

perimeter,perimeterat,perimeteratraw This finds the perimeter of a
circle, circular arc or a polygon. (See section 12.14.7.)

slope,slopeat,slopeatraw This finds the slope of a line, segment, or two
points which determine a line. (See section 12.14.8.)

These commands can also be used from the command line. They are like the
measurement command but take an extra argument, the point to display the mea-
surement. When using the version ending in at, use names for the objects rather
create the objects within the measurement command.
Input:

S1 := square(0,1); areaat(S1,1+i)

Output:

700 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

Input:

S2 := square(0,1); areaatraw(S2,1+i)

Output:

More sophisticated legends are created with the legend command.
Input:

S := square(0,1); a := area(S); legend(1+i,"Area(S) =
" + string(a),blue)

Output:

The extract_measure command takes as argument a command which dis-
plays a measurement (one of the at or atraw commands) and returns the mea-
surement.
Input:

A := point(-1); B := point(1+i); C := point(i);

and then:

extract_measure(angleat(A,B,C,0.2i))

Output:

atan(1/3)

12.14.2 The distance between objects in the plane: distance

See section 13.12.7 for distances in three-dimensional geometry.
The distance command takes two arguments; either two points or two geo-

metric objects.
distance returns the distance between the two arguments.

Input:

12.14. MEASUREMENTS 701

distance(-1, 1+i)

Output:

sqrt(5)

Input:

distance(0, line(-1,1+i))

Output:

sqrt(5)/5

Input:

distance(circle(0,1),line(-2,1+3*i))

Output:

sqrt(2) - 1

Note that when the distance calculation uses parameters, Xcas must be in real
mode. In real mode:
Input:

assumes(a=[4,0,5,0.1]); A := point(0); B := point(a);

and then:

simplify(distance(A,B)); simplify(distance(B,A))

Output:

|a|, |a|

In complex mode:
Input:

assumes(a=[4,0,5,0.1]); A := point(0); B := point(a);

and then:

simplify(distance(A,B)); simplify(distance(B,A))

Output:

-a, a

The distance command has distanceat and distanceatraw ver-
sions (see section 12.14.1).

702 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.14.3 The length squared of a segment in the plane: distance2

See section 13.12.8 for squares of lengths in three-dimensional geometry.
The distance2 command takes as arguments two points.
distance2 returns the square of the distance between the points.

Input:

distance2(-1, 1+i)

Output:

5

12.14.4 The measure of an angle in the plane: angle

See section 13.12.9 for angle measures in three-dimensional geometry.
The angle command takes three mandatory arguments and one optional argu-

ment. The mandatory arguments are points A, B and C, which determine an angle
BAC. The optional argument is a string.

angle returns the measure of the angle (in the units that Xcas is configured
for). If there is an optional fourth argument, the angle will be drawn indicated by a
small arc and labeled with the string. If the angle is a right angle, the indicator will
be a corner rather than an arc.
Input:

angle(0,1,1+i)

Output:

pi/4

Input:

angle(0,1,1+i,"a")

Output:

Input:

angle(0,1,1+i,"")

Output:

12.14. MEASUREMENTS 703

Input:

angle(0,1,i,"A")

Output:

Input:

angle(0,1,i,"A")[0]

Output:

pi/2

The angle command has angleat and angleatraw versions (see section
12.14.1). For the command line versions of these commands, the optional fourth
argument for angle is replaced by a mandatory fourth argument for the point to
put the measurement.

12.14.5 The graphical representation of the area of a polygon: plotareaareaplot

The plotarea (or areaplot) command takes as argument a polygon.
plotarea draws the filled polygon, with the signed area. (The area is positive

if the polygon is counterclockwise, negative if it is clockwise.)
Input:

plotarea(polygon(1,(1+i)/2,1+i)

Output:

704 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

Input:

plotarea(polygon(1,1+i,(1+i)/2)

Output:

The fill color can be changed as a local feature (see 12.3.2) and the position of the
legend can be changed (see 12.3.3).
Input:

plotarea(polygon(1,1+i,(1+i)/2),display=red+quadrant2)

Output:

12.14.6 The area of a polygon: area

The area command takes as argument a circle or polygon which is star-shaped
with respect to its first vertex (i.e., the line segment from the first vertex to any
point in the polygon lies within the polygon).

area returns the area of the object.
Input:

area(triangle(0,1,i))

Output:

1/2

Input:

area(square(0,2))

Output:

4

The area command has areaat and areaatraw versions (see section
12.14.1).

12.14. MEASUREMENTS 705

12.14.7 The perimeter of a polygon: perimeter

See also arcLen, section 5.19.2.
The perimeter command takes as argument a circle, circular arc or a poly-

gon.
perimeter returns the perimeter of the object.

Input:

perimeter(circle(0,1))

Output:

2*pi

Input:

perimeter(circle(0,1,pi/4,pi))

Output:

3*pi/4

Input:

perimeter(arc(0,pi/4,pi))

Output:

piˆ2/8

Input:

perimeter(triangle(0,1,i))

Output:

2+sqrt(2)

Input:

perimeter(square(0,2))

Output:

8

The perimeter command has perimeterat and perimeteratraw ver-
sions (see section 12.14.1).

706 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.14.8 The slope of a line: slope

The slope command takes as argument either a line, a line segment, or two points
which determine a line.

slope returns the slope of the line.
Input:

slope(line(1,2i))

or:

slope(segment(1,2i))

or:

slope(1,2i)

Output:

-2

Input:

slope(line(x - 2y = 3))

Output:

1/2

Input:

slope(tangent(plotfunc(sin(x)),pi/4))

or:

slope(LineTan(sin(x),pi/4))

Output:

sqrt(2)/2

The slope command has slopeat and slopeatraw versions (see section
12.14.1).

12.14.9 The radius of a circle: radius

The radius command takes one argument, a circle.
radius returns the radius of the circle.

Input:

radius(circle(-1,point(i)))

Output:

sqrt(2)/2

12.15. TRANSFORMATIONS 707

12.14.10 The length of a vector: abs

The abs command takes as argument either a complex number or a vector defined
by two points.

abs returns the absolute value of the complex number or the length of the
vector.
Input:

abs(1+i)

or:

abs(point(1+2*i) - point(i))

Output:

sqrt(2)

12.14.11 The angle of a vector: arg

The abs command takes as argument a complex number or a vector defined by
two points.

abs returns the argument of the complex number or the angle between the
positive x direction and the vector.
Input:

arg(1+i)

Output:

pi/4

12.14.12 Normalize a complex number: normalize

The normalize command takes as argument a non-zero complex number.
normalize returns the normalized version of the complex number; the num-

ber divided by its absolute value.
Input:

normalize(3+4*i)

Output:

(3 + 4*i)/5

12.15 Transformations

12.15.1 General remarks

The transformations in this section operate on any geometric object. As arguments,
they can take the parameters which specify the transformation. With those argu-
ments, they will return a new command which performs the transformation. If they
are given a geometric object as the final argument, they will return the transformed
object.

708 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.15.2 Translations in the plane: translation

See section 13.14.2 for translations in space.
The translation command can take one or two arguments.
If translation has a single argument, that argument is the translation vec-

tor. The translation vector can be given as a vector, list of coordinates, a difference
of points or a complex number. translation returns a new command which
performs the translation.
Input:

t := translation(1+i)

then:

t(-2)

Output:

If translation has two arguments, the first argument is a translation vector
as above, and the second argument is a geometric object. translation returns
and draws the translated object.
Input:

translation([1,1],line(-2,-i))

Output:

12.15.3 Reflections in the plane: reflection

See section 13.14.3 for reflections in space.
The reflection command can take one or two arguments.
If reflection has a single argument, that argument is a point or line. reflection

returns a new command which performs the reflection with respect to the point or
line.
Input:

12.15. TRANSFORMATIONS 709

rf := reflection(-1)

then:

rf(1+i)

Output:

If reflection has two arguments, the first argument is a point or line as
above, and the second argument is a geometric object. reflection returns and
draws the reflection of the object.
Input:

reflection(-1, 1+i)

Output:

Input:

reflection(line(-1,i),1+i)

Output:

710 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.15.4 Rotation in the plane: rotation

See section 13.14.4 for rotations in space.
The rotation command can take two or three arguments.
If rotation has two arguments, they are a point (the center of rotation) and

a real number (the angle of rotation). rotation returns a new command which
performs the rotation.
Input:

r := rotation(i, -pi/2)

then:

r(1+i)

Output:

If rotation has three arguments, the first two arguments are a point and real
number as above, and the third argument is a geometric object. rotation returns
and draws the rotated object.
Input:

rotation(i, -pi/2, 1+i)

Output:

Input:

rotation(i, -pi/2, line(1+i,-1))

Output:

12.15. TRANSFORMATIONS 711

12.15.5 Homothety in the plane: homothety

See section 13.14.5 for homotheties in space.
A homothety is a dilation about a given point. The homothety command can

take two or three arguments.
If homothety has two arguments, they are a point (the center of the homo-

thety) and a real number (the scaling ratio). homothery returns a new command
which performs the dilation.
Input:

h := homothety(i, 2)

then:

h(1+i)

Output:

If homothety has three arguments, the first two arguments are a point and
real number as above, and the third argument is a geometric object. homothety
returns and draws the dilated object.
Input:

homothety(i, 2, 1+i)

Output:

712 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

Input:

homothety(i, 2, circle(1+i,1))

Output:

The homothety command can also take a complex number as the second
argument. In that case, the result will be a rotation as well as a dilation.

12.15.6 Similarity in the plane: similarity

See section 13.14.6 for similarities in space.
The similarity command rotates and scales about a given point. It takes

three or four arguments.
If similarity has three arguments, they are a point (the center of rota-

tion), a real number (the scaling ratio) and a real number (the angle of rotation).
similarity returns a new command which performs the transformation.
Input:

s := similarity(i, 2, -pi/2)

then:

s(1+i)

Output:

then:

s(circle(1+i,1))

Output:

12.15. TRANSFORMATIONS 713

If similarity has four arguments, the first three arguments are a point and
two numbers as above, and the fourth argument is a geometric object. similarity
returns and draws the transformed object.
Input:

similarity(i, 2, -pi/2, 1 + i)

Output:

Input:

similarity(i, 2, -pi/2, circle(1+i,1))

Output:

Note that for a point A and numbers k and a, the command similarity(A,k,a)
is the same as homothety(A,k*exp(i*a)).

12.15.7 Inversion in the plane: inversion

See section 13.14.7 for inversions in space.
Given a circle C with center O and radius r, the inversion of a point A with

respect to C is the point A′ on the ray
−→
OA satisfying OA ·OA′ = r2.

The inversion command takes two or three arguments.

714 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

If inversion has two arguments, they are a point (the center of inversion)
and a real number (the radius). inversion returns a new command which per-
forms the inversion.
Input:

inver := inversion(i, 2)

then:

inver(circle(1+i,1))

Output:

then:

inver(circle(1+i,1/2))

Output:

If inversion has three arguments, the first two arguments are a point and
number as above, and the third argument is a geometric object. inversion re-
turns and draws the inverted object.
Input:

inversion(i, 2, circle(1+i,1))

Output:

12.15. TRANSFORMATIONS 715

Input:

inversion(i, 2, circle(1+i,1/2))

Output:

12.15.8 Orthogonal projection in the plane: projection

See section 13.14.8 for projections in space.
The projection command takes one or two arguments.
If projection has one argument, it is a geometric object. projection

returns a new command which projects points onto the object.
Input:

p1 := projection(line(-1,i))

then:

p1(i+1)

Output:

Input:

p2 := projection(circle(-1,1))

then:

p2(i)

Output:

716 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

If projection has two arguments, the first arguments is a geometric object
as above, and the second argument is a point. projection returns and draws the
projection of the point onto the object.
Input:

projection(line(-1, i), 1+i)

Output:

Input:

projection(circle(-1,1), i)

Output:

12.16 Properties

12.16.1 Check if a point is on an object in the plane: is_element

See section 13.13.1 for checking elements in three-dimensional geometry.
The is_element command takes two arguments, a point and a geometric

object.
is_element returns 1 if the point is an element of the object and returns 0

otherwise.
Input:

12.16. PROPERTIES 717

is_element(-1-i, line(0,1+i))

Output:

1

Input:

is_element(i, line(0,1+i))

Output:

0

12.16.2 Check if three points are collinear in the plane: is_collinear

See section 13.13.6 for checking for collinearity in three-dimensional geometry.
The is_collinear command is a Boolean function which takes as argu-

ment a list or sequence of points.
is_collinear returns 1 if the points are collinear and returns 0 otherwise.

Input:

is_collinear(0,1+i,-1-i)

Output:

1

Input:

is_collinear(i/100, 1+i, -1-i)

Output:

0

12.16.3 Check if four points are concyclic in the plane: is_concyclic

See section 13.13.7 for checking for concyclicity in three-dimensional geometry.
The is_concyclic command is a Boolean function which takes as argu-

ment a list or sequence of points.
is_concyclic returns 1 if the points are cyclic and returns 0 otherwise.

Input:

is_concyclic(1+i, -1+i, -1-i, 1-i)

Output:

1

Input:

is_concyclic(i, -1+i, -1-i, 1-i)

Output:

0

718 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.16.4 Check if a point is in a polygon or circle: is_inside

The is_inside command is a Boolean function which takes two arguments, a
point and a polygon or circle.

is_inside returns 1 if the point is inside the polygon or circle (including
the boundary) and returns 0 otherwise.
Input:

is_inside(0,circle(-1,1))

Output:

1

Input:

is_inside(2,polygon([1,2-i,3+i]))

Output:

1

Input:

is_inside(1-i, triangle([1,2-i,3+i]))

Output:

0

12.16.5 Check if an object is an equilateral triangle in the plane: is_equilateral

See section 13.13.9 for checking for equilateral triangles in three-dimensional ge-
ometry.

The is_equilateral command is a Boolean function which takes as argu-
ment a geometric object or three points.

is_equilateral returns 1 if the object (or the triangle formed by the three
points) is an equilateral triangle and returns 0 otherwise.
Input:

is_equilateral(0,2,1+i*sqrt(3))

Output:

1

Input:

T := equilateral_triangle(0,2,C)

then:

is_equilateral(T[0])

Output:

1

12.16. PROPERTIES 719

Note that T[0] is a triangle since T is a list made of a triangle and the vertex C.
Entering affix(C) returns 1 + i*sqrt(3)
Input:

is_equilateral(1+i, -1+i, -1-i)

Output:

0

12.16.6 Check if an object in the plane is an isosceles triangle: is_isosceles

See section 13.13.10 for checking for isosceles triangles in three-dimensional ge-
ometry.

The is_isosceles command takes as argument a geometric object or three
points.

is_isosceles returns 1, 2, 3 or 4 if the object (or triangle formed by the
three points) is an isosceles triangle (the number indicates which vertex is on two
equal sides) or a value of 4 means the triangle is equilateral. The command returns
0 if the object is not an isosceles triangle.
Input:

is_isosceles(0, 1+i,i)

Output:

2

Input:

T := isosceles_triangle(0,1,pi/4)

then:

is_isosceles(T)

Output:

1

Input:

T := isosceles_triangle(0,1,pi/4,C)

then:

is_isosceles(T[0])

Output:

1

Note that T[0] is a triangle since T is a list made of a triangle and the vertex C.
Entering affix(C) returns sqrt(2)/2 + i*sqrt(2)/2
Input:

720 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

is_isosceles(1+i, -1+i, -i)

Output:

3

Input:

is_isosceles(0,2,1+i*sqrt(3))

Output:

4

12.16.7 Check if an object in the plane is a right triangle or a rectan-
gle: is_rectangle

See section 13.13.11 for checking for right triangles and rectangles in three-dimensional
geometry.

The is_rectangle command takes as argument a geometric object or a
sequence of three or four points.

When the argument is a triangle or three points, is_rectangle returns 1,
2 or 3 if the triangle is a right triangle; the number indicates which vertex has the
right angle. When the argument is a quadrilateral or four points, is_rectangle
returns 1 or 2 if the quadrilateral is a rectangle; 1 if it is a rectangle but not a square
and 2 if it is a square. The command returns 0 if the object is not a right triangle
or rectangle.
Input:

is_rectangle(1,1+i,i)

Output:

2

Input:

is_rectangle(1+i, -2+i, -2-i, 1-i)

Output:

1

Input:

R := rectangle(-2-i,1-i, 3, C, D)

then:

is_rectangle(R[0])

Output:

1

Note that R[0] is a rectangle since R is a list made of a rectangle and vertices C
and D. Entering affix(C,D) returns -2+8*i, 1+8*i.

12.16. PROPERTIES 721

12.16.8 Check if an object in the plane is a square: is_square

See section 13.13.12 for checking for squares in three-dimensional geometry.
The is_square command is a Boolean function which takes as argument a

geometric object or four points.
is_square returns 1 if the object (or quadrilateral determined by the four

points) is a square and returns 0 otherwise.
Input:

is_square(1+i, -1+i, -1-i, 1-i)

Output:

1

Input:

K := square(1+i, -1+i)

then:

is_square(K)

Output:

1

Input:

K := square(1+i, -1+i, C, D); is_square(K[0])

Output:

1

Note that K[0] is a square since K is a list made of a square and vertices C and D.
Entering affix(C,D) returns -1-i,1-i.
Input:

is_square(i, -1+i, -1-i, 1-i)

Output:

0

12.16.9 Check if an object in the plane is a rhombus: is_rhombus

See section 13.13.13 for checking for rhombuses in three-dimensional geometry.
The is_rhombus command takes as argument a geometric object or four

points.
is_rhombus returns 1 or 2 if the object is a rhombus; it returns 1 if the

object is a rhombus but not a square and 2 if the object is a square. The command
returns 0 if the object is not a rhombus.
Input:

is_rhombus(1+i, -1+i, -1-i, 1-i)

722 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

Output:

1

Input:

K := rhombus(1+i, -1+i, pi/4)

then:

is_rhombus(K)

Input:

1

Input:

K := rhombus(1+i, -1+i, pi/4, C, D)

then:

is_rhombus(K[0])

Input:

1

Note that K[0] is a rhombus since K is a list made of a rhombus and vertices C
and D. Entering affix(C,D) returns -sqrt(2)-i,-sqrt(2)+i.
Input:

is_rhombus(i, -1+i, -1-i, 1-i)

Output:

0

12.16.10 Check if an object in the plane is a parallelogram: is_parallelogram

See section 13.13.14 for checking for parallelograms in three-dimensional geome-
try.

The is_parallelogram command takes as argument a geometric object
or four points.

is_parallelogram returns 1, 2, 3 or 4 if the object is a parallelogram. It
returns 4 if the object is a square, 3 if the object is a rectangle but not a square, 2 if
the object is a rhombus but not a rectangle, and returns 1 otherwise. The command
returns 0 if the object is not a parallelogram.
Input:

is_parallelogram(i, -1+i, -1-i, 1-i)

Output:

0

Input:

12.16. PROPERTIES 723

is_parallelogram(1+i, -1+i, -1-i, 1-i)

Output:

1

Input:

Q := quadrilateral(1+i, -1+i, -1-i, 1-i)

then:

is_parallelogram(Q)

Output:

4

Input:

P := parallelogram(-1-i, 1-i, i, D)

then:

is_parallelogram(P[0])

Output:

1

Note that P[0] is a parallelogram since P is a list made of a parallelogram and
vertex D. Entering affix(D) returns -2+i.

12.16.11 Check it two lines in the plane are parallel: is_parallel

See section 13.13.3 for checking for parallels in three-dimensional geometry.
The is_parallel command is a Boolean function which takes as argument

two lines.
is_parallel returns 1 if the lines are parallel and returns 0 otherwise.

Input:

is_parallel(line(0,1+i),line(i,-1))

Output:

1

Output:

is_parallel(line(0,1+i),line(i,-1-i))

Output:

0

724 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.16.12 Check if two lines in the plane are perpendicular: is_perpendicular

See section 13.13.4 for checking for perpendicularity in three-dimensional geom-
etry.

The is_perpendicular command is a Boolean function which takes as
argument two lines.

is_perpendicular returns 1 if the lines are perpendicular and returns 0
otherwise.
Input:

is_perpendicular(line(0,1+i),line(i,1))

Output:

1

Input:

is_parallel(line(0,1+i),line(1+i,1))

Output:

0

12.16.13 Check if two circles in the plane are orthogonal: is_orthogonal

See section 13.13.5 for checking for orthogonality in three-dimensional geometry.
The is_orthogonal command is a Boolean function which takes as argu-

ment two lines or two circles.
is_orthogonal returns 1 if the objects are orthogonal and returns 0 other-

wise.
Input:

is_orthogonal(line(0,1+i),line(i,1))

Output:

1

Input:

is_orthogonal(line(2,i),line(0,1+i))

Output:

0

Input:

is_orthogonal(circle(0,1+i),circle(2,1+i))

Output:

1

Input:

is_orthogonal(circle(0,1),circle(2,1))

Output:

0

12.16. PROPERTIES 725

12.16.14 Check if elements are conjugates: is_conjugate

The is_conjugate is a Boolean function which takes as arguments one of the
following:

• A circle followed by two more arguments, each of which is a point or a line.
In this case, is_conjugate returns 1 if the last two arguments are conju-
gate with respect to the circle, it returns 0 otherwise.
Input:

is_conjugate(circle(0,1+i),point(1-i), point(3+i))

Output:

1

Input:

is_conjugate(circle(0,1),point((1+i)/2),
line(1+i,2))

Output:

1

Input:

is_conjugate(circle(0,1), line(1+i,2),
line((1+i)/2,0))

Output:

1

• Two lines or two points, followed by two more arguments, each of which is
a point or a line.
In this case, is_conjugate returns 1 if the last two arguments are conju-
gate with respect to the first two arguments, it returns 0 otherwise.
Input:

is_conjugate(point(1+i),point(3+i),point(i),point(3/2+i))

Output:

1

Input:

is_conjugate(line(0,1+i),line(2,3+i),line(3,4+i),line(3/2,5/2+i))

Output:

1

726 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.16.15 Check if four points form a harmonic division: is_harmonic

The is_harmonic command is a Boolean function which takes as arguments
four points.

is_harmonic returns 1 if the four points form a harmonic range and returns
0 otherwise.
Input:

is_harmonic(0,2,3/2,3)

Output:

1

Input:

is_harmonic(0,1+i,1,i)

Output:

0

12.16.16 Check if lines are in a bundle: is_harmonic_line_bundle

The is_harmonic_line_bundle command takes as argument a list or se-
quence of lines.

is_harmonic_line_bundle returns

1. 1 if the lines pass through a common point

2. 2 if the lines are parallel

3. 3 if the lines are the same

4. 0 otherwise

Input:

is_harmonic_line_bundle([line(0,1+i),line(0,2+i),line(0,3+i),line(0,1)])

Output:

1

12.16.17 Check if circles are in a bundle: is_harmonic_circle_bundle

The is_harmonic_circle_bundle command takes as argument a list or se-
quence of circles.

is_harmonic_circle_bundle returns

1. 1 if the circles pass through a common point

2. 2 if the circles are concentric

3. 3 if the circles are the same

12.17. HARMONIC DIVISION 727

4. 0 otherwise

Input:

is_harmonic_circle_bundle([circle(0,i),circle(4,i),circle(0,1/2)])

Output:

1

12.17 Harmonic division

12.17.1 Find a point dividing a segment in the harminic ratio k: division_point

The division_point command takes as argument two points a and b and a
complex number k.

division_point returns and draws z where (z − a)/(z − b) = k.
Input:

division_point(i,2+i,3+i)

Output:

Input:

affix(division_point(i,2+i,3))

Output:

3+i

12.17.2 The cross ratio of four collinear points: cross_ratio

The cross_ratio command takes as arguments four complex numbers a, b, c, d.
cross_ratio returns the cross ratio [(c− a)/(c− b)]/[(d− a)/(d− b)].

Input:

cross_ratio(0,1,2,3)

Output:

4/3

Input:

cross_ratio(i,2+i,3/2 + i, 3+i)

Output:

-1

728 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

12.17.3 Harmonic division: harmonic_division

Four collinear pointsA,B,C andD are in harmonic division ifCA/CB = DA/DB.
In this case, D is called the harmonic conjugate of A, B and C.

Four concurrent lines or four parallel lines are in harmonic division if the in-
tersection of any fifth line with these four lines consists of four points in harmonic
division. The lines are also said to form a harmonic pencil. The fourth line is called
the harmonic conjugate of the first three.

The harmonic_division command takes as argument three collinear points
or three concurrent lines and a variable name.

harmonic_division returns and draws the three points or lines along with
a fourth so the four objects are in harmonic division, and assigns the fourth point
or line to the variable name.
Input:

harmonic_division(0,2,3/2,D)

Output:

Input:

harmonic_division(point(0),point(2),point(3/2),D)

Output:

Input:

affix(D)

Output:

3

12.17. HARMONIC DIVISION 729

12.17.4 The harmonic conjugate: harmonic_conjugate

The harmonic_conjugate command takes as arguments three collinear points,
three concurrent lines or three parallel lines.

harmonic_conjugate returns and draws the harmonic conjugate of the
arguments.
Input:

harmonic_conjugate(0,2,3/2)

Output:

Input:

affix(harmonic_conjugate(0,2,3/2))

Output:

3

Input:

harmonic_conjugate(line(0,1+i),line(0,3+i),line(0,i))

Output:

12.17.5 Pole and polar: pole polar

Given a circle centered at O, a point A is a pole and a line L is the corresponding
polar if L is the line passing through the inversion of A with respect to the circle
(see section 12.15.7) passing through the line

←→
OA.

The polar command takes as argument a circle C and a point a.
polar returns and draws the polar of the point a with respect to C.

Input:

730 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

polar(circle(0,1),(i+1)/2)

Output:

The pole command takes as argument a circle C and a line L.
pole returns and draws the pole of the line L with respect to C.

Input:

pole(circle(0,1),line(i,1))

Output:

Input:

affix(pole(circle(0,1),line(i,1)))

Output:

1+i

12.17.6 The polar reciprocal: reciprocation

The reciprocation command takes as arguments a circle and list of points and
lines.

reciprocation returns the list formed by replaced each point or line by its
polar or pole with respect to the circle.
Input:

reciprocation(circle(0,1),[point((1+i)/2),line(1,-1+i)])

Output:

12.18. LOCI AND ENVELOPES 731

12.18 Loci and envelopes

12.18.1 Loci: locus

The locus command draws the locus of points determined by geometric objects
moving in the plane, where the object depends on a point moving along a curve. It
can draw a locus of points which depends on points on a curve, or the envelope of
a family of lines depending on points on a curve.

The locus of points depending on points on a curve.

For this, the locus command takes two mandatory arguments and two optional
arguments.

• The first mandatory argument is a variable name. This variable needs to
already have been assigned to a point, and that point should be a function of
a second point which moves along a curve. This second point is the second
argument to locus.

• The second mandatory argument is another variable name. This variable
needs to already have been assigned to a point, that point should be the result
of the element command; for example, defined by element(C) for a
curve C. (See section 12.6.15.)

• The optional third argument is used to set t to an interval, where t is the
parameter for the curve C. (You can double check the name of the parameter
for a curve C with the command parameq(C).)

• The optional fourth argument is used to set the value of tstep for the pa-
rameter t.

locus will draw the locus of points formed by the first argument, as the sec-
ond argument traces over the curve C.
Input:

P := element(line(i, i+1))

then:

G := isobarycenter(-1,1,P)

then:

732 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

locus(G,P)

This will draw the set of isobarycenters of the triangles with vertices -1, 1 and P,
where P ranges over the line through i and i+1.
Output:

Input:

parameq(C)

Output:

t + i

Input:

locus(G,P,t=-3..3,tstep=0.1)

Output:

The envelope of a family of lines which depend on points on a curve.

For this, the locus command takes two mandatory arguments and two optional
arguments.

• The first mandatory argument is a variable name. This variable needs to
already have been assigned to a line, and that line should be a function of
a point which moves along a curve. This point is the second argument to
locus.

• The second mandatory argument is another variable name. This variable
needs to already have been assigned to a point, that point should be the result
of the element command; for example, defined by element(C) for a
curve C. (See section 12.6.15.)

12.18. LOCI AND ENVELOPES 733

• The optional third argument is used to set t to an interval, where t is the
parameter for the curve C. (You can double check the name of the parameter
for a curve C with the command parameq(C).)

• The optional fourth argument is used to set the value of tstep for the pa-
rameter t.

locus will draw the envelope of the lines formed by the first argument, as the
second argument traces over the curve C.
Input:

F := point(1)

then:

H := element(line(x=0))

then:

d := perpen_bisector(F,H)

then:

locus(d,H)

This will draw the envelope of the family of perpendicular bisectors of the segments
from the point 1 to the points on the line x=0. Output:

To draw the envelope of a family of lines which depend on a parameter, such
as the lines given by the equations

y + x tan(t)− 2 sin(t) = 0

over the parameter t, the parameter can be regarded as the affixes of points on the
line y = 0.
Input:

H := element(line(y=0))

then:

D := line(y + x*tan(affix(H)) - 2*sin(affix(H)))

then:

locus(D,H)

734 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

Output:

Input:

locus(D,H,t=0..pi)

Output:

12.18.2 Envelopes: envelope

The envelope command takes two arguments, the first argument is expression
expr in the variables x, y and a parameter such as t, and the second argument is
the name of the parameter.

envelope draws the envelope of the family of curves given by expr=0 over
the parameter t.
Input:

envelope(y + x*tan(t) - 2*sin(t),t)

Output:

The envelope command can use variables besides x and y. In this case, the
second argument needs to be a list of the two variables and the parameter.
Input:

12.18. LOCI AND ENVELOPES 735

envelope(v + u*tan(s) - 2*sin(s),[u,v,s])

Output:

12.18.3 The trace of a geometric object: trace

The trace command takes as argument a geometric object which depends on a
parameter.
trace draws the trace of the object as the parameter is changed or the object is
moved in Pointer mode.

For example, to find the locus of points equidistant from a line D and a point
F, we can create a point H on the line D. Since the point To do this, open a graphic
window (Alt-G) and type in the following commands, one per line.
First, create a line D (using sample points) and a sample point F.
Input

A := point(-3-i)
B := point(1/2 + 2*i)
D := line(A,B,color=0)

F := point(4/3,1/2,color=0)

The create a point H on the line D which we can move around.
Input:

assume(a=[0.7,-5,5,0.1])
H := element(D,a)

To find a point equidistant from D and F, find the point M where the perpendicular
to D (at H) intersects the perpendicular bisector to HF, and trace that point.
Input:

T := perpendicular(H,D)
M := single_inter(perpen_bisector(H,F),T))

trace(M)

Then as the point H on the line moves (by changing the value of a with the slider),
we will get the trace of M.

To erase traces, add traces, activate or deactivate them, use the Trace menu
of the M button located on the right side of the geometry screen.

736 CHAPTER 12. TWO-DIMENSIONAL GRAPHICS

Chapter 13

Three-dimensional Graphics

13.1 Introduction

The Alt+H command brings up a display screen for three-dimensional graphics.
This screen has its own menu and command lines.

This screen also automatically appears whenever there is a three-dimensional graphic
command.

The plane of vision for a three-dimensional graphic screen is perpendicular to
the observer’s line of vision. The plane of vision is also indicated by dotted lines
showing its intersection with the parallelepiped. The axis of vision for a three-
dimensional graphic screen is

The three-dimensional graphic screen starts with the image of a parallelepiped
bounding the graphics and vectors in the x, y and z directions. At the top of the
screen is the equation of the plane of vision, which is a plane perpendicular to the
observer’s line of vision. The plane of vision is shown graphically with dotted lines
indicating where it intersects the plane of vision.

Clicking in the graphic screen outside of the parallelepiped and dragging the
mouse moves the x, y and z directions relative to the observer; these directions are
also changed with the x, X, y, Y, z and Z keys. Scrolling the mouse wheel moves
the plane of vision along the line of vision. The in and out buttons on the graphic
screen menu zoom in and out of the picture.

The graphical features available for two-dimensional graphics (see section 12.3)
are also available for three-dimensional graphics, but to see the points the markers
must be squares with width (point_width) at least 3.

The graphic screen menu has a cfg button which brings up a configuration
screen. Among other things, this screen has

• An Ortho proj button, which determines whether the drawing uses or-
thogonal projection or perspective projection.

737

738 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

• A Lights button, which determines whether the objects are lit or not; the
locations of eight points for lighting are set using the buttons L1, . . . , L7,
which specify the points with homogeneous coordinates.

• A Show axis button, which determines whether or not the outlining par-
allelepiped is visible.

13.2 Change the view

The depictions of three-dimensional objects are made with a coordinate system
Oxyz, where the x axis is horizontal and directed right, the y axis is vertical and
directed up, and the z axis is perpendicular to the screen and directed out of the
screen. The depictions can be transformed by changing to a different coordinate
system by setting a quaternion. (See section 12.3.2.)

13.3 The axes

13.3.1 Draw unit vectors: Ox_3d_unit_vector Oy_3d_unit_vector
Oz_3d_unit_vector frame_3d

The Ox_3d_unit_vector command draws the unit vector in the x-direction
on a three-dimensional graphic screen.
Input:

Ox_3d_unit_vector()

Output:

Similarly, the Oy_3d_unit_vector and Oz_3d_unit_vector commands
draw the unit vector in the y and z directions, respectively.

These commands have no parameters, but can be decorated with the legend
command.
Input:

Ox_3d_unit_vector(), legend(point([1,0,0]),"unit x
vector",blue)

13.4. POINTS IN SPACE 739

Output:

The frame_3d command draws all three vectors simultaneously.

13.4 Points in space

13.4.1 Define a point in three-dimensions: point

See section 12.6.2 for points in the plane.
With the 3-d geometry screen in point mode, a click on a point with the left

mouse button will choose that point. Points chosen this way are automatically
named, first with A, then B, etc.

Alternatively, the point command chooses a point, where the point (a, b, c)
is specified by either the three coordinates a,b,c or a list [a,b,c] of the coordi-
nates. Many commands which takes points as arguments can either take them as
point(a,b,c) or the list of coordinates [a,b,c].
Input:

point(1,2,5)

or:

point([1,2,5])

Output:

(The marker used to indicate the point can be changed; see section 12.3.2.)

740 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.4.2 Define a random point in three-dimensions: point3d

The point3d command takes as argument a sequence of names for points and
assigns random points to each name; the random points have coordinates which
are integers between -5 and 5. For example,
Input:

point3d(A,B,C)

then:

plane(A,B,C)

Output:

13.4.3 Find an intersection point of two objects in space: single_inter
line_inter

See section 12.6.6 for single points of intersection of objects in the plane.
The single_inter (or the line_inter) command takes two geometric

objects as arguments and returns one of the points of intersection of the two objects.
The single_inter command optionally takes a third argument, which can

be a point or a list of points. If the optional argument is a single point, then
single_inter returns the point of intersection closest to the optional argument.
If the optional argument is a list of points, then single_inter tries to return a
point of intersection not in the list.
Input:

A :=
single_inter(plane(point(0,1,1),point(1,0,1),point(1,1,0)),

line(point(0,0,0),point(1,1,1)))

then:

coordinates(A)

Output:

[2/3,2/3,2/3]

13.4. POINTS IN SPACE 741

Input:

B := single_inter(sphere(point(0,0,0),1),
line(point(0,0,0),point(1,1,1)))

then:

coordinates(B)

Output:

[1/sqrt(3), 1/sqrt(3), 1/sqrt(3)]

Input:

B1 := single_inter(sphere(point(0,0,0),1),
line(point(0,0,0),point(1,1,1)), point(-1,0,0))

then:

coordinates(B1)

Output:

[-1/sqrt(3), -1/sqrt(3), -1/sqrt(3)]

Input:

C := single_inter(sphere(point(0,0,0),1),
line(point(1,0,0),point(1,1,1)))

then:

coordinates(C)

Output:

[1,0,0]

Input:

C1 := single_inter(sphere(point(0,0,0),1),
line(point(1,0,0),point(1,1,1)),[point(1,0,0)])

then:

coordinates(C1)

Output:

[1/3,2/3,2/3]

742 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.4.4 Find the intersection points of two objects in space: inter

See section 12.6.7 for points of intersection of objects in the plane.
The inter command takes two geometric objects as arguments and returns a

list of the points of intersection or the curve of intersection of the two objects.
The inter command optionally takes a point as a third argument. In this case,

inter returns the point of intersection closest to this argument.
Input:

LA:=inter(plane(point(0,1,1),point(1,0,1),point(1,1,0)),
line(point(0,0,0),point(1,1,1)))

then:

coordinates(LA)

Output:

[[2/3,2/3,2/3]]

Input:

LB:=inter(sphere(point(0,0,0),1),line(point(0,0,0),point(1,1,1)))

then:

coordinates(LB)

Output:

[[1/sqrt(3),1/sqrt(3),1/sqrt(3)],[-1/sqrt(3),-1/sqrt(3),-1/sqrt(3)]]

To get just one of the points, use the usual list indices.
Input:

coordinates(LB[0])

Output:

[1/sqrt(3),1/sqrt(3),1/sqrt(3)]

To get the point closest to (1/2, 1/2, 1/2), enter
Input:

LB1:=inter(sphere(point(0,0,0),1),
line(point(0,0,0),point(1,1,1)),point(1/2,1/2,1/2))

then:

coordinates(LB1)

Output:

[1/sqrt(3),1/sqrt(3),1/sqrt(3)]

13.4. POINTS IN SPACE 743

13.4.5 Find the midpoint of a segment in space: midpoint

See section 12.6.9 for midpoints in the plane.
The midpoint command takes two points (or a list of two points) as argu-

ments and returns and returns and draws the midpoint of the segment determined
by these points.
Input:

MP := midpoint(point(1,4,0),point(1,-2,0))

then:

coordinates(MP)

Output:

[1,1,0]

13.4.6 Find the isobarycenter of a set of points in space: isobarycenter

See section 12.6.11 for isobarycenters of objects in the plane.
The isobarycenter command takes a list (or sequence) of points and re-

turns and draws the isobarycenter, which is the barycenter when all the points are
equally weighted.
Input:

IB := isobarycenter(point(1,4,0),point(1,-2,0))

then:

coordinates(IB)

Output:

[1,1,0]

13.4.7 Find the barycenter of a set of points in space: barycenter

See section 12.6.10 for barycenters of objects in the plane.
The barycenter command returns and draws the barycenter of a set of

weighted points. If the sum of the weights is zero, then this command returns
an error.

The points and their weights (real numbers) can be given in two different ways.

1. A sequence of lists of length two.
The first element of each list is a point and the second element is the weight
of the point.

2. A matrix with two columns.
The first column of the matrix contains the points and the second column
contains the corresponding weights.

Input:

744 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

BC := barycenter([point(1,4,0),1],[point(1,-2,0),1])

or:

BC := barycenter([[point(1,4,0),1],[point(1,-2,0),1]])

then:

coordinates(BC)

Output:

[1,1,0]

13.5 Lines in space

13.5.1 Lines and directed lines in space: line

See section 12.7.1 for lines in the plane.
The line command returns and draws a directed line given one of the follow-

ing types of arguments:

• Two points or a list of two points.
The direction of the line is from the first point to the second point.
Input:

line([0,3,0],point(3,0,3))

Output:

• A point and direction vector (in the form [u1,u2,u3]).
The direction of the line is given by the direction vector.
Input:

line([0,3,0],[3,0,3])

Output:

13.5. LINES IN SPACE 745

• Two equations for planes.
The direction of the line is given by the cross-product of the normals for the
planes. For example, the intersection of the planes x = y (normal (1,−1, 0))
and y = z (normal (0, 1,−1)) will be (1,−1, 0) × (0, 1,−1) = (1, 1, 1).
Input:

line(x=y, y=z)

Output:

13.5.2 Half lines in space: half_line

See section 12.7.2 for half-lines in the plane.
The half_line command takes as argument two points.
half_line returns and draws the ray from the first point through the second.

Input:

half_line(point(0,0,0),point(1,1,1))

Output:

746 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.5.3 Segments in space: segment

See section 12.7.3 for segments in the plane.
The segment command takes as arguments two points.
segment returns and draws the corresponding line segment.

Input:

segment(point(0,0,0),point(1,1,1))

Output:

13.5.4 Vectors in space: vector

See section 12.7.4 for vectors in the plane.
The vector command returns and draws vectors, given one of the following

types of arguments:

• A list of the coordinates of a vector. The vector is drawn beginning at the
origin.
Input:

vector([1,2,3])

Output:

13.5. LINES IN SPACE 747

• Two points or two lists of coordinates for points.
The vector is drawn from the first point to the second.
Input:

vector(point(-1,0,0),point(0,1,2))

or:

vector([-1,0,0],[0,1,2])

Output:

• A point and a vector.
The vector is drawn beginning at the point.
Input:

V := vector([-1,0,0],[0,1,2])

then:

vector(point(-1,2,0),V)

748 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

Output:

13.5.5 Parallel lines and planes in space: parallel

See section 12.7.5 for parallel lines in the plane.
The parallel command returns and draws a line or plane depending on the

arguments. The possible arguments are:

• A point A and a line L.
parallel(A,L) returns and draws the line through A parallel to L.
Input:

parallel(point(1,1,1),line(point(0,0,0),point(0,0,1)))

Output:

• Two non-parallel lines L1 and L2.
parallel(L1,L2) returns and draws the plane containing L2 that is par-
allel to L1.
Input:

13.5. LINES IN SPACE 749

parallel(line(point(1,0,0),point(0,1,0)),
line(point(0,0,0),point(0,0,1)))

Output:

• A point A and a plane P.
parallel(A,P) returns and draws the plane through A that is parallel to
A.
Input:

parallel(point(0,0,0),plane(point(1,0,0),point(0,1,0),point(0,0,1)))

Output:

• A point A and two non-parallel lines L1 and L2.
parallel(A,L1,L2) returns and draws the plane through A that is par-
allel to L1 and L2.
Input:

750 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

parallel(point(1,1,1),line(point(0,0,0),point(0,0,1)),
line(point(1,0,0),point(0,1,0)))

Output:

13.5.6 Perpendicular lines and planes in space: perpendicular

See section 12.7.6 for perpendicular lines in the plane.
The perpendicular command returns and draws a line or plane, depending

on the arguments. The possible arguments are:

• A point A and a line L.
perpendicular(A,L) returns and draws the line through A that is per-
pendicular to L.
Input:

perpendicular(point(0,0,0),line(point(1,0,0),point(0,1,0)))

Output:

13.5. LINES IN SPACE 751

• A line L and a plane P.
perpendicular(L,P) returns and draws the plane containing L that is
perpendicular to P.
Input:

perpendicular(line(point(0,0,0),point(1,1,0)),
plane(point(1,0,0),point(0,1,0),point(0,0,1)))

Output:

13.5.7 Planes orthogonal to lines and lines orthogonal to planes in
space: orthogonal

The orthogonal command returns and draws a line or plane, depending on the
arguments. The possible arguments are:

• A point A and a line L.
orthogonal(A,L) returns and draws the plane through A orthogonal to
L.
Input:

orthogonal(point(0,0,0),line(point(1,0,0),point(0,1,0)))

Output:

752 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

• A line L and a plane P.
perpendicular(L,P) returns and draws the plane containing L that is
perpendicular to P.
Input:

perpendicular(line(point(0,0,0),point(1,1,0)),
plane(point(1,0,0),point(0,1,0),point(0,0,1)))

Output:

13.5.8 Common perpendiculars to lines in space: common_perpendicular

The common_perpendicular command takes as arguments two lines.
common_perpendicular returns and draws the common perpendicular to

the two lines.
Input:

L1 := line(point(1,1,0),point(0,1,1));
L2 := line(point(0,-1,0),point(1,-1,1))

then:

13.6. PLANES IN SPACE 753

common_perpendicular(L1,L2)

Output:

13.6 Planes in space

See also sections 13.5.6 and 13.5.7 for planes perpendicular and orthogonal to lines
and planes.

13.6.1 Planes in space: plane

The plane command draws and returns a plane. It takes as argument one of the
following:

• Three points.

• A point and a line.

• The equation of a plane.

Input:

plane(point(0,0,5),point(0,5,0),point(0,0,5))

or:

plane(point(0,0,5),line(point(0,5,0),point(0,0,5)))

or:

plane(x + y + z = 5)

Output:

754 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.6.2 The bisector plane in space: perpen_bisector

See section 12.7.10 for perpendicular bisectors in the plane.
The perpen_bisector command takes as argument a segment or two points.
perpen_bisector returns and draws the perpendicular bisector plane of

the segment.
Input:

perpen_bisector(point(0,0,0),point(4,4,4))

or:

perpen_bisector(segment([0,0,0],[4,4,4])

Output:

13.6.3 Tangent planes in space: tangent

See section 12.7.7 for tangents in the plane.
The tangent command takes as argument a geometric object and a point on

the object.
tangent draws and returns the plane through the point tangent to the object.

Input:

13.6. PLANES IN SPACE 755

S: = sphere([0,0,0],3)

then:

tangent(S,[2,2,1])

Output:

If the geometric object is the graph of a function, then the second argument is
a point in the domain of the function; the corresponding point on the graph will be
used.
Input:

G:=plotfunc(xˆ2 + yˆ2, [x,y])

then:

tangent(G,[2,2])

Output:

756 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.7 Triangles in space

13.7.1 Draw a triangle in space: triangle

See section 12.8.1 for the triangle command in the plane.
The triangle takes as arguments three points.
triangle returns and draws the triangle determined by these points.

Input:

A := point(0,0,0); B := point(3,3,3); C :=
point(0,3,0)

then:

triangle(A,B,C)

Output:

13.7.2 Isosceles triangles in space: isosceles_triangle

See section 12.8.2 for isosceles triangles in the plane.
The isosceles_triangle command returns and draws an isosceles trian-

gle. It takes as arguments one of the following:

• Three points, A, B and P.
The first two points A and B are vertices of the triangle, the third point P
determines the plane and orientation of the triangle. The orientation is so that
angle BAP is positive, and the equal interior angles of the isosceles triangle
are determined by angle ABP.
Input:

A := point(0,0,0); B := point(3,3,3); P :=
point(0,0,3)

then:

isosceles_triangle(A,B,P);

13.7. TRIANGLES IN SPACE 757

Output:

• Two points, A and B, and a list consisting of a point P and a real number c.
The points A and B are vertices of the triangle and P determines the plane
and orientation of the triangle as above. The number c is the measure of the
equal interior angles.
Input:

isosceles_triangle(A,B,[P,3*pi/4])

Output:

isosceles_triangle can take an optional fourth argument, which is a
variable which will be assigned to the third vertex of the triangle.
Input:

isosceles_triangle(A,B,[P,3*pi/4],C)

then:

coordinates(C)

758 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

Output:

[(-3*sqrt(2) - 3)/2, (-3*sqrt(2) -3)/2,
(-3*sqrt(2) + 6)/2]

13.7.3 Right triangles in space: right_triangle

See section 12.8.3 for right triangles in the plane.
The right_triangle command returns and draws a right triangle. It takes

as arguments one of the following:

• Three points, A, B and P.
right_triangle(A,B,P) returns and draws the right triangle BACwith
the right angle at vertex A. The first two points A and B are vertices of the tri-
angle, the third point P determines the plane and orientation of the triangle.
The orientation is so that angle BAP is positive. The length of AC equals the
length of AP.
Input:

A := point(0,0,0); B := point(3,3,3);
P := point(0,0,3)

then:

right_triangle(A,B,P);

Output:

• Two points, A and B, and a list consisting of a point P and a real number k.
triangle_rectangle(A,B,[P,k]) returns and draws the right tri-
angle BAC with the right angle at vertex A. The first two points A and B are
vertices of the triangle, the third point P determines the plane and orienta-
tion of the triangle as above. The length of AC is |k| times the length of
AP. Angle BAC has the same orientation as BAP if k is positive, angle BAC
has opposite orientation as BAP if k is negative. So tan(β) = k if β is the
angle CAB.
Input:

13.7. TRIANGLES IN SPACE 759

right_triangle(A,B,[P,2])

Output:

Input:

right_triangle(A,B,[P,-2])

Output:

right_triangle can take an optional fourth argument, which is a variable
which will be assigned to the third vertex of the triangle.
Input:

right_triangle(A,B,[P,2],C)

then:

coordinates(C)

Output:

[-3*sqrt(2), -3*sqrt(2), 6*sqrt(2)]

760 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.7.4 Equilateral triangles in space: equilateral_triangle

See section 12.8.4 for equilateral triangles in the plane.
The equilateral_triangle command takes as arguments three points,

A, B and P.
equilateral_triangle returns and draws the equilateral triangle ABC,

where C is in the same half plane as P.
Input:

A := point(0,0,0); B := point(3,3,3);
P := point(0,0,3)

then:

equilateral_triangle(A,B,P)

Output:

triangle_rectangle can take an optional fourth argument, which is a
variable which will be assigned to the third vertex of the triangle.
Input:

triangle_rectangle(A,B,P,C)

then:

simplify(coordinates(C))

Output:

[(-3*sqrt(6)+6)/4,(-3*sqrt(6)+6)/4,(3*sqrt(6)+3)/2]

13.8 Quadrilaterals in space

See section 12.9 for quadrilaterals in the plane.

13.8. QUADRILATERALS IN SPACE 761

13.8.1 Squares in space: square

See section 12.9.1 for squares in the plane.
The square command takes as arguments three points, A, B and P.
square returns and draws and returns the square with one side AB and the

remaining sides in the same half-plane as P.
Input:

A := point(0,0,0); B := point(3,3,3);
P := point(0,0,3);

then:

square(A,B,P)

Output:

The square command also optionally takes two more arguments, variable
names to assign to the two new vertices.
Input:

square(A,B,P,C,D)

then:

cooridinates(C); coordinates(D)

Output:

[-3*sqrt(2)/2+3,-3*sqrt(2)/2+3,3*sqrt(2)+3],
[-3*sqrt(2)/2,-3*sqrt(2)/2,3*sqrt(2)]

13.8.2 Rhombuses in space: rhombus

See section 12.9.2 for rhombuses in the plane.
The rhombus command returns and draws a rhombus. It takes as arguments

one of the following:

762 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

• Three points, A, B and P.
The first two points A and B are vertices of the triangle, the third point P
determines the plane and orientation of the rhombus. The orientation is so
that angle BAP is positive. The command returns and draws rhombus ABCD,
where D is on the ray AP (and the length of AD equals the length of AB).
Input:

A := point(0,0,0); B := point(3,3,3);
P := point(0,0,3)

then:

rhombus(A,B,P)

Output:

• Two points, A and B, and a list consisting of a point P and a real number a.
The points A and B are vertices of the rhombus and P determines the plane
and orientation of the rhombus as above. The command returns and draws
rhombus ABCD, where angle BAD equals a.
Input:

rhombus(A,B,[P,pi/3])

Output:

13.8. QUADRILATERALS IN SPACE 763

rhombus can take optional fourth and fifth arguments, which are variable
names assigned to vertices C and D.
Input:

rhombus(A,B,[P,pi/3],C,D)

then:

simplify(coordinates(C)); simplify(coordinates(D))

Output:

[(-3*sqrt(6)+18)/4,(-3*sqrt(6)+18)/4,(3*sqrt(6)+9)/2],
[(-3*sqrt(6)+6)/4,(-3*sqrt(6)+6)/4,(3*sqrt(6)+3)/2]

13.8.3 Rectangles in space: rectangle

See section 12.9.3 for rectangles in the plane.
The rectangle command returns and draws a rectangle. It takes as argu-

ments one of the following:

• Three points, A, B and P.
rectangle(A,B,P) returns and draws the rectangle ABCD. The first two
points A and B are vertices of the rectangle, the third point P determines the
plane and orientation of the rectangle. The orientation is so that angle BAP
is positive. The length of side AD equals the length of AP.
Input:

A := point(0,0,0); B := point(3,3,3);
P := point(0,0,3)

then:

rectangle(A,B,P)

Output:

764 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

• Two points, A and B, and a list consisting of a point P and a real number k.
rectangle(A,B,[P,k]) returns and draws the rectangle ABCD. The
first two points A and B are vertices of the rectangle, the third point P deter-
mines the plane and orientation of the rectangle as above. The length of AD
is |k| times the length of AB. Angle BAD has the same orientation as BAP
if k is positive, angle BAD has opposite orientation as BAP if k is negative.
Input:

rectangle(A,B,[P,1/2])

Output:

rectangle takes optional fourth and fifth arguments, which are variables
assigned to vertices C and D.
Input:

rectangle(A,B,P,C,D)

then:

simplify(coordinates(C)), simplify(coordinates(D))

Output:

[-(sqrt(6))/2,-(sqrt(6))/2,sqrt(6)],
[(-(sqrt(6))+6)/2,(-(sqrt(6))+6)/2,sqrt(6)+3]

13.8. QUADRILATERALS IN SPACE 765

13.8.4 Parallelograms in space: parallelogram

See section 12.9.4 for parallelograms in the plane.
The parallelogram command takes three points as arguments.
The parallelogram command returns and draws a parallelogram. If the

arguments are A, B and C, then the parallelogram has the form ABCD.
Input:

A := point(0,0,0); B := point(3,3,3);
C := point(0,0,3)

then:

parallelogram(A,B,C)

Output:

The parallelogram command takes an optional fourth argument, which is
a variable the fourth vertex is assigned to.
Input:

parallelogram(A,B,C,D)

then:

coordinates(D)

Output:

[-3,-3,0]

13.8.5 Arbitrary quadrilaterals in space: quadrilateral

See section 12.9.5 for quadrilaterals in the plane.
The quadrilateral command takes as arguments four points.

quadrilateral returns and draws the quadrilateral whose vertices are the given
points.
Input:

766 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

quadrilateral(point(0,0,0),point(0,1,0),point(0,2,2),point(1,0,2))

Output:

13.9 Polygons in space

See section 12.10 for polygons in the plane.

13.9.1 Hexagons in space: hexagon

See section 12.10.1 for hexagons in the plane.
The hexagon command takes as arguments three points, A, B and P.
hexagon returns and draws a regular hexagon. The first two points A and B

are vertices of the hexagon, the third point P determines the plane and orientation
of the rectangle.
Input:

A := point(0,0,0); B := point(3,3,3);
P := point(0,0,3)

then:

hexagon(A,B,P)

Output:

hexagon takes four optional arguments, which are variables assigned to the
unnamed vertices.
Input:

13.9. POLYGONS IN SPACE 767

hexagon(A,B,P,C,D,E,F)

then:

simplify(coordinates(C))

Output:

[(-3*sqrt(6)+18)/4,(-3*sqrt(6)+18)/4,(3*sqrt(6)+9)/2]

13.9.2 Regular polygons in space: isopolygon

See section 12.10.2 for regular polygons in the plane.
The isopolygon command takes as arguments three points and an integer.
isopolygon returns and draws a regular polygon. The first two points are

adjacent vertices of the polygon, the third determines the plane and orientation of
the polygon. The fourth argument, the integer, determines the number of sides of
the polygon. If the fourth argument is positive, then it is the number of sides of
the polygon, which is positively oriented. If the fourth argument is negative, then
the polygon is negatively oriented and the absolute value of the argument is the
number of sides.
Input:

A := point(0,0,0); B := point(3,3,3);
P := point(0,0,3)

then:

isopolygon(A,B,P,5)

Output:

Input:

isopolygon(A,B,P,-5)

Output:

768 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.9.3 General polygons in space: polygon

See section 12.10.3 for general polygons in the plane.
The polygon command takes as arguments a sequence of points.
polygon returns and draws the polygon whose vertices are the given points.

Input:

A := point(0,0,0); B := point(3,3,3);
C := point(0,0,3); D := point(-3,-3,0);

E := point(-3,-3,-3)

then:

polygon(A,B,C,D,E)

Output:

13.9.4 Polygonal lines in space: open_polygon

See section 12.10.4 for polygonal lines in the plane.
The open_polygon command takes as arguments a sequence of points.

13.10. CIRCLES IN SPACE: CIRCLE 769

open_polygon returns and draws the polygon line whose vertices are the
given points.
Input:

open_polygon(point(0,0,0),point(0,1,0),
point(0,2,2),point(1,0,2))

Output:

13.10 Circles in space: circle

See section 12.11.1 for circles in the plane.
The circle command returns and draws a circle.
circle takes as arguments one of the following:

• Three points, A, B and C.
circle will return and draw the circle with a diameter AB, and the third
point C determines the plane.
Input:

circle(point(0,0,1),point(0,1,0),point(0,2,2))

Output:

770 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

• A point A, a vector v and another point C.
circle will return and draw the circle with center at A and with A+v on
the circle. The point C determines the plane.
Input:

circle(point(0,0,1),vector(0,1,0),point(0,2,2))

Output:

In both cases, the first and third arguments can be the coordinates of the point.

13.11 Conics in space

13.11.1 Ellipses in space: ellipse

See section 12.12.1 for ellipses in the plane.

The ellipse command takes three non-collinear points as arguments; two
points as the foci and a third point to determine the plane.

ellipse returns and draws the ellipse with the two given foci and passing
through the third argument.

Input:

ellipse(point(-1,0,0),point(1,0,0),point(1,1,1))

Output:

13.11. CONICS IN SPACE 771

13.11.2 Hyperbolas in space: hyperbola

See section 12.12.2 for hyperbolas in the plane.
The hyperbola command takes three non-collinear points as arguments; two

points as the foci and a third point to determine the plane.
hyperbola returns and draws the hyperbola with the two given foci and pass-

ing through the third argument.
Input:

hyperbola(point(-1,0,0),point(1,0,0),point(1,1,1))

Output:

13.11.3 Parabolas in space: parabola

See section 12.12.3 for parabolas in the plane.
The parabola command takes three non-collinear points as arguments. The

first point is the focus, the second point is the vertex, and the third point determines
the plane.

772 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

parabola returns and draws the corresponding parabola.
Input:

parabola(point(0,0,0),point(-1,0,0),point(1,1,1))

Output:

13.12 Three-dimensional coordinates

13.12.1 The abscissa of a three-dimensional point: abscissa

See section 12.13.2 for abscissas in two-dimensional geometry.
The abscissa command takes as argument a point.
abscissa returns the abscissa (x-coordinate) of the point.

Input:

abscissa(point(1,2,3))

Output:

1

13.12.2 The ordinate of a three-dimensional point: ordinate

See section 12.13.3 for ordinates in two-dimensional geometry.
The ordinate command takes as argument a point.
ordinate returns the ordinate (y-coordinate) of the point.

Input:

ordinate(point(1,2,3))

Output:

2

13.12. THREE-DIMENSIONAL COORDINATES 773

13.12.3 The cote of a three-dimensional point: cote

The cote command takes as argument a point.
cote returns the cote (z-coordinate) of the point.

Input:

cote(point(1,2,3))

Output:

3

13.12.4 The coordinates of a point, vector or line in space: coordinates

See section 12.13.4 for coordinates in two-dimensional geometry.
The coordinates command takes as argument a point, vector or line.
If the argument is a point, coordinates returns a list consisting of the ab-

scissa, ordinate and cote.
Input:

coordinates(point(1,2,3))

Output:

[1,2,3]

If the argument is a vector, for example from point A to point B, then coordinates
returns a list of the coordinates of B-A.
Input:

coordinates(vector(point(1,2,3),point(2,4,7)))

Output:

[1,2,4]

If the argument is a line, coordinates returns a list of two points on the
line, in the order determined by the direction of the line.
Input:

coordinates(line(point(-1,1,0),point(1,2,3)))

Output:

[[-1,1,0],[1,2,3]]

Input:

coordinates(line(x-2*y+3=0, 6*x + 3*y - 5*z + 3 = 0))

Output:

[[-1,1,0],[9,6,15]]

coordinates can also take a sequence or list of points as an argument; it
then returns a sequence or list of the coordinates of the points.
Input:

774 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

coordinates(point(0,1,2),point(1,2,4))

Output:

[0,1,2], [1,2,4]

Note that if the argument is a list of real numbers, it is interpreted as a list of points
on the real axis of the plane.
Input:

coordinates([1,2,4])

Output:

[[1,0],[2,0],[4,0]]

13.12.5 The Cartesian equation of an object in space: equation

See section 12.13.7 for Cartesian equations of two-dimensional objects.
The equation command takes as argument a geometric object.
equation returns Cartesian equations which specify the object. The equa-

tions will involve z, y and z, so these variables must be unassigned. If they have
assignments, they can be unassigned with purge(x,y,z).
Input:

equation(line(point(0,1,0),point(1,2,3)))

Output:

x-y+1=0,3*x+3*y-2*z-3=0

Input:

equation(sphere(point(0,1,0),2))

Output:

xˆ2+yˆ2+zˆ2-2*y-3=0

13.12.6 The parametric equation of an object in space: parameq

See section 12.13.8 for parametric equations in two-dimensional geometry.
The parameq command takes as argument a geometric object.
equation returns a parameterization for the object. For a curve, the param-

eter is t, for a surface, the parameters are u and v. These variables must be unas-
signed. If they have assignments, they can be unassigned with purge(t,u,v).
Input:

parameq(line(point(0,1,0),point(1,2,3)))

Output:

[t,t+1,3*t]

Input:

13.12. THREE-DIMENSIONAL COORDINATES 775

parameq(sphere(point(0,1,0),2))

Output:

[2*cos(u)*cos(v),2*cos(u)*sin(v)+1,2*sin(u)]

Input:

normal(parameq(ellipse(point(-1,1,1),point(1,1,1),point(0,1,2))))

Output:

[sqrt(2)*cos(t),1,sin(t)+1]

13.12.7 The length of a segment in space: distance

See section 12.14.2 for distances in two-dimensional geometry.
The distance command takes as arguments two points or two lists with the

coordinates of the points.
distance returns the distance between these two points.

Input:

distance(point(-1,1,1),point(1,1,1))

or:

distance([-1,1,1],[1,1,1])

Output:

2

13.12.8 The length squared of a segment in space: distance2

See section 12.14.3 for squares of lengths in two-dimensional geometry.
The distance2 command takes as arguments two points or two lists with

the coordinates of the points.
distance2 returns the square of the distance between these two points.

Input:

distance2(point(-1,1,1),point(1,1,1))

or:

distance2([-1,1,1],[1,1,1])

Output:

4

776 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.12.9 The measure of an angle in space: angle

See section 12.14.4 for angle measures in two-dimensional geometry.
The angle command takes are arguments one of the following;

• Three points, A, B and C.
angle returns the measure of the undirected angle BAC.
Input:

angle(point(0,0,0),point(1,0,0),point(0,0,1))

Output:

pi/4

• Two intersecting lines.
angle returns the measure of the angle between the lines.
Input:

angle(line([0,0,0],[1,1,0]),line([0,0,0],[1,1,1]))

Output:

acos((sqrt(6))/3)

• A line and a plane.
angle returns the measure of the angle between the line and the plane.
Input:

angle(line([0,0,0],[1,1,0]),plane(x+y+z=0))

Output:

acos((sqrt(6))/3)

13.13 Properties

13.13.1 Check if an object in space is on another object: is_element

See section 12.16.1 for checking elements in two-dimensional geometry.
The is_element command takes as arguments two geometric objects.
is_element returns 1 is the first object is contained in the second, it returns

0 otherwise.
Input:

P := plane([0,0,0],[1,2,-3],[1,1,-2])

then:

is_element(point(2,3,-5),P)

13.13. PROPERTIES 777

Output:

1

Input:

L := line([2,3,-2],[-1,-1,-1]);
P := plane([-1,-1,-1],[1,2,-3],[1,1,-2])

then:

is_element(L,P)

Output:

0

13.13.2 Check if points and/or lines in space are coplanar: is_coplanar

The is_coplanar command takes as arguments a list or sequence of points or
lines.

is_coplanar returns 1 is the objects are coplanar; it returns 0 otherwise.
Input:

is_coplanar([0,0,0],[1,2,-3],[1,1,-2],[2,1,-3])

Output:

1

Input:

is_coplanar([-1,2,0],[1,2,-3],[1,1,-2],[2,1,-3])

Output:

0

Input:

is_coplanar([0,0,0],[1,2,-3],line([1,1,-2],[2,1,-3]))

Output:

1

Input:

is_coplanar(line([-1,2,0],[1,2,-3]),line([1,1,-2],[2,1,-3]))

Output:

0

778 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.13.3 Check if lines and/or planes in space are parallel: is_parallel

See section 12.16.11 for checking for parallels in two-dimensional geometry.
The is_parallel command takes as arguments two lines, two planes or a

line and a plane.
is_parallel returns 1 is the objects are parallel; it returns 0 otherwise.

Input:

L1 := line([0,0,0],[-1,-1,-1])
L2 := line([2,3,-2],[-1,-1,-1])

then:

is_parallel(L1,L2)

Output:

0

Input:

P := plane([-1,-1,-1],[1,2,-3],[0,0,0])

then:

is_parallel(P,L2)

Output:

1

Input:

P1 := plane([0,0,0],[1,2,-3],[1,1,-2])
P2 := plane([1,1,0],[2,3,-3],[2,2,-2])

then:

is_parallel(P1,P2)

Output:

1

13.13.4 Check if lines and/or planes in space are perpendicular: is_perpendicular

See section 12.16.12 for checking for perpendicularity in two-dimensional geom-
etry.

The is_perpendicular command takes as arguments two lines, two planes
or a line and a plane.

is_perpendicular returns 1 is the objects are perpendicular; it returns 0
otherwise. (Note that two lines must be coplanar to be perpendicular.)
Input:

is_perpendicular(line([2,3,-2],[-1,-1,-1]),line([1,0,0],[1,2,8]))

13.13. PROPERTIES 779

Output:

0

Input:

P1 := plane([0,0,0],[1,2,-3],[1,1,-2])
P2 := plane([-1,-1,-1],1,2,-3],[0,0,0])

then:

is_perpendicular(P1,P2)

Output:

1

Input:

L := plane([2,3,-2],[-1,-1,-1])

then:

is_perpendicular(L,P1)

Output:

0

13.13.5 Check if two lines or two spheres in space are orthogonal:
is_orthogonal

See section 12.16.13 for checking for orthogonality in two-dimensional geometry.
The is_orthogonal command takes as arguments two lines, two spheres,

two planes or a line and a plane.
is_orthogonal returns 1 is the objects are orthogonal; it returns 0 other-

wise.
Input:

is_orthogonal(line([2,3,-2],[-1,-1,-1]),line([1,0,0],[1,2,8]))

Output:

1

Input:

is_orthogonal(line([2,3,-2],[-1,-1,-1]),
plane([-1,-1,-1],[-1,0,3],[-2,0,0]))

Output:

1

Input:

780 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

is_orthogonal(plane([0,0,0],[1,2,-3],[1,1,-2]),
plane([-1,-1,-1],[1,2,-3],[0,0,0]))

Output:

1

Input:

is_orthogonal(sphere([0,0,0],sqrt(2)),sphere([2,0,0],sqrt(2)))

Output:

1

13.13.6 Check if three points in space are collinear: is_collinear

See section 12.16.2 for checking for collinearity in two-dimensional geometry.
The is_collinear command takes as argument a list or sequence of points.
is_collinear returns 1 if the points are collinear, it returns 0 otherwise.

Input:

is_collinear([2,0,0],[0,2,0],[1,1,0])

Output:

1

Input:

is_collinear([2,0,0],[0,2,0],[0,1,1])

Output:

0

13.13.7 Check if four points in space are cocyclic: is_concyclic

See section 12.16.3 for checking for concyclicity in two-dimensional geometry.
The is_concyclic command takes as argument a list or sequence of points.
is_concyclic returns 1 if the points are cocyclic, it returns 0 otherwise.

Input:

is_concyclic([2,0,0],[0,2,0],[sqrt(2),sqrt(2),0],
[0,0,2],[2/sqrt(3),2/sqrt(3),2/sqrt(3)])

Output:

1

Input:

is_concyclic([2,0,0],[0,2,0],[1,1,0],[0,0,2],[1,1,1])

Output:

0

13.13. PROPERTIES 781

13.13.8 Check if five points in space are cospherical: is_cospherical

The is_cospherical command takes as arguments a list or sequence of points.
is_cospherical returns 1 if the points are cospherical, it returns 0 if they

are not.
Input:

is_cospherical([2,0,0],[0,2,0],[sqrt(2),sqrt(2),0],
[0,0,2],[2/sqrt(3),2/sqrt(3),2/sqrt(3)])

Output:

1

Input:

is_cospherical([2,0,0],[0,2,0],[1,1,0],[0,0,2],[1,1,1])

Output:

0

13.13.9 Check if an object in space is an equilateral triangle: is_equilateral

See section 12.16.5 for checking for equilateral triangles in two-dimensional ge-
ometry.

The is_equilateral command takes as argument either three points or a
geometric object.

is_equilateral returns 1 if the points are the vertices of an equilateral
triangle or if the object is an equilateral triangle.
Input:

is_equilateral([2,0,0],[0,0,0],[1,sqrt(3),0])

Output:

1

Input:

T := triangle_equilateral([2,0,0],[0,0,0],[1,sqrt(3),0])

then:

is_equilateral(T)

Output:

1

Input:

is_equilateral([2,0,0],[0,2,0],[1,1,0])

Output:

0

782 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.13.10 Check if an object in space is an isosceles triangle: is_isosceles

See section 12.16.6 for checking for isosceles triangles in two-dimensional geom-
etry.

The is_isosceles command takes as argument either three points or a
geometric object.

is_equilateral returns 1, 2, 3 or 4 is the points are the vertices of an
isosceles triangle or if the object is an isosceles triangle, and returns 0 otherwise.
Specifically,

• It returns 4 if the object is an equilateral triangle or if the points are the
vertices of an equilateral triangle.

• It returns 1, 2 or 3, respectively, if the object is an isosceles triangle or if the
points are the vertices of an isosceles triangle and the first, second or third
point is the vertex with equal sides.

Input:

is_isosceles([2,0,0],[0,0,0],[0,2,0])

Output:

2

Input:

T := triangle_isosceles([0,0,0],[2,2,0],[2,2,2])

then:

is_isosceles(T)

Output:

1

Input:

is_isosceles([1,1,0],[-1,1,0],[-1,0,0])

Output:

0

13.13.11 Check if an object in space is a right triangle or a rectangle:
is_rectangle

See section 12.16.7 for checking for right triangles and rectangles in two-dimensional
geometry.

The is_rectangle command checks for both right triangles and rectangles.
It takes as arguments either three points, four points, or a geometric object.

If the arguments are three points or a triangle, then is_rectangle returns
1, 2 or 3 if the points form a right triangle which right angle at the first, second or
third vertex. It returns 0 otherwise.

If the arguments are four points or a quadrilateral, then is_rectangle re-
turns 2 is the points form a square, 1 is they form a rectangle, and 0 otherwise.
Input:

13.13. PROPERTIES 783

is_rectangle([2,0,0],[2,2,0],[0,2,0])

Output:

2

Input:

is_rectangle([2,2,0],[-2,2,0],[-2,-1,0],[2,-1,0])

Output:

1

13.13.12 Check if an object in space is a square: is_square

See section 12.16.8 for checking for squares in two-dimensional geometry.
The is_square command as arguments either four points or a geometric

object.
is_rectangle returns 1 if the four points are the vertices of a square or if

the geometric object is a square, it returns 0 otherwise.
Input:

is_square([2,2,0],[-2,2,0],[-2,-2,0],[2,-2,0])

Output:

1

Input:

S := square([0,0,0],[2,0,0],[0,0,1])

then:

is_square(S)

Output:

1

Input:

is_square([2,2,0],[-2,2,0],[-2,-1,0],[2,-1,0])

Output:

0

784 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.13.13 Check if an object in space is a rhombus: is_rhombus

See section 12.16.9 for checking for rhombuses in two-dimensional geometry.
The is_rhombus command as arguments either four points or a geometric

object.
is_rhombus returns 1 if the four points are the vertices of a rhombus or if

the geometric object is a rhombus, it returns 0 otherwise.
Input:

is_rhombus([2,0,0],[0,1,0],[-2,0,0],[0,-1,0])

Output:

1

Input:

R := rhombus([0,0,0],[2,0,0],[[0,0,1],pi/4])

then:

is_rhombus(S)

Output:

1

Input:

is_rhombus([2,2,0],[-2,2,0],[-2,-1,0],[2,-1,0])

Output:

0

13.13.14 Check if an object in space is a parallelogram: is_parallelogram

See section 12.16.10 for checking for parallelograms in two-dimensional geometry.
The is_parallelogram command as arguments either four points or a

geometric object.
is_parallelogram returns 4, 3, 2 or 1 if the four points are the vertices

of a square, rectangle, rhombus or parallelogram, respectively, or if the geometric
object is a square, rectangle, rhombus or parallelogram. It returns 0 otherwise.
Input:

is_parallelogram([0,0,0],[2,0,0],[3,1,0],[1,1,0])

Output:

1

Input:

is_parallelogram([-1,0,0],[0,1,0],[2,0,0],[0,-1,0])

Output:

13.14. TRANSFORMATIONS IN SPACE 785

0

Input:

P := parallelogram([0,0,0],[2,0,0],[1,1,0])

then:

is_parallelogram(P)

Output:

1

Note that
Input:

P := parallelogram([0,0,0],[2,0,0],[1,1,0],D)

defines P to be a list consisting of the parallelogram and the point D; to test if the
object is a parallelogram, the first component of P needs to be tested.
Input:

is_parallelogram(P[0])

Output:

1

Input:

is_parallelogram([-1,0,0],[0,1,0],[2,0,0],[0,-1,0])

Output:

0

13.14 Transformations in space

13.14.1 General remarks

The transformations in this section operate on any geometric object. They take
as arguments parameters to specify the transformation. They can optionally take
a geometric object as the last argument, in which case the transformed object is
returned. Without the geometric object as an argument, these transformations will
return a new command which performs the transformation. For example, to move
an object P 3 units up, either

translation([0,0,3],P)

or

t := translation([0,0,3])
t(P)

works.

786 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.14.2 Translation in space: translation

See section 12.15.2 for translations in the plane.
The translation command takes one or two arguments. The first argument

is the translation vector given by a list of coordinates, the optional second argument
is a geometric object.

With one argument, translation returns a command which translates ob-
jects along the given vector.
Input:

t := translation([1,1,1])

then:

t(point(1,2,3))

returns and draws the point at (1, 2, 3) + (1, 1, 1) = (2, 3, 4).
With two arguments, a vector and an object, transformation returns and

draws the translated object.
Input:

translation([1,1,1],line([0,0,0],[1,2,3]))

returns and draws the line through (0, 0, 0) + (1, 1, 1) = (1, 1, 1) and (1, 2, 3) +
(1, 1, 1) = (2, 3, 4).

13.14.3 Reflection in space with respect to a plane, line or point: reflection
symmetry

See section 12.15.3 for reflections in the plane.
The reflection command takes one or two arguments. The first argument

is a point, line or plane. The second optional argument is a geometric object.
With one argument, reflection returns a command which reflects an object

across the point, line or plane.
Input:

r := reflection([1,1,1])

then:

r(point(1,2,4))

returns and draws the reflection of the point (1, 2, 4) across the point (1, 1, 1);
namely (1, 1, 1)− [(1, 2, 4)− (1, 1, 1)] = (1, 0,−2).

Given a second argument of a geometric object, reflection returns and
draws the reflected object.
Input:

reflection(line([1,1,0],[-1,-3,0]),point(-1,2,4))

returns and draws the reflection of the point (−1, 2, 4) across the line through
(1, 1, 0) and (−1,−3, 0); namely (16/5, 3/5,−4).

13.14. TRANSFORMATIONS IN SPACE 787

13.14.4 Rotation in space: rotation

See section 12.15.4 for rotations in the plane.
The rotation command takes two or three arguments. The first argument

is a line which is the axis of rotation and the second argument is a real number
representing the angle of rotation. The third optional argument is a geometric
object.

With two arguments, rotation returns a command which rotates an object.
Input:

r := rotation(line(point(0,0,0),point(1,1,1)), 2*pi/3)

then:

r(point(0,0,1))

returns and draws the result of rotating the point (0, 0, 1) about the line through
(0, 0, 0) and (1, 1, 1) through an angle of 2π/3 radians; namely (1, 0, 0).

Given a third argument of a geometric object, rotation returns and draws
the rotated object.
Input:

rotation(line(point(0,0,0),point(1,1,1)), 2*pi/3,
point(0,0,1))

returns and draws the point (1, 0, 0), as above.
Input:

rotation(line(point(0,0,0),point(1,1,1)), 2*pi/3,
line(point(1,0,0),point(0,1,0)))

returns and draws the result of rotating the line through (1, 0, 0) and (0, 1, 0) about
the line through (0, 0, 0) and (1, 1, 1) through an angle of 2π/3 radians; namely
the line through (0, 1, 0) and (0, 0, 1).

13.14.5 Homothety in space: homothety

See section 12.15.5 for homotheties in the plane.
The homothety command takes two or three arguments. The first argument

is a point, the center of the homothety. The second argument is a real number,
which is the scaling ratio. The optional third argument is the object which is trans-
formed.

With two arguments, homothery returns a new command which performs
the dilation.
Input:

h := homothety(point(0,0,0), 2)

then:

h(point(0,0,1))

788 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

returns and draws the point (0, 0, 2), which is the point (0, 0, 1) dilated by a factor
of 2 away from (0, 0, 0).

With a third argument of a geometric object, homothety returns and draws
the dilated object.
Input:

homothety(point(0,0,0), 2, point(0,0,1))

returns and draws (0, 0, 2), as above.
Input:

homothety(point(0,0,0), 2, sphere(point(0,0,0),1))

returns and draws the sphere of radius 2 centered at (0, 0, 0).

13.14.6 Similarity in space: similarity

See section 12.15.6 for similarities in the plane.
The similarity command takes three or four arguments. The first argument

is a line, the axis of rotation; the second argument is a real number, which is the
scaling ratio, and the third argument is another real number, the angle of rotation. If
the scaling ratio is negative, then the direction of rotation is reversed. The optional
fourth argument is the object which is transformed.

With three arguments, similarity returns a new command which scales
and rotated about the given axis.
Input:

s := similarity(line(point(0,0,0),point(1,1,1)), 2,
2*pi/3)

then:

s(point(0,0,1))

returns and draws the point (2, 0, 0), which is the point (0, 0, 1) rotated about the
line through (0, 0, 0) and (1, 1, 1) through an angle of 2π/3 radians and scaled
away from the line by a factor of 2.

With a fourth argument of a geometric object, similarity returns and draws
the transformed object.
Input:

similarity(line(point(0,0,0),point(1,1,1)), 2, 2*pi/3,
point(0,0,1))

returns and draws the point (2, 0, 0), as above.

13.14.7 Inversion in space: inversion

See section 12.15.7 for inversions in the plane.
Given a point P and a real number k, the corresponding inversion of a point A

is the point A′ on the ray
−→
PA satisfying PA · PA′ = k2.

13.14. TRANSFORMATIONS IN SPACE 789

The inversion command takes two or three arguments. The first argument
is a point, the center of inversion; the second argument is a real number, which is
the inversion ratio. The optional third argument is the object which is transformed.

With two arguments, inversion returns a new command which does the
inversion.
Input:

inver := inversion(point(0,0,0), 2)

then:

inver(point(1,2,-2))

returns and draws the point (2/9, 4/9,−4/9), which is the inversion of (1, 2,−2).
With a third argument of a geometric object, inversion returns and draws

the transformed object.

Input:

inversion(point(0,0,0), 2, point(1,2,-2))

returns and draws (2/9, 4/9,−4/9), as above.

13.14.8 Orthogonal projection in space: projection

See section 12.15.8 for projections in the plane.
The projection command takes one or two arguments. The first argument

is a geometric object. The second optional argument is a point. The command will
project the point onto the object.

With one argument, projection returns a new command which projects a
point.
Input:

p1 := projection(line(point(0,0,0), point(1,1,1)))

then:

p1(point(1,0,0))

returns and draws the point (1/3, 1/3, 1/3), which is the projection of (1, 0, 0) onto
the line.
Input:

p2 :=
projection(plane(point(1,0,0),point(0,0,0),point(1,1,1))

then:

p2(point(0,0,1))

returns and draws the point (0, 1/2, 1/2), which is the projection of the point
(0, 0, 1) onto the plane.

With a second argument of a point, inversion returns and draws the projec-
tion of the point.
Input:

790 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

projection(line(point(0,0,0), point(1,1,1)),
point(1,0,0))

returns and draws the point (1/3, 1/3, 1/3), as above.

13.15 Surfaces

13.15.1 Cones: cone

The cone command takes as arguments a point A, a direction vector v and a real
number t.

cone returns and draws the cone with vertex A opening in the direction v with
an aperture of 2t.
Input:

cone([0,1,0],[0,0,1],pi/3)

Output:

13.15.2 Half-cones: half_cone

The half_cone command takes as arguments a point A, a direction vector v and
a real number t.

half_cone returns and draws the half cone with vertex A opening in the
direction v with an aperture of 2t.
Input:

half_cone([0,1,0],[0,0,1],pi/3)

Output:

13.15. SURFACES 791

13.15.3 Cylinders: cylinder

The cylinder command takes as arguments a point A, a direction vector v and
a real number r.

cylinder returns and draws the cylinder with axis through A in the direction
v with a radius of r.
Input:

cylinder([0,1,0],[0,0,1],3)

Output:

13.15.4 Spheres: sphere

The sphere command takes two arguments; either two points or a point and a
real number.

With two points as arguments, sphere returns and draws the sphere with a
diameter specified by the points.
Input:

sphere([-2,0,0],[2,0,0])

Output:

With a point and a real number as arguments, sphere returns and draws the
sphere centered at the point with radius given by the number.
Input:

792 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

sphere([0,0,0],2)

returns and draws the same sphere as above.

13.15.5 The graph of a function of two variables: funcplot

The funcplot command takes two arguments, an expression with two variables
and a list of the two variables.

funcplot returns and draws the graph of the expression.
Input:

funcplot(xˆ2 + yˆ2, [x,y])

Output:

13.15.6 The graph of parametric equations in space: paramplot

The paramplot command takes two arguments, a list of three expressions in-
volving two parameters, and a list of the two parameters.

paramplot returns and draws the parameterized surface; the command paramplot([f(u,v),g(u,v),h(u,v)],[u,v])
will return and draw the surface given by x=f(u,v), y=g(u,v), z=h(u,v).
Input:

paramplot([u*cos(v),u*sin(v),u],[u,v])

Output:

13.16. SOLIDS 793

13.16 Solids

13.16.1 Cubes: cube

The cube command takes as arguments three points, A, B and C.
cube returns and draws the following cube:

• One edge is AB.

• One face is in the plane ABC, on the same side of line AB as is C.

• The cube is on the side of plane ABC that makes the points A, B and C coun-
terclockwise.

Input:

C1 := cube([0,0,0],[0,4,0],[0,0,1])

Output:

Input:

c1,c2,c3,c4,c5,c6,c7,c8 := vertices(C1)

Output:

794 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

Input:

faces(C1)

Output:

[[[0,0,0],[0,4,0],[0,4,4],[0,0,4]],
[[4,0,0],[4,4,0],[4,4,4],[4,0,4]],
[[0,0,0],[4,0,0],[4,0,4],[0,0,4]],
[[0,0,0],[0,4,0],[4,4,0],[4,0,0]],
[[0,4,0],[0,4,4],[4,4,4],[4,4,0]],
[[0,0,4],[4,0,4],[4,4,4],[0,4,4]]]

Input:

C2 := cube([0,0,0],[0,4,0],[0,0,-1])

Output:

Input:

a1,a2,a3,a4,a5,a6,a7,a8 := vertices(C2)

Output:

13.16. SOLIDS 795

13.16.2 Tetrahedrons: tetrahedron pyramid

The tetrahedron (or pyramid) command takes as arguments three or four
points.

When given three points A, B and C as arguments, tetrahedron returns and
draws the regular tetrahedron given by:

• One edge is AB.

• One face is in the plane ABC, on the same side of line AB as is C.

• The tetrahedron is on the side of plane ABC that makes the points A, B and C
counterclockwise.

Input:

tetrahedron([-2,0,0],[2,0,0],[0,2,0])

or:

pyramid([-2,0,0],[2,0,0],[0,2,0])

Output:

Input:

tetrahedron([-2,0,0],[2,0,0],[0,2,0],[0,0,2])

Output:

796 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.16.3 Parallelepipeds: parallelepiped

The parallelepiped command takes as arguments four points, A, B, C and D.
parallelepiped returns and draws the parallelepiped determined by the

edges AB, AC and AD.
Input:

parallelepiped([0,0,0],[5,0,0],[0,5,0],[0,0,5])

Output:

Input:

p := parallelepiped([0,0,0],[5,0,0],[0,3,0],[0,0,2]):;

then:

c1, c2, c3, c4, c5, c6, c7, c8 := vertices(p);

Output:

13.16. SOLIDS 797

13.16.4 Prisms: prism

The prism command takes two arguments, a list of coplanar points [A,B,...]
and an additional point A1.

prism returns and draws the prism whose base is the polygon determined by
the points A, B, . . . , and with edges parallel to AA1.
Input:

prism([[0,0,0],[5,0,0],[0,5,0],[-5,5,0]],[0,0,5])

Output:

13.16.5 Polyhedra: polyhedron

The polyhedron command takes as argument a sequence of points.
polyhedron returns and draws the convex polygon whose vertices are from

the list of points such that the remaining points are inside or on the surface of the
polyhedron.
Input:

polyhedron([0,0,0],[-2,0,0],[2,0,0],[0,2,0],[0,0,2])

Output:

798 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.16.6 Vertices: vertices

The vertices command takes as argument a polyhedron.
vertices returns and draws a list of the vertices of the polyhedron.

Input:

V :=
vertices(polyhedron([0,0,0],[-2,0,0],[2,0,0],[0,2,0],[0,0,2]))

then:

coordinates(V)

Output:

[[0,0,0],[-2,0,0],[2,0,0],[0,2,0],[0,0,2]]

13.16.7 Faces: faces

The faces command takes as argument a polyhedron.
faces returns a list of the faces of the polyhedron.

Input:

faces(polyhedron([1,-1,0],[1,1,0],[0,0,2],[0,0,-2],[-1,1,0],[-1,-1,0]))

Output:

[[[1,-1,0],[1,1,0],[0,0,2]],[[1,-1,0],[1,1,0],[0,0,-2]],
[[1,-1,0],[0,0,2],[-1,-1,0]],[[1,-1,0],[0,0,-2],[-1,-1,0]],
[[1,1,0],[0,0,2],[-1,1,0]],[[1,1,0],[0,0,-2],[-1,1,0]],
[[0,0,2],[-1,1,0],[-1,-1,0]],[[0,0,-2],[-1,1,0],[-1,-1,0]]]

13.17. PLATONIC SOLIDS 799

13.16.8 Edges: line_segments

The line_segments command takes as argument a polyhedron.
line_segments returns and draws a list of the edges of the polyhedron.

Input:

line_segments(polyhedron([0,0,0],[-2,0,0],[2,0,0],[0,2,0],[0,0,2]))

Output:

Input:

line_segments(polyhedron([0,0,0],[-2,0,0],[2,0,0],[0,2,0],[0,0,2]))[1]

Output:

13.17 Platonic solids

To specify a Platonic solid, Xcas works with the center, a vertex and a third point
to specify a plane of symmetry. To speed up calculations, it may be useful to use
approximate calculations, which can be ensured with the evalf command. For
example, instead of:
Input:

centered_cube([0,0,0],[3,2,1],[1,1,0])

it would typically be better to use:
Input:

centered_cube(evalf([0,0,0],[3,2,1],[1,1,0]))

800 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.17.1 Centered tetrahedra: centered_tetrahedron

The centered_tetrahedron command takes as arguments three points, A, B
and C.

centered_tetrahedron returns and draws the tetrahedron centered at A,
with a vertex at B and another vertex on the plane ABC.
Input:

centered_tetrahedron([0,0,0],[0,0,6],[0,1,0])

Output:

13.17.2 Centered cubes: centered_cube

The centered_cube command takes as arguments three points, A, B and C.
centered_cube returns and draws the cube centered at A which has B as a

vertex and ABC as a plane of symmetry. This plane of symmetry has an edge of the
cube containing B, the other endpoint of this edge is on the same side of line AB as
C is.
Input:

centered_cube([0,0,0],[3,3,3],[0,1,0])

Output:

Input:

13.17. PLATONIC SOLIDS 801

centered_cube([0,0,0],[3,3,3],[0,-1,0])

Output:

Note that there are two cubes centered at A, with a vertex at B and with a plane
of symmetry ABC. Each cube has an edge containing B that’s contained in plane of
symmetry, these edges are on opposite sides of the line AB. The cube that cube
returns is the cube whose edge is on the same side of AB as the point C.

13.17.3 Octahedra: octahedron

The octahedron command takes as arguments three points A, B and C.
octahedron returns and draws the octahedron centered at A which has a

vertex at B and with four vertices in the plane ABC.
Input:

octahedron([0,0,0],[0,0,5],[0,1,0])

or:

octahedron([0,0,0],[0,5,0],[0,0,1])

or:

octahedron([0,0,0],[5,0,0],[0,0,1])

Output:

802 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

13.17.4 Dodecahedra: dodecahedron

The dodecahedron command takes as arguments three points, A, B and C.
dodecahedron returns and draws the dodecahedron centered at A with a

vertex at B and with an axis of symmetry in the plane ABC. (Note that each face is
a pentagon, but will be drawn with one of its diagonals and so will show up as a
trapezoid and a triangle.
Input:

dodecahedron([0,0,0],[0,0,5],[0,1,0])

Output:

Input:

dodecahedron([0,0,0],[0,2,sqrt(5)/2 + 3/2], [0,0,1])

Output:

13.17.5 Icosahedra: icosahedron

The icosahedron command takes as arguments three points, A, B and C.
icosahedron returns and draws the icosahedron centered at A with a vertex

at B and such that the plane ABC contains one of the vertices closest to B.
Input:

13.17. PLATONIC SOLIDS 803

icosahedron([0,0,0],[0,0,5],[0,1,0])

Output:

Input:

icosahedron([0,0,0],[0,0,sqrt(5)], [2,1,0])

Output:

804 CHAPTER 13. THREE-DIMENSIONAL GRAPHICS

Chapter 14

Multimedia

14.1 Sounds

14.1.1 Reading a wav file: readwav

The readwav command takes as argument a sound file stored in WAV format (file
extension: .wav), given as a string.

readwav returns a vector consisting of:

• A list consisting of:

– The number of channels (generally 1 for mono and 2 for stereo).

– The number of bits (generally 16).

– The sampling frequency (44100 for a CD quality sound).

– The number of bytes (excluding the header); i.e., the number of sec-
onds times the sampling frequency times the number of bits/8 times
the number of channels.

• A list of digital sound data for each channel.

The result of readwav is typically stored in a variable.
For example, if sound.wav is a sound file for a one-second sound in CD quality
on a 16-bit channel:
Input:

s := readwav("sound.wav")

then:

s[0]

Output:

[1,16,44100,88200]

Input:

size(s)

Output:

805

806 CHAPTER 14. MULTIMEDIA

2

which is the number of channels plus 1.
Input:

size(s[1])

Output:

44100

14.1.2 Writing a wav file: writewav

The writewav command writes sound data to a WAV file.
The writewav command takes two arguments; the name of a file and the

sound data. The sound data can either be in the same format as that returned by the
readwav command or (for a mono sound) a list of the digital data of the sound
which will us the default parameters (16 bits, 44100 Hz).

writewav writes the sound to the named file.
Input:

writewav("la.wav",2ˆ14*sin(2*pi*440*soundsec(1)))

The file la.wav will then contain a sound of frequency 440 Hz sampled 44100
times per second.

14.1.3 Listening to a digital sound: playsnd

The playsnd command takes as argument digitized sound data, which can be
read with the readwav command or generated with the help of soundsec. The
arguments are either in the format of the output of the readwav command or a
list of sampled data for mono sound with the default settings of 1 channel, 16 bits
and 44100 Hz.

playsnd plays the given sound.

14.1.4 Preparing digital sound data: soundsec

The soundsec prepares sound data in the form of a vector.
The soundsec command takes as argument a real number, and an optional

second argument of another real number.
soundsec returns sound data with duration (in seconds) given by the argu-

ment. The optional second argument determines the sampling frequency. The
sound data is returned as a vector, whose ith element is the time corresponding to
index i.
Input:

soundsec(2.5)

returns sound data 2.5 seconds long sampled at the default frequency of 44100 Hz.
Input:

soundsec(1,22050)

14.2. IMAGES 807

returns sound data 1 second long sampled at the frequency of 22050 Hz.
Input:

sin(2*pi*440*soundsec(1.3))

returns a sinusoid with frequency 440 Hz sampled 44100 times per second for 1.3
seconds.

14.2 Images

14.2.1 Image structure in Xcas

An image in Xcas is a list with the following elements.

• The first element is itself a list of three integers; the number of channels
(which will be 3 or 4), the number n of rows and the number p of columns
used for the dimension of the image. Each channel will be an n×p matrix
of integers between 0 and 255.

• A red channel.

• A green channel.

• A transparency channel.

• A blue channel.

The color of the point at line i and column j is determined by the values of the
i,jth entry of the matrices.

Note that the number of points in the structure isn’t necessarily the same as the
number of pixels on the screen when it is drawn. It is possible that a single point in
the structure is represented by a small rectangle of pixels when it is displayed on
the screen.

14.2.2 Reading images: readrgb

The readrgb command takes as argument the name of an image file (it can be
.jpg, .png or .gif).

readrgb returns an Xcas image structure for the image (see section 14.2.1).

14.2.3 Viewing images

Xcas can display images in rectangles in two-dimensions or on surfaces in three-
dimensions with the gl_texture property of the object.
Input:

rectangle(0,200,1/2,gl_texture="picture.jpg")

Input:

sphere([0,0,0],1,gl_material=[gl_texture,"picture.jpg"])

808 CHAPTER 14. MULTIMEDIA

14.2.4 Creating or recreating images: writergb

The writergb writes images to png files; the image can either be read in with
readrgb or created by writergb itself.

Writing images given in Xcas format

To write an existing image, the writergb command takes two arguments, a file
name and an image in Xcas format (see section 14.2.1).

writergb writes the image to the given file.
As an example, suppose the following image is stored in file image1234.jpg.

Using readrgb,

a := readrgb("image1234.jpg")

the variable a will contain a list,

• a[0] will be [4,250,500], the number of channels, the height and the
width of the image.

• a[1], the red channel,

• a[2], the green channel,

• a[3], the transparency channel,

• a[4], the blue channel.

The command
Input:

writergb("image2134.png",[a[0],a[2],a[1],a[3],a[4]])

will produce an image file image2134.png which is simply image1234.png
with the green and red colors switched.

14.2. IMAGES 809

Creating images

The Xcas image format can be typed in by hand.
Input:

writergb("image1.png",[[4,2,2],[[255,0],[0,0]],[[0,255],[0,0]],
[[255,125],[255,255]],[[0,0],[255,0]]])

creates a file image1.png containing an image 2 points by 2 points, the upper
left point is red, the upper right point is a muted green, the lower left point is blue,
and the lower right point is black. The transparency value of 125 for the upper
right point makes it partially transparent and mutes the color.

For larger images, in some cases the matrix operations of Xcas can be used to
create the channels.
Input:

writergb("image2.png",[[4,300,300],makemat(0,300,300),
makemat(0,300,300),

makemat(255,300,300),makemat(0,300,300) +
idn(300)*255])

The writergb command can also take as input a simplified version of the
Xcas image description, which doesn’t involve stating the number of channels,

810 CHAPTER 14. MULTIMEDIA

the size of the image, or the transparency. There is a full color version of this
simplified form and a grayscale version.

To create a full color image, the writergb command takes four arguments,
the name of the file to store the image, the red channel (matrix), the green channel
and the blue channel.
Input:

writergb("image2.png",[[255,250],[0,120]],[[0,255],[0,0]],[[0,0],[255,100]])

creates a file image2.png containing an image 2 points by 2 points, the upper
left point is red (rgb value (255,0,0)), the upper right point is yellow (rgb value
(250,255,0)), the lower left point is blue (rgb value (0,0,255) and the lower right
point is violet (rgb value (120,0,100)).

To create a grayscale image, the writergb command takes two arguments,
the name of the file to store the image and a matrix representing how dark each
point is (where 0 is black and 255 is white).
Input:

writergb("image3.png",[[65,125],[185,200]])

creates a file image3.png containing an image 2 points by 2 points, the upper
left point is dark gray, the upper right point is medium gray, the lower left point is
light gray and the lower right point is even lighter gray.

Chapter 15

Using giac inside a program

15.1 Using giac inside a C++ program

To use giac inside of a C++ program, put

#include <giac/giac.h>

at the beginning of the file. To compile the file, use

c++ -g progname.cc -lgiac -lgmp

After compiling, there will be a file a.out which can be run with the command

./a.out

For example, put the following program in a file named pgcd.cc.

// -*- compile-command: "g++ -g pgcd.cc -lgiac -lgmp" -*-
#include <giac/config.h>
#include <giac/giac.h>

using namespace std;
using namespace giac;

gen pgcd(gen a,gen b){
gen q,r;
for (;b!=0;){

r=irem(a,b,q);
a=b;
b=r;

}
return a;

}

int main(){
cout << "Enter 2 integers ";
gen a,b;
cin >> a >> b;

811

812 CHAPTER 15. USING GIAC INSIDE A PROGRAM

cout << pgcd(a,b) << endl;
return 0;

}

After compiling this with

c++ -g pgcd.cc -lgiac -lgmp

and running it with

./a.out

there will be a prompt

Enter 2 integers

After entering two integers, such as with

Enter 2 integers 30 36

the result will appear,

6

15.2 Defining new giac functions

New giac functions can be defined with a C++ program. All data in the program
used in formal calculations needs to be gen type. A variable g can be declared to
be gen type with

gen g;

In this case, g.type can have different values.

• If g.val is an integer type int, then g.type will be _INT_.

• If g._DOUBLE_val is a real double, g.type will be _DOUBLE_.

• If g._SYMBptr is type symbolic, then g.type will be _SYMB.

• If g._VECTptr is a vector, type vector, then g.type will be _VECT.

• If g._ZINTptr is an integer type zint, then g.type will be _ZINT.

• If g._IDNTptr is an identifier, type idnt, then g.type will be _IDNT.

• If g._CPLXptr is a complex type complex, then g.typewill be _CPLX.

As an example, put the following program in a file called pgcd.cpp.

// -*- mode:C++ ; compile-command: "g++ -I.. -fPIC -DPIC -g -c pgcd.cpp -o pgcd.lo && \
// ln -sf pgcd.lo pgcd.o && \
// gcc -shared pgcd.lo -lc -lgiac -Wl,-soname -Wl,libpgcd.so.0 -o \
// libpgcd.so.0.0.0 && ln -sf libpgcd.so.0.0.0 libpgcd.so.0 && \
// ln -sf libpgcd.so.0.0.0 libpgcd.so" -*-
using namespace std;

15.2. DEFINING NEW GIAC FUNCTIONS 813

#include <stdexcept>
#include <cmath>
#include <cstdlib>
#include <giac/config.h>
#include <giac/giac.h>
//#include "pgcd.h"

#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC

gen monpgcd(const gen & a0,const gen & b0){
gen q,r,a=a0,b=b0;
for (;b!=0;){
r=irem(a,b,q);
a=b;
b=r;

}
return a;

}
gen _monpgcd(const gen & args,GIAC_CONTEXT){

if ((args.type!=_VECT) || (args._VECTptr->size()!=2))
setsizeerr();

vecteur &v=*args._VECTptr;
return monpgcd(v[0],v[1]);

}
const string _monpgcd_s("monpgcd");
unary_function_eval __monpgcd(0,&_monpgcd,_monpgcd_s);
unary_function_ptr at_monpgcd (&__monpgcd,0,true);

#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC

After compiling this with the commands after the compile-command in the
header, namely

g++ -I.. -fPIC -DPIC -g -c pgcd.cpp -o pgcd.lo && \
ln -sf pgcd.lo pgcd.o && \
gcc -shared pgcd.lo -lc -lgiac -Wl,-soname -Wl,libpgcd.so.0 -o \
libpgcd.so.0.0.0 && ln -sf libpgcd.so.0.0.0 libpgcd.so.0 && \
ln -sf libpgcd.so.0.0.0 libpgcd.so

the new command can be inserted with the insmod command in giac, where
insmod takes the full absolute path of the libpgcd.so file as argument.
Input:

insmod("/path/to/file/libpgcd.so")

814 CHAPTER 15. USING GIAC INSIDE A PROGRAM

Afterwords, the monpgcd command will be another giac command.
Input:

monpgcd(30,36)

Output:

6

	Index
	Introduction
	Notations used in this manual
	Interfaces for the giac library
	The Xcas interface
	The command-line interface
	The Firefox interface
	The TeXmacs interface
	Checking the version of giac that you are using: version, giac

	The Xcas interface
	The entry levels
	The starting window
	Getting help
	The menus
	The File menu
	The Edit menu
	The Cfg menu
	The Help menu
	The Toolbox menu
	The Expression menu
	The Cmds menu
	The Prg menu
	The Graphic menu
	The Geo menu
	The Spreadsheet menu
	The Phys menu
	The Highschool menu
	The Turtle menu

	Configuring Xcas
	The number of significant digits: Digits DIGITS
	The language mode: xcas_mode
	The units for angles: angle_radian
	Exact or approximate values: approx_mode
	Complex numbers: complex_mode
	Complex variables: complex_variables
	Configuring the computations
	Configuring the graphics
	More configuration
	The configuration file: widget_size cas_setup xcas_mode xyztrange

	Printing and saving
	Saving a session
	Saving a spreadsheet
	Saving a program
	Printing a session

	Translating to other computer languages
	Translating an expression to LaTeX: latex
	Translating the entire session to LaTeX
	Translating graphical output to LaTeX: graph2tex graph3d2tex
	Translating an expression to MathML: mathml
	Translating a spreadsheet to MathMML
	Translating a Maple file to Xcas: maple2xcas

	Entry in Xcas
	Suppressing output
	Entering comments
	Editing expressions
	Entering expressions in the editor
	Subexpressions
	Manipulating subexpressions

	Previous results
	Spreadsheet
	Opening a spreadsheet
	The spreadsheet window

	Variables
	Variable names
	The CST variable
	Assigning values: := => = assign sto Store
	Assignment by reference: =<
	Copying values of list: copy
	Incrementing variables: += -= *= /=
	Storing and recalling variables and their values: archive unarchive
	Copying variables: CopyVar
	Assumptions on variables: about additionally assume purge supposons and or
	Unassigning variables: VARS purge DelVar del restart rm_a_z rm_all_vars

	Functions
	Defining functions
	Defining piecewise defined functions

	Directories
	Working directories
	Reading files: read load
	Internal directories: NewFold SetFold GetFold DelFold VARS

	The CAS functions
	Symbolic constants : e pi infinity inf i euler_gamma
	Booleans
	The values of a boolean : true false
	Tests : == != > >= < =<
	Boolean operators : or xor and not
	Transform a boolean expression to a list : exp2list
	Transform a list into a boolean expression: list2exp
	Evaluate booleans : evalb

	Bitwise operators
	Operators bitor bitxor bitand
	Bitwise Hamming distance : hamdist

	Strings
	Character and string : "
	The newline character: 92n
	The length of a string: size length
	The left and right parts of a string: left right
	First character, middle and end of a string : head mid tail
	Concatenation of a sequence of words : cumSum
	ASCII code of a character : ord
	ASCII code of a string : asc
	String defined by the ASCII codes of its characters : char
	Find a character in a string : inString
	Concat objects into a string : cat
	Add an object to a string : +
	Transform an integer into a string : cat +
	Transform a string into a number : expr

	Write an integer in base b: convert
	Integers (and Gaussian Integers)
	The factorial : factorial
	GCD : gcd igcd
	GCD : Gcd
	GCD of a list of integers : lgcd
	The least common multiple : lcm
	Decomposition into prime factors : ifactor
	List of prime factors : ifactors
	Matrix of factors : maple_ifactors
	The divisors of a number : idivis divisors
	The integer Euclidean quotient : iquo intDiv div
	The integer Euclidean remainder : irem remain smod mods mod %
	Euclidean quotient and euclidean remainder of two integers : iquorem
	Test of evenness : even
	Test of oddness : odd
	Test of pseudo-primality : is_pseudoprime
	Test of primality : is_prime isprime isPrime
	The smallest pseudo-prime greater than n : nextprime
	The greatest pseudo-prime less than n : prevprime
	The n-th pseudo-prime number : ithprime
	The number of pseudo-primes less than or equal to n: nprimes
	Bézout's Identity : iegcd igcdex
	Solving au+bv=c in Z: iabcuv
	Chinese remainders : ichinrem ichrem
	Chinese remainders for lists of integers : chrem
	Solving a2+b2=p in Z : pa2b2
	The Euler indicatrix : euler phi
	Legendre symbol : legendre_symbol
	Jacobi symbol : jacobi_symbol
	Listing all compositions of an integer into k parts : icomp

	Combinatorial analysis
	Factorial : factorial !
	Binomial coefficients : binomial comb nCr
	Permutations : perm nPr
	Random integers : rand
	Wilf-Zeilberger pairs: wz_certificate

	Rationals
	Transform a floating point number into a rational : exact float2rational
	Integer and fractional part : propfrac propFrac
	Numerator of a fraction after simplification : numergetNum
	Denominator of a fraction after simplification : denom getDenom
	Numerator and denominator of a fraction : f2nd fxnd
	Simplification of a pair of integers : simp2
	Continued fraction representation of a real : dfc
	Transform a continued fraction representation into a real : dfc2f
	The n-th Bernoulli number : bernoulli
	Access to PARI/GP commands: pari

	Real numbers
	Eval a real at a given precision : evalf and Digits, DIGITS
	Usual infixed functions on reals : +,-,*,/,^
	Usual prefixed functions on reals : rdiv
	n-th root : root
	The exponential integral function: Ei
	The logarithmic integral function:Li
	The cosine integral function:Ci
	The sine integral function:Si
	The Heaviside function: Heaviside
	The Dirac distribution: Dirac
	Error function : erf
	Complementary error function: erfc
	The function : Gamma
	The upper incomplete function: ugamma
	The lower incomplete function: igamma
	The function : Beta
	Derivatives of the DiGamma function : Psi
	The function : Zeta
	Airy functions : Airy_Ai and Airy_Bi

	Permutations
	Random permutation : randperm, shuffle
	Previous permutation: prevperm
	Next permutation: nextperm
	Decomposition as a product of disjoint cycles : permu2cycles
	Product of disjoint cycles to permutation: cycles2permu
	Transform a cycle into permutation : cycle2perm
	Transform a permutation into a matrix : permu2mat
	Checking for a permutation : is_permu
	Checking for a cycle : is_cycle
	Product of two permutations : p1op2
	Composition of a cycle and a permutation : c1op2
	Composition of a permutation and a cycle : p1oc2
	Product of two cycles : c1oc2
	Signature of a permutation : signature
	Inverse of a permutation : perminv
	Inverse of a cycle : cycleinv
	Order of a permutation : permuorder
	Group generated by two permutations : groupermu

	Complex numbers
	Usual complex functions : +,-,*,/,^
	Real part of a complex number : re real
	Imaginary part of a complex number : im imag
	Write a complex as re(z)+i*im(z) : evalc
	Modulus of a complex number : abs
	Argument of a complex number : arg
	The normalized complex number : normalize unitV
	Conjugate of a complex number : conj
	Multiplication by the complex conjugate : mult_c_conjugate
	Barycenter of complex numbers : barycenter

	Algebraic numbers
	Definition
	Minimum polynomial of an algebraic number:pmin

	Algebraic expressions
	Evaluate an expression : eval
	Change the evaluation level: eval_level
	Evaluate algebraic expressions : evala
	Prevent evaluation : quote hold '
	Force evaluation : unquote
	Distribution : expand fdistrib
	Canonical form : canonical_form
	Multiplication by the conjugate quantity : mult_conjugate
	Separation of variables : split
	Factorization : factor
	Complex factorization : cFactor
	Zeros of an expression : zeros
	Complex zeros of an expression : cZeros
	Regrouping expressions: regroup
	Normal form : normal
	Simplify : simplify
	Automatic simplification: autosimplify
	Normal form for rational fractions : ratnormal
	Substitute a variable by a value: |
	Substitute a variable by a value : subst
	Substitute a variable by a value: ()
	Substitute a variable by a value (Maple and Mupad compatibility) : subs
	Substitute a subexpression by another expression: algsubs
	Eliminate one or more variables from a list of equations: eliminate
	Evaluate a primitive at boundaries: preval
	Sub-expression of an expression : part

	Values of un
	Array of values of a sequence : tablefunc
	Values of a recurrence relation or a system: seqsolve
	Values of a recurrence relation or a system: rsolve
	Table of values and graph of a recurrent sequence : tableseq and plotseq

	Operators or infixed functions
	Usual operators :+, -, *, /, ^
	Xcas operators
	Define an operator: user_operator

	Functions and expressions with symbolic variables
	The difference between a function and an expression
	Transform an expression into a function : unapply
	Top and leaves of an expression : sommet feuille op

	Functions
	Context-dependent functions.
	Usual functions
	Defining algebraic functions
	Composition of two functions: @
	Repeated function composition: @@
	Define a function with the history : as_function_of

	Functions from R to R
	The domain of a function: domain
	Table of variations of a function: tabvar

	Derivation and applications.
	Functional derivative : function_diff
	Length of an arc : arcLen
	Maximum and minimum of an expression: fMax fMin
	Table of values and graph : tablefunc and plotfunc
	Derivative and partial derivative
	Implicit differentiation : implicitdiff

	Integration
	Antiderivative and definite integral : integrate int Int
	Primitive and definite integral : risch
	Discrete summation: sum
	Riemann sum : sum_riemann
	Integration by parts : ibpdv and ibpu
	Change of variables : subst

	Calculus of variations
	Determining whether a function is convex : convex
	Euler-Lagrange equation(s) : euler_lagrange
	Jacobi equation : jacobi_equation
	Finding conjugate points : conjugate_equation
	An example : finding the surface of revolution with minimal area

	Limits
	Limits : limit
	Integral and limit

	Rewriting transcendental and trigonometric expressions
	Expand a transcendental and trigonometric expression : texpand tExpand
	Combine terms of the same type : combine

	Trigonometry
	Trigonometric functions
	Expand a trigonometric expression : trigexpand
	Linearize a trigonometric expression : tlin
	Increase the phase by /2 in a trigonometric expression: shift_phase
	Put together sine and cosine of the same angle : tcollect tCollect
	Simplify : simplify
	Simplify trigonometric expressions : trigsimplify
	Transform arccos into arcsin : acos2asin
	Transform arccos into arctan : acos2atan
	Transform arcsin into arccos : asin2acos
	Transform arcsin into arctan : asin2atan
	Transform arctan into arcsin : atan2asin
	Transform arctan into arccos : atan2acos
	Transform complex exponentials into sin and cos : sincos exp2trig
	Transform tan(x) into sin(x)/cos(x) : tan2sincos
	Transform sin(x) into cos(x)*tan(x): sin2costan
	Transform cos(x) into sin(x)/tan(x): cos2sintan
	Rewrite tan(x) with sin(2x) and cos(2x) : tan2sincos2
	Rewrite tan(x) with cos(2x) and sin(2x) : tan2cossin2
	Rewrite sin, cos, tan in terms of tan(x/2) : halftan
	Rewrite trigonometric functions as function of tan(x/2) and hyperbolic functions as function of exp(x): halftan_hyp2exp
	Transform inverse trigonometric functions into logarithms : atrig2ln
	Transform trigonometric functions into complex exponentials : trig2exp
	Simplify and express preferentially with sine : trigsin
	Simplify and express preferentially with cosine : trigcos
	Simplify and express preferentially with tangents : trigtan
	Rewrite an expression with different options : convert convertir =>

	Fourier transformation
	Fourier coefficients : fourier_an and fourier_bn or fourier_cn
	Discrete Fourier Transform
	Fast Fourier Transform : fft
	Inverse Fast Fourier Transform : ifft
	An exercise with fft

	Audio Tools
	Creating audio clips : createwav
	Reading WAV files from disk : readwav
	Writing WAV files to disk : writewav
	Audio playback : playsnd
	Averaging channel data : stereo2mono
	Audio clip properties : channels, bit_depth, samplerate, duration
	Extracting samples from audio clips : channel_data
	Changing the sampling rate : resample
	Visualizing waveforms : plotwav
	Visualizing power spectra : plotspectrum

	Signal Processing
	Cross-correlation of two signals : cross_correlation
	Auto-correlation of a signal : auto_correlation
	Convolution of two signals : convolution
	Low-pass filtering : lowpass
	High-pass filtering : highpass
	Apply a moving average filter to a signal : moving_average
	Perform thresholding operations on an array : threshold
	Bartlett-Hann window function : bartlett_hann_window
	Blackman-Harris window function : blackman_harris_window
	Blackman window function : blackman_window
	Bohman window function : bohman_window
	Cosine window function : cosine_window
	Gaussian window function : gaussian_window
	Hamming window function : hamming_window
	Hann-Poisson window function : hann_poisson_window
	Hann window function : hann_window
	Parzen window function : parzen_window
	Poisson window function : poisson_window
	Riemann window function : riemann_window
	Triangular window function : triangle_window
	Tukey window function : tukey_window
	Welch window function : welch_window
	An example : static noise removal by spectral subtraction

	Exponentials and Logarithms
	Rewrite hyperbolic functions as exponentials : hyp2exp
	Expand exponentials : expexpand
	Expand logarithms : lnexpand
	Linearize exponentials : lin
	Collect logarithms : lncollect
	Expand powers : powexpand
	Rewrite a power as an exponential : pow2exp
	Rewrite exp(n*ln(x)) as a power : exp2pow
	Simplify complex exponentials : tsimplify

	Polynomials
	Polynomials of a single variable: poly1
	Polynomials of several variables: %%%{ %%%}
	Convert to a symbolic polynomial : r2e poly2symb
	Convert from a symbolic polynomial : e2r symb2poly
	Transform a polynomial in internal format into a list, and conversely: convert
	Coefficients of a polynomial: coeff coeffs
	Polynomial degree : degree
	Polynomial valuation : valuation ldegree
	Leading coefficient of a polynomial : lcoeff
	Trailing coefficient degree of a polynomial : tcoeff
	Evaluation of a polynomial : peval polyEval
	Factorize xn in a polynomial : factor_xn
	GCD of the coefficients of a polynomial : content
	Primitive part of a polynomial : primpart
	Factorization : collect
	Factorization : factor factoriser
	Square-free factorization : sqrfree
	List of factors : factors
	Evaluate a polynomial : horner
	Rewrite in terms of the powers of (x-a) : ptayl
	Compute with the exact root of a polynomial : rootof
	Exact roots of a polynomial : roots
	Coefficients of a polynomial defined by its roots : pcoeff pcoef
	Truncate of order n : truncate
	Convert a series expansion into a polynomial : convert convertir
	Random polynomial : randpoly randPoly
	Change the order of variables : reorder
	Random list : ranm
	Lagrange's polynomial : lagrange interp
	Trigonometric interpolation : triginterp
	Natural splines: spline
	Rational interpolation : thiele

	Arithmetic and polynomials
	The divisors of a polynomial : divis
	Euclidean quotient : quo
	Euclidean quotient : Quo
	Euclidean remainder : rem
	Euclidean remainder: Rem
	Quotient and remainder : quorem divide
	GCD of two polynomials with the Euclidean algorithm: gcd
	GCD of two polynomials with the Euclidean algorithm : Gcd
	Choosing the GCD algorithm of two polynomials : ezgcd heugcd modgcd psrgcd
	LCM of two polynomials : lcm
	Bézout's Identity : egcd gcdex
	Solving au+bv=c over polynomials: abcuv
	Chinese remainders : chinrem
	Cyclotomic polynomial : cyclotomic
	Sturm sequences and number of sign changes of P on (a, b] : sturm
	Number of zeros in [a,b) : sturmab
	Sturm sequences : sturmseq
	Sylvester matrix of two polynomials : sylvester
	Resultant of two polynomials : resultant

	Orthogonal polynomials
	Legendre polynomials: legendre
	Hermite polynomial : hermite
	Laguerre polynomials: laguerre
	Tchebychev polynomials of the first kind: tchebyshev1
	Tchebychev polynomial of the second kind: tchebyshev2

	Gröbner basis and Gröbner reduction
	Gröbner basis : gbasis
	Gröbner reduction : greduce
	Test if a polynomial or list of polynomials belongs to an ideal given by a Gröbner basis: in_ideal
	Build a polynomial from its evaluation : genpoly

	Rational fractions
	Numerator : getNum
	Numerator after simplification : numer
	Denominator : getDenom
	Denominator after simplification : denom
	Numerator and denominator : f2nd fxnd
	Simplify : simp2
	Common denominator : comDenom
	Integer and fractional part : propfrac
	Partial fraction expansion : partfrac
	Partial fraction expansion over C: cpartfrac

	Exact roots of a polynomial
	Exact bounds for complex roots of a polynomial : complexroot
	Exact bounds for real roots of a polynomial : realroot
	Exact bounds for real roots of a polynomial: VAS
	Exact bounds for positive real roots of a polynomial: VAS_positive
	An upper bound for the positive real roots of a polynomial: posubLMQ
	A lower bound for the positive real roots of a polynomial: poslbdLMQ
	Exact values of rational roots of a polynomial : rationalroot
	Exact values of the complex rational roots of a polynomial: crationalroot

	Exact roots and poles
	Roots and poles of a rational function : froot
	Rational function given by roots and poles : fcoeff

	Computing in Z/pZ or in Z/pZ[x]
	Expand and reduce : normal
	Addition in Z/pZ or in Z/pZ[x] : +
	Subtraction in Z/pZ or in Z/pZ[x] : -
	Multiplication in Z/pZ or in Z/pZ[x] : *
	Euclidean quotient : quo
	Euclidean remainder : rem
	Euclidean quotient and euclidean remainder : quorem
	Division in Z/pZ or in Z/pZ[x] : /
	Power in Z/pZ and in Z/pZ[x] : ^
	Compute an -5mumod5mu- p : powmod powermod
	Inverse in Z/pZ : inv inverse or /
	Rebuild a fraction from its value modulo p : fracmod iratrecon
	GCD in Z/pZ[x] : gcd
	Factorization over Z/pZ[x] : factor factoriser
	Determinant of a matrix in Z/pZ : det
	Inverse of a matrix with coefficients in Z/pZ : inv inverse
	Row reduction to echelon form in Z/pZ : rref
	Construction of a Galois field : GF
	Factorize a polynomial with coefficients in a Galois field : factor

	Compute in Z/pZ[x] using Maple syntax
	Euclidean quotient : Quo
	Euclidean remainder: Rem
	GCD in Z/pZ[x] : Gcd
	Factorization in Z/pZ[x] : Factor
	Determinant of a matrix with coefficients in Z/pZ : Det
	Inverse of a matrix in Z/pZ : Inverse
	Row reduction to echelon form in Z/pZ : Rref

	Taylor and asymptotic expansions
	Division by increasing power order : divpc
	Taylor expansion : taylor
	Series expansion : series
	The inverse of a series: revert
	The residue of an expression at a point : residue
	Padé expansion: pade

	Ranges of values
	Definition of a range of values: a1..a2
	Boundaries of a range of values: left right
	Center of a range of values: interval2center
	Ranges of values defined by their center : center2interval

	Intervals
	Defining intervals: i[]
	The endpoints of an interval: left,right
	Adding intervals
	The negative of an interval
	Multiplying intervals
	The reciprocal of an interval
	The midpoint of an interval: midpoint
	The union of intervals: union
	The intersection of intervals: intersect
	Test if an object is in an interval: contains
	Convert a number to an interval: convert

	Sequences
	Definition : seq[] ()
	Concat two sequences : ,
	Get an element of a sequence : [], [[]]
	Sub-sequence of a sequence : []
	Make a sequence or a list : seq $
	Transform a sequence into a list : [] nop
	The + operator applied on sequences

	Sets
	Definition : set[]
	Union of two sets or of two lists : union
	Intersection of two sets or of two lists : intersect
	Difference of two sets or of two lists : minus
	Defining an n-tuple: tuple

	Lists and vectors
	Definition
	Define a list: makelist
	Flatten a list: flatten
	Get an element or a sub-list of a list : at []
	Extract a sub-list : mid
	Get the first element of a list : head
	Remove an element in a list : suppress
	Insert an element into a list or a string: insert
	Remove the first element : tail
	The right and left portions of a list: right, left
	Reverse order in a list : revlist
	Reverse a list starting from its n-th element : rotate
	Permuted list from its n-th element : shift
	Modify an element in a list : subsop
	Transform a list into a sequence : op makesuite
	Transform a sequence into a list : makevector []
	Length of a list : size nops length
	Sizes of a list of lists : sizes
	Concatenate two lists or a list and an element : concat augment
	Append an element at the end of a list : append
	Prepend an element at the beginning of a list : prepend
	Sort : sort
	Sort a list by increasing order : SortA
	Sort a list by decreasing order : SortD
	Select the elements of a list : select
	Remove elements of a list : remove
	Test if a value is in a list : member
	Test if a value is in a list : contains
	Sum of list (or matrix) elements transformed by a function : count
	Number of elements equal to a given value : count_eq
	Number of elements smaller than a given value : count_inf
	Number of elements greater than a given value : count_sup
	Sum of elements of a list : sum add
	Cumulated sum of the elements of a list : cumSum
	Product : product mul
	Apply a function of one variable to the elements of a list : map apply of
	Apply a bivariate function to the elements of two lists : zip
	Fold operators : foldl, foldr
	Make a list with zeros : newList
	Make a list of integers: range
	Make a list with a function : makelist
	Make a random vector or list : randvector
	List of differences of consecutive terms : deltalist
	Make a matrix with a list : list2mat
	Make a list with a matrix : mat2list

	Functions for vectors
	Norms of a vector : maxnorm l1norm l2norm norm
	Normalize a vector : normalize unitV
	Term by term sum of two lists : + .+
	Term by term difference of two lists : - .-
	Term by term product of two lists : .*
	Term by term quotient of two lists : ./
	Scalar product : scalar_product * dotprod dot dotP scalar_Product
	Cross product : cross crossP crossproduct

	Statistics functions : mean,variance,stddev, stddevp,median,quantile,quartiles,boxwhisker
	Table with strings as indexes : table
	Usual matrix
	Identity matrix : idn identity
	Zero matrix : newMat matrix
	Random matrix : ranm randMat randmatrix
	Diagonal of a matrix or matrix of a diagonal : BlockDiagonal diag
	Jordan block : JordanBlock
	Hilbert matrix : hilbert
	Vandermonde matrix : vandermonde

	Creating matrices and extracting elements
	Creating matrices and modifying elements by assignment
	Changing a matrix by multi-assigment
	Build a matrix with a function : makemat
	Define a matrix : matrix
	Modify an element or row of a matrix assigned to a variable: ::=, =<

	Arithmetic and matrices
	Evaluate a matrix : evalm
	Addition and subtraction of two matrices : + - .+ .-
	Multiplication of two matrices : * &*
	Addition of elements of a column of a matrix : sum
	Cumulated sum of elements of each column of a matrix : cumSum
	Multiplication of elements of each column of a matrix : product
	Power of a matrix : ^ &^
	Hadamard product : hadamard, product
	Hadamard product (infixed version): .*
	Hadamard division (infixed version): ./
	Hadamard power (infixed version): .^
	Extracting element(s) of a matrix : [] at
	Modify an element or a row of a matrix : subsop
	Extract rows or columns of a matrix (Maple compatibility) : row col
	Remove rows or columns of a matrix : delrows delcols
	Extract a sub-matrix of a matrix (TI compatibility) : subMat
	Resize a matrix or vector:REDIM, redim
	Replacing part of a matrix or vector: REPLACE, replace
	Add a row to another row : rowAdd
	Multiply a row by an expression : mRow, scale, SCALE
	Add k times a row to an another row : mRowAdd, scaleadd, SCALEADD
	Exchange two rows : rowSwap, rowswap, swaprow
	Exchange two columns : colSwap, colswap, swapcol
	Make a matrix with a list of matrices : blockmatrix
	Make a matrix from two matrices : semi_augment
	Make a matrix from two matrices : augment concat
	Append a column to a matrix : border
	Count the elements of a matrix verifying a property : count
	Count the elements equal to a given value : count_eq
	Count the elements smaller than a given value : count_inf
	Count the elements greater than a given value : count_sup
	Statistics functions acting on column matrices : mean, stddev, variance, median, quantile, quartiles, boxwhisker
	Dimension of a matrix : dim
	Number of rows : rowdim rowDim nrows
	Number of columns : coldim colDim ncols

	Sparse matrices
	Defining sparse matrices
	Operations on sparse matrices

	Linear algebra
	Transpose of a matrix : tran transpose
	Inverse of a matrix : inv /
	Trace of a matrix : trace
	Determinant of a matrix : det
	Determinant of a sparse matrix : det_minor
	Rank of a matrix : rank
	Transconjugate of a matrix : trn
	Equivalent matrix : changebase
	Basis of a linear subspace : basis
	Basis of the intersection of two subspaces : ibasis
	Image of a linear function : image
	Kernel of a linear function : kernel nullspace ker
	Kernel of a linear function : Nullspace
	Subspace generated by the columns of a matrix : colspace
	Subspace generated by the rows of a matrix : rowspace

	Linear Programmation
	Simplex algorithm: simplex_reduce
	Solving general linear programming problems: lpsolve
	Solving transportation problems: tpsolve

	Nonlinear optimization
	Global extrema: minimize maximize
	Local extrema: extrema
	Global extrema without using derivatives : nlpsolve
	Minimax polynomial approximation: minimax

	Different matrix norms
	The Frobenius norm: frobenius_norm
	l2 matrix norm : norm l2norm
	l matrix norm : maxnorm
	Matrix row norm : rownorm rowNorm
	Matrix column norm : colnorm colNorm
	The operator norm of a matrix: matrix_norm, l1norm, l2norm, norm, specnorm, linfnorm

	Matrix reduction
	Eigenvalues : eigenvals
	Eigenvalues : egvl eigenvalues eigVl
	Eigenvectors : egv eigenvectors eigenvects eigVc
	Rational Jordan matrix : rat_jordan
	Jordan normal form : jordan
	Powers of a square matrix: matpow
	Characteristic polynomial : charpoly
	Characteristic polynomial using Hessenberg algorithm : pcar_hessenberg
	Minimal polynomial : pmin
	Adjoint matrix : adjoint_matrix
	Companion matrix of a polynomial : companion
	Hessenberg matrix reduction : hessenberg
	Hermite normal form : ihermite
	Smith normal form in Z: ismith
	Smith normal form: smith

	Isometries
	Recognize an isometry : isom
	Find the matrix of an isometry : mkisom

	Matrix factorizations
	Cholesky decomposition : cholesky
	QR decomposition : qr
	QR decomposition (for TI compatibility) : QR
	LQ decomposition (HP compatible): LQ
	LU decomposition : lu
	LU decomposition (for TI compatibility) : LU
	Singular values (HP compatible): SVL, svl
	Singular value decomposition : svd
	Short basis of a lattice : lll

	Quadratic forms
	Matrix of a quadratic form : q2a
	Transform a matrix into a quadratic form : a2q
	Reduction of a quadratic form : gauss
	The conjugate gradient algorithm: conjugate_gradient
	Gram-Schmidt orthonormalization : gramschmidt
	Graph of a conic : conic
	Conic reduction : reduced_conic
	Graph of a quadric: quadric
	Quadric reduction : reduced_quadric

	Multivariate calculus
	Gradient : derive deriver diff grad
	Laplacian : laplacian
	Hessian matrix : hessian
	Divergence : divergence
	Rotational : curl
	Potential : potential
	Conservative flux field : vpotential

	Equations
	Define an equation : equal
	Transform an equation into a difference : equal2diff
	Transform an equation into a list : equal2list
	The left member of an equation : left gauche lhs
	The right member of an equation : right droit rhs
	Solving equation(s): solve
	Equation solving in C : cSolve

	Linear systems
	Matrix of a system : syst2mat
	Gauss reduction of a matrix : ref
	Gauss-Jordan reduction: rref gaussjord
	Solving A*X=B : simult
	Step by step Gauss-Jordan reduction of a matrix : pivot
	Linear system solving: linsolve
	Solving a linear system using the Jacobi iteration method: jacobi_linsolve
	Solving a linear system using the Gauss-Seidel iteration method: gauss_seidel_linsolve
	The least squares solution of a linear system: LSQ, lsq
	Finding linear recurrences : reverse_rsolve

	Differential equations
	Solving differential equations : desolve deSolve dsolve
	Laplace transform and inverse Laplace transform : laplace ilaplace invlaplace
	Solving linear homogeneous second-order ODE with rational coefficients : kovacicsols

	The Z-transform
	The Z-transform of a sequence: ztrans
	The inverse Z-transform of a rational function: invztrans

	Other functions
	Replace small values by 0: epsilon2zero
	List of variables : lname indets
	List of variables and of expressions : lvar
	List of variables of an algebraic expressions: algvar
	Test if a variable is in an expression : has
	Numeric evaluation : evalf
	Rational approximation : float2rational exact

	The day of the week: dayofweek

	Metric properties of curves
	The center of curvature
	Computing the curvature and related values: curvature, osculating_circle, evolute

	Graphs
	Generalities
	The graphic screen
	Graph and geometric objects attributes
	Individual attributes
	Global attributes

	Graph of a function : plotfunc funcplot DrawFunc Graph
	2-d graph
	3-d graph
	3-d graph with rainbow colors
	4-d graph.

	2d graph for Maple compatibility : plot
	3d surfaces for Maple compatibility plot3d
	Graph of a line and tangent to a graph
	Draw a line : line
	Draw an 2D horizontal line : LineHorz
	Draw a 2D vertical line : LineVert
	Tangent to a 2D graph : LineTan
	Tangent to a 2D graph : tangent
	Plot a line with a point and the slope: DrawSlp
	Intersection of a 2D graph with the axis

	Graph of inequalities with 2 variables : plotinequation inequationplot
	The area under a curve: area
	Graph of the area below a curve : plotarea areaplot
	Contour lines: plotcontour contourplot DrwCtour
	2-d graph of a 2-d function with colors : plotdensity densityplot
	Implicit graph: plotimplicit implicitplot
	2D implicit curve
	3D implicit surface

	Parametric curves and surfaces : plotparam paramplot DrawParm
	2D parametric curve
	3D parametric surface : plotparam paramplot DrawParm

	Bezier curves: bezier
	Curve defined in polar coordinates : plotpolar polarplot DrawPol courbe_polaire
	Graph of a recurrent sequence : plotseq seqplot graphe_suite
	Tangent field : plotfield fieldplot
	Plotting a solution of a differential equation : plotode odeplot
	Interactive plotting of solutions of a differential equation : interactive_plotode interactive_odeplot
	Animated graphs (2D, 3D or "4D")
	Animation of a 2D graph : animate
	Animation of a 3D graph : animate3d
	Animation of a sequence of graphic objects : animation

	Statistics
	One variable statistics
	The mean: mean
	Variance and standard deviation: variance stdev
	The population standard deviation: stddevp stdDev
	The median: median
	Quartiles: quartiles quartile1 quartile3
	Quantiles: quantile
	The boxwhisker: boxwhisker mustache
	Classes: classes
	Histograms: histogram histogramme
	Accumulating terms: accumulate_head_tail
	Frequencies: frequencies frequences
	Cumulative frequencies: cumulated_frequencies frequences_cumulees
	Bar graphs: bar_plot
	Pie charts: camembert

	Two variable statistics
	Covariance and correlation: covariance correlation covariance_correlation
	Scatterplots: scatterplot nuaged_points batons
	Polygonal paths: polygonplot ligne_polygonale linear_interpolate listplot plotlist
	Linear regression: linear_regression linear_regression_plot
	Exponential regression: exponential_regression exponential_regression_plot
	Logarithmic regression: logarithmic_regression logarithmic_regression_plot
	Power regression: power_regression power_regression_plot
	Polynomial regression: polynomial_regression polynomial_regression_plot
	Logistic regression: logistic_regression logistic_regression_plot

	Random numbers
	Producing uniformly distributed random numbers: rand random alea hasard
	Initializing the random number generator: srand randseed RandSeed
	Producing random numbers with the binomial distribution: randbinomial
	Producing random numbers with a multinomial distribution: randmultinomial
	Producing random numbers with a Poisson distribution: randpoisson
	Producing random numbers with a normal distribution: randnorm randNorm
	Producing random numbers with an exponential distribution: randexp
	Producing random matrices: randmatrix ranm randMat
	Random variables : random_variable randvar

	Density and distribution functions
	The binomial distribution
	The negative binomial distribution
	The multinomial probability function: multinomial
	The Poisson distribution
	Normal distributions
	Student's distribution
	The 2 distribution
	The Fisher-Snédécor distribution
	The gamma distribution
	The beta distribution
	The geometric distribution
	The Cauchy distribution
	The uniform distribution
	The exponential distribution
	The Weibull distribution
	The Kolmogorov-Smirnov distribution: kolmogorovd
	The Wilconon or Mann-Whitney distribution
	The Wilconon test polynomial: wilcoxonp
	Moment generating functions for probability distributions: mgf
	Cumulative distribution functions: cdf
	Inverse distribution functions: icdf
	Kernel density estimation : kernel_density, kde
	Distribution fitting by maximum likelihood : fitdistr
	Markov chains: markov
	Generating a random walks: randmarkov

	Hypothesis testing
	General
	Testing the mean with the Z test: normalt
	Testing the mean with the T test: studentt
	Testing a distribution with the 2 distribution: chisquaret
	Testing a distribution with the Kolmogorov-Smirnov distribution: kolmogorovt

	Numerical computations
	Floating point representation.
	Digits
	Representation by hardware floats
	Examples of representations of normalized floats
	Difference between the representation of (3.1-3) and of 0.1

	Approx. evaluation : evalf approx and Digits
	Numerical algorithms
	Approximate solution of an equation : newton
	Approximate computation of the derivative number : nDeriv
	Approximate computation of integrals : romberg nInt
	Approximate integral with an adaptive Gaussian quadrature at 15 points: gaussquad
	Approximate solution of y'=f(t,y) : odesolve
	Approximate solution of the system v'=f(t,v) : odesolve
	Approximate solution of a nonlinear second-order boundary value problem : bvpsolve

	Solve equations with fsolve nSolve
	fsolve or nSolve with the option bisection_solver
	fsolve or nSolve with the option brent_solver
	fsolve or nSolve with the option falsepos_solver
	fsolve or nSolve with the option newton_solver
	fsolve or nSolve with the option secant_solver
	fsolve or nSolve with the option steffenson_solver

	Solve systems with fsolve
	fsolve with the option dnewton_solver
	fsolve with the option hybrid_solver
	fsolve with the option hybrids_solver
	fsolve with the option newtonj_solver
	fsolve with the option hybridj_solver
	fsolve with the option hybridsj_solver

	Solving equations or systems over C: cfsolve
	Numeric roots of a polynomial : proot
	Numeric factorization of a matrix : cholesky qr lu svd

	Unit objects and physical constants
	Unit objects
	Notation of unit objects
	Computing with units
	Convert units into MKSA units : mksa
	Convert units : convert, =>
	Convert between Celsius and Fahrenheit: Celsius2Fahrenheit, Fahrenheit2Celsius
	Factorize a unit : ufactor
	Simplify a unit : usimplify
	Unit prefixes

	Constants
	Notation of physical constants
	Constants Library

	Programming
	Functions, programs and scripts
	The program editor
	Functions: function, endfunction, { }, local, return
	Local variables
	Default values of the parameters
	Programs
	Scripts
	Code blocks

	Basic instructions
	Comments: //
	Input: input, Input, InputStr, textinput, output, Output
	Reading a single keystroke: getKey
	Checking conditions: assert
	Checking the type of the argument: type, subtype, compare, getType
	Printing: print, Disp, ClrIO
	Displaying exponents: printpow
	Infixed assignments: =>, :=, =<
	Assignment by copying: copy
	The difference between := and =<

	Control structures
	if statements: if, then, else, end, elif
	The switch statement: switch, case, default
	The for loop: for, from, to, step, do, end_for
	The repeat loop: repeat, until
	The while loop: while
	Breaking out a loop: break
	Going to the next iteration of a loop: continue
	Changing the order of execution: goto, label

	Other useful instructions
	Define a function with a variable number of arguments: args
	Assignments in a program
	Writing variable values to a file: write
	Writing output to a file: fopen, fclose, fprint
	Using strings as names: #
	Using strings as commands: expr
	Converting an expression to a string: string
	Converting a real number into a string: format
	Working with the graphics screen: DispG, DispHome, ClrGraph, ClrDraw
	Pausing a program: Pause, WAIT
	Dealing with errors: try, catch, throw, error, ERROR

	Debugging
	Starting the debugger: debug, sst, in, sst_in, cont, kill, break, breakpoint, halt, rmbrk, rmbreakpoint, watch, rmwtch

	Two-dimensional Graphics
	Introduction
	Points, vectors and complex numbers

	Basic commands
	Clear the DispG screen: erase
	Toggle the axes: switch_axes
	Draw unit vectors in the plane: Ox_2d_unit_vector Oy_2d_unit_vector frame_2d
	Draw dotted paper: dot_paper
	Draw lined paper: line_paper
	Draw grid paper: grid_paper
	Draw triangular paper: triangle_paper

	Display features of graphics
	Graphic features
	Parameters for changing features
	Commands for global display features

	Define geometric objects without drawing them: nodisp
	Geometric demonstrations: assume
	Points in the plane
	Points and complex numbers
	The point in the plane: point
	The difference and sum of two points in the plane:+, -
	Define random points in the plane: point2d
	Points in polar coordinates: polar_point, point_polar
	Find a point of intersection of two objects in the plane: single_inter line_inter
	Find the points of intersection of two geometric objects in the plane: inter
	Find the orthocenter of a triangle in the plane: orthocenter
	Find the midpoint of a segment in the plane: midpoint
	The barycenter in the plane: barycenter
	The isobarycenter of n points in the plane: isobarycenter
	The center of a circle in the plane: center
	The vertices of a polygon in the plane: vertices, vertices_abc
	The vertices of a polygon in the plane, closed: vertices_abca
	A point on a geometric object in the plane: element

	Lines in plane geometry
	Lines and directed lines in the plane: line
	Half-lines in the plane: half_line
	Line segments in the plane: segment Line
	Vectors in the plane: segment vector
	Parallel lines in the plane: parallel
	Perpendicular lines in the plane: perpendicular
	Tangents to curves in the plane: tangent
	The median of a triangle in the plane: median_line
	The altitude of a triangle: altitude
	The perpendicular bisector of a segment in the plane: perpen_bisector
	The angle bisector: bisector
	The exterior angle bisector: exbisector

	Triangles in the plane
	Arbitrary triangles in the plane: triangle
	Isosceles triangles in the plane: isosceles_triangle
	Right triangles in the plane: right_triangle
	Equilateral triangles in the plane: equilateral_triangle

	Quadrilaterals in the plane
	Squares in the plane: square
	Rhombuses in the plane: rhombus
	Rectangles in the plane: rectangle
	Parallelograms in the plane: parallelogram
	Arbitrary quadrilaterals in the plane: quadrilateral

	Other polygons in the plane
	Regular hexagons in the plane: hexagon
	Regular polygons in the plane: isopolygon
	General polygons in the plane: polygon
	Polygonal lines in the plane: open_polygon
	Convex hulls: convexhull

	Circles
	Circles and arcs in the plane: circle
	Circular arcs: arc
	Circles (TI compatibility): Circle
	Inscribed circles: incircle
	Circumscribed circles: circumcircle
	Excircles: excircle
	The power of a point relative to a circle: powerpc
	The radical axis of two circles: radical_axis

	Other conic sections
	The ellipse in the plane: ellipse
	The hyperbola in the plane: hyperbola
	The parabola in the plane: parabola

	Coordinates in the plane
	The affix of a point or vector: affix
	The abscissa of a point or vector in the plane: abscissa
	The ordinate of a point or vector in the plane: ordinate
	The coordinates of a point, vector or line in the plane: coordinates
	The rectangular coordinates of a point: rectangular_coordinates
	The polar coordinates of a point: polar_coordinates
	The Cartesian equation of a geometric object in the plane: equation
	The parametric equation of a geometric object in the plane: parameq

	Measurements
	Measurement and display: distanceat distanceatraw angleat angleatraw areaat areaatraw perimeterat perimeteratraw slopeat slopeatraw extract_measure
	The distance between objects in the plane: distance
	The length squared of a segment in the plane: distance2
	The measure of an angle in the plane: angle
	The graphical representation of the area of a polygon: plotareaareaplot
	The area of a polygon: area
	The perimeter of a polygon: perimeter
	The slope of a line: slope
	The radius of a circle: radius
	The length of a vector: abs
	The angle of a vector: arg
	Normalize a complex number: normalize

	Transformations
	General remarks
	Translations in the plane: translation
	Reflections in the plane: reflection
	Rotation in the plane: rotation
	Homothety in the plane: homothety
	Similarity in the plane: similarity
	Inversion in the plane: inversion
	Orthogonal projection in the plane: projection

	Properties
	Check if a point is on an object in the plane: is_element
	Check if three points are collinear in the plane: is_collinear
	Check if four points are concyclic in the plane: is_concyclic
	Check if a point is in a polygon or circle: is_inside
	Check if an object is an equilateral triangle in the plane: is_equilateral
	Check if an object in the plane is an isosceles triangle: is_isosceles
	Check if an object in the plane is a right triangle or a rectangle: is_rectangle
	Check if an object in the plane is a square: is_square
	Check if an object in the plane is a rhombus: is_rhombus
	Check if an object in the plane is a parallelogram: is_parallelogram
	Check it two lines in the plane are parallel: is_parallel
	Check if two lines in the plane are perpendicular: is_perpendicular
	Check if two circles in the plane are orthogonal: is_orthogonal
	Check if elements are conjugates: is_conjugate
	Check if four points form a harmonic division: is_harmonic
	Check if lines are in a bundle: is_harmonic_line_bundle
	Check if circles are in a bundle: is_harmonic_circle_bundle

	Harmonic division
	Find a point dividing a segment in the harminic ratio k: division_point
	The cross ratio of four collinear points: cross_ratio
	Harmonic division: harmonic_division
	The harmonic conjugate: harmonic_conjugate
	Pole and polar: pole polar
	The polar reciprocal: reciprocation

	Loci and envelopes
	Loci: locus
	Envelopes: envelope
	The trace of a geometric object: trace

	Three-dimensional Graphics
	Introduction
	Change the view
	The axes
	Draw unit vectors: Ox_3d_unit_vector Oy_3d_unit_vector Oz_3d_unit_vector frame_3d

	Points in space
	Define a point in three-dimensions: point
	Define a random point in three-dimensions: point3d
	Find an intersection point of two objects in space: single_inter line_inter
	Find the intersection points of two objects in space: inter
	Find the midpoint of a segment in space: midpoint
	Find the isobarycenter of a set of points in space: isobarycenter
	Find the barycenter of a set of points in space: barycenter

	Lines in space
	Lines and directed lines in space: line
	Half lines in space: half_line
	Segments in space: segment
	Vectors in space: vector
	Parallel lines and planes in space: parallel
	Perpendicular lines and planes in space: perpendicular
	Planes orthogonal to lines and lines orthogonal to planes in space: orthogonal
	Common perpendiculars to lines in space: common_perpendicular

	Planes in space
	Planes in space: plane
	The bisector plane in space: perpen_bisector
	Tangent planes in space: tangent

	Triangles in space
	Draw a triangle in space: triangle
	Isosceles triangles in space: isosceles_triangle
	Right triangles in space: right_triangle
	Equilateral triangles in space: equilateral_triangle

	Quadrilaterals in space
	Squares in space: square
	Rhombuses in space: rhombus
	Rectangles in space: rectangle
	Parallelograms in space: parallelogram
	Arbitrary quadrilaterals in space: quadrilateral

	Polygons in space
	Hexagons in space: hexagon
	Regular polygons in space: isopolygon
	General polygons in space: polygon
	Polygonal lines in space: open_polygon

	Circles in space: circle
	Conics in space
	Ellipses in space: ellipse
	Hyperbolas in space: hyperbola
	Parabolas in space: parabola

	Three-dimensional coordinates
	The abscissa of a three-dimensional point: abscissa
	The ordinate of a three-dimensional point: ordinate
	The cote of a three-dimensional point: cote
	The coordinates of a point, vector or line in space: coordinates
	The Cartesian equation of an object in space: equation
	The parametric equation of an object in space: parameq
	The length of a segment in space: distance
	The length squared of a segment in space: distance2
	The measure of an angle in space: angle

	Properties
	Check if an object in space is on another object: is_element
	Check if points and/or lines in space are coplanar: is_coplanar
	Check if lines and/or planes in space are parallel: is_parallel
	Check if lines and/or planes in space are perpendicular: is_perpendicular
	Check if two lines or two spheres in space are orthogonal: is_orthogonal
	Check if three points in space are collinear: is_collinear
	Check if four points in space are cocyclic: is_concyclic
	Check if five points in space are cospherical: is_cospherical
	Check if an object in space is an equilateral triangle: is_equilateral
	Check if an object in space is an isosceles triangle: is_isosceles
	Check if an object in space is a right triangle or a rectangle: is_rectangle
	Check if an object in space is a square: is_square
	Check if an object in space is a rhombus: is_rhombus
	Check if an object in space is a parallelogram: is_parallelogram

	Transformations in space
	General remarks
	Translation in space: translation
	Reflection in space with respect to a plane, line or point: reflection symmetry
	Rotation in space: rotation
	Homothety in space: homothety
	Similarity in space: similarity
	Inversion in space: inversion
	Orthogonal projection in space: projection

	Surfaces
	Cones: cone
	Half-cones: half_cone
	Cylinders: cylinder
	Spheres: sphere
	The graph of a function of two variables: funcplot
	The graph of parametric equations in space: paramplot

	Solids
	Cubes: cube
	Tetrahedrons: tetrahedron pyramid
	Parallelepipeds: parallelepiped
	Prisms: prism
	Polyhedra: polyhedron
	Vertices: vertices
	Faces: faces
	Edges: line_segments

	Platonic solids
	Centered tetrahedra: centered_tetrahedron
	Centered cubes: centered_cube
	Octahedra: octahedron
	Dodecahedra: dodecahedron
	Icosahedra: icosahedron

	Multimedia
	Sounds
	Reading a wav file: readwav
	Writing a wav file: writewav
	Listening to a digital sound: playsnd
	Preparing digital sound data: soundsec

	Images
	Image structure in Xcas
	Reading images: readrgb
	Viewing images
	Creating or recreating images: writergb

	Using giac inside a program
	Using giac inside a C++ program
	Defining new giac functions

